Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

In the production of proteins as inclusion bodies (IBs) caused a decrease in the solubility and activity of these products. Diverse approaches and methods have been used by investigators to overcome this problem. The secretion of recombinant proteins into the periplasmic space by means of suitable signal peptides is a way to resolve these limitations for the production of recombinant proteins in a native form. Secretory production of recombinant proteins in bacterial hosts has many advantages and thus, it is a topic of interest. However, it is hard to achieve due to the difficulty of the process and the need for the choice of appropriate signal peptide for each host and protein. Based on the literature, different signal peptides have experimentally been applied to enhance the solubility of various recombinant proteins. It has been shown that the secretion efficiency of a given protein differs dramatically based on the type of the signal peptide that is attached to the protein. Therefore, the choice and alteration of signal peptides are the two crucial approaches for the improvement of a recombinant protein secretion that have been discussed in this review. Also, different factors affecting the expression and solubility of recombinant proteins have been discussed.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646305738240730113619
2024-09-01
2025-06-17
Loading full text...

Full text loading...

References

  1. YinJ. LiG. RenX. HerrlerG. Select what you need: A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes.J. Biotechnol.2007127333534710.1016/j.jbiotec.2006.07.01216959350
    [Google Scholar]
  2. MergulhãoF.J.M. SummersD.K. MonteiroG.A. Recombinant protein secretion in Escherichia coli. Biotechnol. Adv.200523317720210.1016/j.biotechadv.2004.11.00315763404
    [Google Scholar]
  3. ZhangW. LuJ. ZhangS. LiuL. PangX. LvJ. Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: Expression of Pseudomonas fluorescens BJ-10 thermostable lipase as case study.Microb. Cell Fact.20181715010.1186/s12934‑018‑0894‑y29592803
    [Google Scholar]
  4. ShokriA. SandénA. LarssonG. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli.Appl. Microbiol. Biotechnol.200360665466410.1007/s00253‑002‑1156‑812664143
    [Google Scholar]
  5. HoffmannF. HeuvelJ. ZidekN. RinasU. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale.Enzyme Microb. Technol.2004343-423524110.1016/j.enzmictec.2003.10.011
    [Google Scholar]
  6. Boock, J.T.; Waraho-Zhmayev, D.; Mizrachi, D.; DeLisa, M.P. Beyond the cytoplasm of Escherichia coli: Localizing recombinant proteins where you want them. Insoluble Proteins; SpringerLink: Berlin, Heidelberg, 2015, pp. 79-97.
  7. NataleP. BrüserT. DriessenA.J. Sec-and Tat-mediated protein secretion across the bacterial cytoplasmic membrane-distinct translocases and mechanisms. Biochimica et Biophysica Acta (BBA)-. Biomembranes2008177891735175610.1016/j.bbamem.2007.07.01517935691
    [Google Scholar]
  8. NegahdaripourM. NezafatN. HajighahramaniN. Soheil RahmatabadiS. Hossein MorowvatM. GhasemiY. In silico study of different signal peptides for secretory production of interleukin-11 in Escherichia coli.Curr. Proteomics201714211212110.2174/1570164614666170106110848
    [Google Scholar]
  9. PohlS. HarwoodC.R. Heterologous protein secretion by bacillus species from the cradle to the grave.Adv. Appl. Microbiol.20107312510.1016/S0065‑2164(10)73001‑X20800757
    [Google Scholar]
  10. LiW. ZhouX. LuP. Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis.Res. Microbiol.2004155860561010.1016/j.resmic.2004.05.00215380546
    [Google Scholar]
  11. TsirigotakiA. De GeyterJ. Šoštaric´N. EconomouA. KaramanouS. Protein export through the bacterial Sec pathway.Nat. Rev. Microbiol.2017151213610.1038/nrmicro.2016.16127890920
