Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Purpose

The molecular properties of TLSs in pancreatic cancer are still not well comprehended. This research delved into the molecular properties of intratumoral TLSs in pancreatic cancer through the exploration of multi-omics data.

Methods

Seven key genes were identified through Cox regression analysis and random survival forest analysis from a total of 5908 genes related to