    [Google Scholar]
  12. RuschS.L. KendallD.A. Interactions that drive Sec-dependent bacterial protein transport.Biochemistry200746349665967310.1021/bi701006417676771
    [Google Scholar]
  13. DenksK. VogtA. SachelaruI. PetrimanN.A. KudvaR. KochH.G. The Sec translocon mediated protein transport in prokaryotes and eukaryotes.Mol. Membr. Biol.2014312-3588410.3109/09687688.2014.90745524762201
    [Google Scholar]
  14. ElvekrogM.M. WalterP. Dynamics of co-translational protein targeting.Curr. Opin. Chem. Biol.201529798610.1016/j.cbpa.2015.09.01626517565
    [Google Scholar]
  15. KusukawaN. YuraT. UeguchiC. AkiyamaY. ItoK. Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli.EMBO J.19898113517352110.1002/j.1460‑2075.1989.tb08517.x2573517
    [Google Scholar]
  16. BechtluftP. NouwenN. TansS.J. DriessenA.J.M. SecB—A chaperone dedicated to protein translocation.Mol. Biosyst.20106462062710.1039/B915435C20237639
    [Google Scholar]
  17. HerbortM. KleinM. MantingE.H. DriessenA.J.M. FreudlR. Temporal expression of the Bacillus subtilis secA gene, encoding a central component of the preprotein translocase.J. Bacteriol.1999181249350010.1128/JB.181.2.493‑500.19999882663
    [Google Scholar]
  18. WildJ. AltmanE. YuraT. GrossC.A. DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli .Genes Dev.1992671165117210.1101/gad.6.7.11651628824
    [Google Scholar]
  19. Lycklama a NijeholtJ.A. DriessenA.J.M. The bacterial Sec-translocase: Structure and mechanism.Philos. Trans. R. Soc. Lond. B Biol. Sci.201236715921016102810.1098/rstb.2011.020122411975
    [Google Scholar]
  20. TsukazakiT. MoriH. EchizenY. IshitaniR. FukaiS. TanakaT. PerederinaA. VassylyevD.G. KohnoT. MaturanaA.D. ItoK. NurekiO. Structure and function of a membrane component SecDF that enhances protein export.Nature2011474735023523810.1038/nature0998021562494
    [Google Scholar]
  21. DalbeyR.E. WangP. van DijlJ.M. Membrane proteases in the bacterial protein secretion and quality control pathway.Microbiol. Mol. Biol. Rev.201276231133010.1128/MMBR.05019‑1122688815
    [Google Scholar]
  22. PalmerT. BerksB.C. The twin-arginine translocation (Tat) protein export pathway.Nat. Rev. Microbiol.201210748349610.1038/nrmicro281422683878
    [Google Scholar]
  23. SargentF. StanleyN.R. BerksB.C. PalmerT. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein.J. Biol. Chem.199927451360733608210.1074/jbc.274.51.3607310593889
    [Google Scholar]
  24. AlamiM. LükeI. DeitermannS. EisnerG. KochH.G. BrunnerJ. MüllerM. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli.Mol. Cell200312493794610.1016/S1097‑2765(03)00398‑814580344
    [Google Scholar]
  25. LükeI. HandfordJ.I. PalmerT. SargentF. Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB.Arch. Microbiol.20091911291992510.1007/s00203‑009‑0516‑519809807
    [Google Scholar]
  26. Futatsumori-SugaiM. TsumotoK. Signal peptide design for improving recombinant protein secretion in the baculovirus expression vector system.Biochem. Biophys. Res. Commun.2010391193193510.1016/j.bbrc.2009.11.16719962965
    [Google Scholar]
  27. LowK.O. Muhammad MahadiN. Md IlliasR. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts.Appl. Microbiol. Biotechnol.20139793811382610.1007/s00253‑013‑4831‑z23529680
    [Google Scholar]
  28. ChouM.M. KendallD.A. Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides.J. Biol. Chem.199026552873288010.1016/S0021‑9258(19)39882‑52154463
    [Google Scholar]
  29. MoriH. ArakiM. HikitaC. TagayaM. MizushimaS. The hydrophobic region of signal peptides is involved in the interaction with membrane-bound SecA.Biochim. Biophys. Acta Biomembr.199713261233610.1016/S0005‑2736(97)00004‑79188797
    [Google Scholar]
  30. FuL. XuZ. ShuaiJ. HuC. DaiW. LiW. High-level secretion of a chimeric thermostable lichenase from Bacillus subtilis by screening of site-mutated signal peptides with structural alterations.Curr. Microbiol.200856328729210.1007/s00284‑007‑9077‑518172721
    [Google Scholar]
  31. RománR. MiretJ. ScaliaF. CasablancasA. LecinaM. CairóJ.J. Enhancing heterologous protein expression and secretion in HEK293 cells by means of combination of CMV promoter and IFNα2 signal peptide.J. Biotechnol.2016239576010.1016/j.jbiotec.2016.10.00527725209
    [Google Scholar]
  32. ZhangL. LengQ. MixsonA. J. Alteration in the IL-2 signal peptide affects secretion of proteins in vitro and in vivo.J Gene Med20057335465
    [Google Scholar]
  33. ZhouY. LiuP. GanY. SandovalW. KatakamA.K. ReicheltM. RangellL. ReillyD. Enhancing full-length antibody production by signal peptide engineering.Microb. Cell Fact.20161514710.1186/s12934‑016‑0445‑326935575
    [Google Scholar]
  34. HikitaC. MizushimaS. The requirement of a positive charge at the amino terminus can be compensated for by a longer central hydrophobic stretch in the functioning of signal peptides.J. Biol. Chem.199226717123751237910.1016/S0021‑9258(19)49850‑51318317
    [Google Scholar]
  35. RuschS. MascoloC. KebirM. KendallD. Juxtaposition of signal-peptide charge and core region hydrophobicity is critical for functional signal peptides.Arch. Microbiol.2002178430631010.1007/s00203‑002‑0453‑z12209265
    [Google Scholar]
  36. IsmailN.F. HamdanS. MahadiN.M. MuradA.M.A. RabuA. BakarF.D.A. KlappaP. IlliasR.M. A mutant l-asparaginase II signal peptide improves the secretion of recombinant cyclodextrin glucanotransferase and the viability of Escherichia coli.Biotechnol. Lett.2011335999100510.1007/s10529‑011‑0517‑821234789
    [Google Scholar]
  37. JonetM.A. MahadiN.M. MuradA.M.A. RabuA. BakarF.D.A. RahimR.A. LowK.O. IlliasR.M. Optimization of a heterologous signal peptide by site-directed mutagenesis for improved secretion of recombinant proteins in Escherichia coli.J. Mol. Microbiol. Biotechnol.2012221485822456489
    [Google Scholar]
  38. InouyeS. SoberonX. FranceschiniT. NakamuraK. ItakuraK. InouyeM. Role of positive charge on the amino-terminal region of the signal peptide in protein secretion across the membrane.Proc. Natl. Acad. Sci. USA198279113438344110.1073/pnas.79.11.34387048305
    [Google Scholar]
  39. TakimuraY. KatoM. OhtaT. YamagataH. UdakaS. Secretion of human interleukin-2 in biologically active form by Bacillus brevis directly into culture medium.Biosci. Biotechnol. Biochem.199761111858186110.1271/bbb.61.18589404065
    [Google Scholar]
  40. WankelS.D. MosierA.C. HanselC.M. PaytanA. FrancisC.A. Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary, California.Appl. Environ. Microbiol.201177126928010.1128/AEM.01318‑1021057023
    [Google Scholar]
  41. NesmeyanovaM.A. KaramyshevA.L. KaramyshevaZ.N. KalininA.E. KsenzenkoV.N. KajavaA.V. Positively charged lysine at the N-terminus of the signal peptide of the Escherichia coli alkaline phosphatase provides the secretion efficiency and is involved in the interaction with anionic phospholipids.FEBS Lett.1997403220320710.1016/S0014‑5793(97)00052‑59042967
    [Google Scholar]
  42. GuoX. ZhangY. ZhangX. WangS. LuC. Recognition of signal peptide by protein translocation machinery in middle silk gland of silkworm <italic>Bombyx mori</italic>.Acta Biochim. Biophys. Sin. (Shanghai)2008401384610.1111/j.1745‑7270.2008.00376.x18180852
    [Google Scholar]
  43. Le LoirY. GrussA. EhrlichS.D. LangellaP. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis.J. Bacteriol.199818071895190310.1128/JB.180.7.1895‑1903.19989537390
    [Google Scholar]
  44. Le LoirY. NouailleS. CommissaireJ. BrétignyL. GrussA. LangellaP. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis.Appl. Environ. Microbiol.20016794119412710.1128/AEM.67.9.4119‑4127.200111526014
    [Google Scholar]
  45. DavisA. MooreI.B. ParkerD.S. TaniuchiH. Nuclease B. A possible precursor of nuclease A, an extracellular nuclease of Staphylococcus aureus.J. Biol. Chem.1977252186544655310.1016/S0021‑9258(17)39992‑1893427
    [Google Scholar]
  46. HytönenV.P. LaitinenO.H. AirenneT.T. KidronH. MeltolaN.J. PorkkaE.J. HörhäJ. PaldaniusT. MäättäJ.A.E. NordlundH.R. JohnsonM.S. SalminenT.A. AirenneK.J. Ylä-HerttualaS. KulomaaM.S. Efficient production of active chicken avidin using a bacterial signal peptide in Escherichia coli .Biochem. J.2004384238539010.1042/BJ2004111415324300
    [Google Scholar]
  47. CostaS.J. AlmeidaA. CastroA. DominguesL. BesirH. The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli : A comparison with the traditional gene fusion technology.Appl. Microbiol. Biotechnol.201397156779679110.1007/s00253‑012‑4559‑123160981
    [Google Scholar]
  48. LiangX. JiaS. SunY. ChenM. ChenX. ZhongJ. HuanL. Secretory expression of nattokinase from Bacillus subtilis YF38 in Escherichia coli.Mol. Biotechnol.200737318719410.1007/s12033‑007‑0060‑y17952663
    [Google Scholar]
  49. Doozandeh-JuibariA. GhovvatiS. VaziriH.R. SohaniM.M. PezeshkianZ. Cloning, expression, purification and evaluation of the biological properties of the recombinant human growth hormone (hGH) in Escherichia coli.Int. J. Pept. Res. Ther.202026148749510.1007/s10989‑019‑09854‑y
    [Google Scholar]
  50. SamantS. GuptaG. KarthikeyanS. HaqS.F. NairA. SambasivamG. SukumaranS. Effect of codon-optimized E. coli signal peptides on recombinant Bacillus stearothermophilus maltogenic amylase periplasmic localization, yield and activity.J. Ind. Microbiol. Biotechnol.20144191435144210.1007/s10295‑014‑1482‑825038884
    [Google Scholar]
  51. LowK.O. JonetM.A. IsmailN.F. IlliasR.M. Optimization of a Bacillus sp signal peptide for improved recombinant protein secretion and cell viability in Escherichia coli.Bioengineered20123633433810.4161/bioe.2145422892592
    [Google Scholar]
  52. ZamaniM. NezafatN. NegahdaripourM. DabbaghF. GhasemiY. In silico evaluation of different signal peptides for the secretory production of human growth hormone in E. coli.Int. J. Pept. Res. Ther.201521326126810.1007/s10989‑015‑9454‑z
    [Google Scholar]
  53. HajihassanZ. SohrabiM. Rajabi BazlM. EftekharyH. Expression of human nerve growth factor beta and bacterial protein disulfide isomerase (DsbA) as a fusion protein (DsbA: hNGF) significantly enhances periplasmic production of hNGF beta in Escherichia coli.Rom. Biotechnol. Lett.20162151185011856
    [Google Scholar]
  54. YıldırımZ. ÇelikE. Periplasmic and extracellular production of cellulase from recombinant Escherichia coli cells.J. Chem. Technol. Biotechnol.201792231932410.1002/jctb.5008
    [Google Scholar]
  55. ShiL. LiuH. GaoS. WengY. ZhuL. Enhanced extracellular production of is PETase in Escherichia coli via engineering of the pelB signal peptide.J. Agric. Food Chem.20216972245225210.1021/acs.jafc.0c0746933576230
    [Google Scholar]
  56. SeoH. KimS. SonH.F. SagongH.Y. JooS. KimK.J. Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli. Biochem. Biophys. Res. Commun.2019508125025510.1016/j.bbrc.2018.11.08730477746
    [Google Scholar]
  57. JongW.S.P. VikströmD. HoubenD. van den Berg van SaparoeaH.B. de GierJ.W. LuirinkJ. Application of an E. coli signal sequence as a versatile inclusion body tag.Microb. Cell Fact.20171615010.1186/s12934‑017‑0662‑428320377
    [Google Scholar]
  58. SinghP. SharmaL. KulothunganS.R. AdkarB.V. PrajapatiR.S. AliP.S.S. KrishnanB. VaradarajanR. Effect of signal peptide on stability and folding of Escherichia coli thioredoxin.PLoS One201385e6344210.1371/journal.pone.006344223667620
    [Google Scholar]
  59. BeenaK. UdgaonkarJ.B. VaradarajanR. Effect of signal peptide on the stability and folding kinetics of maltose binding protein.Biochemistry200443123608361910.1021/bi036050915035631
    [Google Scholar]
  60. CuiY. MengY. ZhangJ. ChengB. YinH. GaoC. XuP. YangC. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide.Protein Expr. Purif.2017129697410.1016/j.pep.2016.09.01127664436
    [Google Scholar]
  61. FallahM. AkbariB. SaeidiN. A. KarimiM. VaezM. ZeynA. M. SoleymaniM. MaghsoudiN. Overexpression of Recombinant Human Granulocyte Colony-Stimulating Factor (huG-CSF) in E.coli.Iranian J Med Sci2003283131134
    [Google Scholar]
  62. TehraniS.S. GoodarziG. NaghizadehM. KhatamiS.H. MovahedpourA. AbbasiA. ShabaninejadZ. KhalafN. Taheri-AnganehM. SavardashtakiA. Suitable signal peptides for secretory production of recombinant granulocyte colony stimulating factor in Escherichia coli.Recent Pat. Biotechnol.202014426928210.2174/187220831499920073011501832838727
    [Google Scholar]
  63. JeongK.J. LeeS.Y. Secretory production of human granulocyte colony-stimulating factor in Escherichia coli.Protein Expr. Purif.200123231131810.1006/prep.2001.150811676607
    [Google Scholar]
  64. HuberD. ChaM. DebarbieuxL. PlansonA.G. CruzN. LópezG. TasaycoM.L. ChaffotteA. BeckwithJ. A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo.Proc. Natl. Acad. Sci. USA200510252188721887710.1073/pnas.050958310216357193
    [Google Scholar]
  65. SchierleC.F. BerkmenM. HuberD. KumamotoC. BoydD. BeckwithJ. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway.J. Bacteriol.2003185195706571310.1128/JB.185.19.5706‑5713.200313129941
    [Google Scholar]
  66. LiC. WangY. LiuT. NiklaschM. QiaoK. DurandS. ChenL. LiangM. BaumertT.F. TongS. NassalM. WenY.M. WangY.X. An E. coli-produced single-chain variable fragment (scFv) targeting hepatitis B virus surface protein potently inhibited virion secretion.Antiviral Res.201916211812910.1016/j.antiviral.2018.12.01930599174
    [Google Scholar]
  67. LobsteinJ. EmrichC.A. JeansC. FaulknerM. RiggsP. BerkmenM. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm.Microb. Cell Fact.201211175310.1186/1475‑2859‑11‑5622569138
    [Google Scholar]
  68. RobinsonM.P. KeN. LobsteinJ. PetersonC. SzkodnyA. MansellT.J. TuckeyC. RiggsP.D. ColussiP.A. NorenC.J. TaronC.H. DeLisaM.P. BerkmenM. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria.Nat. Commun.201561807210.1038/ncomms907226311203
    [Google Scholar]
  69. YusakulG. NuntawongP. SakamotoS. Ratnatilaka Na BhuketP. KohnoT. KikkawaN. RojsitthisakP. ShimizuK. TanakaH. MorimotoS. Bacterial expression of a single-chain variable fragment (scFv) antibody against ganoderic acid A: A cost-effective approach for quantitative analysis using the scFv-based enzyme-linked immunosorbent assay.Biol. Pharm. Bull.201740101767177410.1248/bpb.b17‑0053128966249
    [Google Scholar]
  70. GaciarzA. VeijolaJ. UchidaY. SaaranenM.J. WangC. HörkköS. RuddockL.W. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli.Microb. Cell Fact.20161512210.1186/s12934‑016‑0419‑526809624
    [Google Scholar]
  71. HatahetF. NguyenV.D. SaloK.E.H. RuddockL.W. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli. Microb. Cell Fact.2010916710.1186/1475‑2859‑9‑6720836848
    [Google Scholar]
  72. HatahetF. RuddockL.W. Topological plasticity of enzymes involved in disulfide bond formation allows catalysis in either the periplasm or the cytoplasm.J. Mol. Biol.2013425183268327610.1016/j.jmb.2013.04.03423810903
    [Google Scholar]
  73. NguyenV.D. HatahetF. SaloK.E.H. EnlundE. ZhangC. RuddockL.W. Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E. coli. Microb. Cell Fact.201110111310.1186/1475‑2859‑10‑121211066
    [Google Scholar]
  74. WangY. YuanW. GuoS. LiQ. ChenX. LiC. LiuQ. SunL. ChenZ. YuanZ. LuoC. ChenS. TongS. NassalM. WenY.M. WangY.X. A 33-residue peptide tag increases solubility and stability of Escherichia coli produced single-chain antibody fragments.Nat. Commun.2022131461410.1038/s41467‑022‑32423‑935941164
    [Google Scholar]
  75. DalmoraS. de OliveiraJ.E. AffonsoR. GimboE. RibelaM.T.C.P. BartoliniP. Analysis of recombinant human growth hormone directly in osmotic shock fluids.J. Chromatogr. A1997782219921010.1016/S0021‑9673(97)00493‑79368400
    [Google Scholar]
  76. ChartH. SmithH.R. La RagioneR.M. WoodwardM.J. An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α and EQ1.J. Appl. Microbiol.20008961048105810.1046/j.1365‑2672.2000.01211.x11123478
    [Google Scholar]
  77. PrinzW.A. ÅslundF. HolmgrenA. BeckwithJ. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm.J. Biol. Chem.199727225156611566710.1074/jbc.272.25.156619188456
    [Google Scholar]
  78. MirouxB. WalkerJ.E. Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels.J. Mol. Biol.1996260328929810.1006/jmbi.1996.03998757792
    [Google Scholar]
  79. Dumon-SeignovertL. CariotG. VuillardL. The toxicity of recombinant proteins in Escherichia coli: A comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3).Protein Expr. Purif.200437120320610.1016/j.pep.2004.04.02515294299
    [Google Scholar]
  80. BaumgartenT. SchlegelS. WagnerS. LöwM. ErikssonJ. BondeI. HerrgårdM.J. HeipieperH.J. NørholmM.H.H. SlotboomD.J. de GierJ.W. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3).Sci. Rep.2017714508910.1038/srep4508928338018
    [Google Scholar]
  81. SoneM. KishigamiS. YoshihisaT. ItoK. Roles of disulfide bonds in bacterial alkaline phosphatase.J. Biol. Chem.1997272106174617810.1074/jbc.272.10.61749045630
    [Google Scholar]
  82. WagnerS. KlepschM.M. SchlegelS. AppelA. DraheimR. TarryM. HögbomM. van WijkK.J. SlotboomD.J. PerssonJ.O. de GierJ.W. Tuning Escherichia coli for membrane protein overexpression.Proc. Natl. Acad. Sci. USA200810538143711437610.1073/pnas.080409010518796603
    [Google Scholar]
  83. SchumannW. FerreiraL.C.S. Production of recombinant proteins in Escherichia coli.Genet. Mol. Biol.200427344245310.1590/S1415‑47572004000300022
    [Google Scholar]
  84. KaurJ. KumarA. KaurJ. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements.Int. J. Biol. Macromol.201810680382210.1016/j.ijbiomac.2017.08.08028830778
    [Google Scholar]
  85. PoliskyB. BishopR.J. GelfandD.H. A plasmid cloning vehicle allowing regulated expression of eukaryotic DNA in bacteria.Proc. Natl. Acad. Sci. USA197673113900390410.1073/pnas.73.11.39001069275
    [Google Scholar]
  86. de BoerH.A. ComstockL.J. VasserM. The tac promoter: A functional hybrid derived from the trp and lac promoters.Proc. Natl. Acad. Sci. USA1983801212510.1073/pnas.80.1.216337371
    [Google Scholar]
  87. BrosiusJ. ErfleM. StorellaJ. Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity.J. Biol. Chem.198526063539354110.1016/S0021‑9258(19)83655‑42579077
    [Google Scholar]
  88. GuzmanL.M. BelinD. CarsonM.J. BeckwithJ. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.J. Bacteriol.1995177144121413010.1128/jb.177.14.4121‑4130.19957608087
    [Google Scholar]
  89. StudierF.W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system.J. Mol. Biol.19912191374410.1016/0022‑2836(91)90855‑Z2023259
    [Google Scholar]
  90. SethiaP.P. RaoK.K. NoronhaS.B. A dps promoter based expression system for improved solubility of expressed proteins in Escherichia coli.Biotechnol. Bioprocess Eng.; BBE201419579079710.1007/s12257‑013‑0722‑5
    [Google Scholar]
  91. JohnsonA.D. PoteeteA.R. LauerG. SauerR.T. AckersG.K. PtashneM. λ Repressor and cro—components of an efficient molecular switch.Nature1981294583821722310.1038/294217a06457992
    [Google Scholar]
  92. MieschendahlM. PetriT. HänggiU. A novel prophage independent trp regulated lambda PL expression system.Bio/Technology198649802808
    [Google Scholar]
  93. LoveC.A. LilleyP.E. DixonN.E. Stable high-copy-number bacteriophage λ promoter vectors for overproduction of proteins in Escherichia coli.Gene19961761-2495310.1016/0378‑1119(96)00208‑98918231
    [Google Scholar]
  94. VélezA.M. HortaA.C.L. da SilvaA.J. IemmaM.R.C. GiordanoR.L.C. ZangirolamiT.C. Enhanced production of recombinant thermo-stable lipase in Escherichia coli at high induction temperature.Protein Expr. Purif.20139029610310.1016/j.pep.2013.05.00523727254
    [Google Scholar]
  95. FrancisD. M. PageR. Strategies to optimize protein expression in E. coli.Curr Protoc Protein Sci201061125.24. 2125.24. 29
    [Google Scholar]
  96. MairhoferJ. Cserjan-PuschmannM. StriednerG. NöbauerK. Razzazi-FazeliE. GrabherrR. Marker-free plasmids for gene therapeutic applications—Lack of antibiotic resistance gene substantially improves the manufacturing process.J. Biotechnol.2010146313013710.1016/j.jbiotec.2010.01.02520138928
    [Google Scholar]
  97. SørensenH.P. MortensenK.K. Advanced genetic strategies for recombinant protein expression in Escherichia coli.J. Biotechnol.2005115211312810.1016/j.jbiotec.2004.08.00415607230
    [Google Scholar]
  98. SelzerG. SomT. ItohT. TomizawaJ. The origin of replication of plasmid p15A and comparative studies on the nucleotide sequences around the origin of related plasmids.Cell198332111912910.1016/0092‑8674(83)90502‑06186390
    [Google Scholar]
  99. SørensenH. MortensenK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli.Microb. Cell Fact.2005411810.1186/1475‑2859‑4‑115629064
    [Google Scholar]
  100. de GrootN.S. VenturaS. Effect of temperature on protein quality in bacterial inclusion bodies.FEBS Lett.2006580276471647610.1016/j.febslet.2006.10.07117101131
    [Google Scholar]
  101. MizukamiT. KomatsuY. HosoiN. ItohS. OkaT. Production of active human interferon-? in E. coli I. Preferential production by lower culture temperature.Biotechnol. Lett.19868960561010.1007/BF01025964
    [Google Scholar]
  102. VoulgaridouG.P. MantsoT. ChlichliaK. PanayiotidisM.I. PappaA. Efficient E. coli expression strategies for production of soluble human crystallin ALDH3A1.PLoS One201382e5658210.1371/journal.pone.005658223451057
    [Google Scholar]
  103. ChenJ. ActonT.B. BasuS.K. MontelioneG.T. InouyeM. Enhancement of the solubility of proteins overexpressed in Escherichia coli by heat shock.J. Mol. Microbiol. Biotechnol.20024651952412432951
    [Google Scholar]
  104. RamírezO.T. ZamoraR. EspinosaG. MerinoE. BolívarF. QuinteroR. Kinetic study of penicillin acylase production by recombinant E. coli in batch cultures.Process Biochem.199429319720610.1016/0032‑9592(94)85004‑6
    [Google Scholar]
  105. ToliaN.H. Joshua-TorL. Strategies for protein coexpression in Escherichia coli. Nature methods 2006, 3 (1), 55-64. Baneyx, F.; Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli.Nat. Biotechnol.200422111399140815529165
    [Google Scholar]
  106. García-FragaB. da SilvaA.F. López-SeijasJ. SieiroC. Optimized expression conditions for enhancing production of two recombinant chitinolytic enzymes from different prokaryote domains.Bioprocess Biosyst. Eng.201538122477248610.1007/s00449‑015‑1485‑526470707
    [Google Scholar]
  107. HaiT.N. Expression of flagellin FLjB derived from Salmonella enterica serovar typhimurium in Escherichia coli BL21.Academia Journal of Biology2014364506514
    [Google Scholar]
/content/journals/cp/10.2174/0115701646305738240730113619
Loading
/content/journals/cp/10.2174/0115701646305738240730113619
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): E. coli; expression; Inclusion bodies; recombinant protein; signal peptide; solubility
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test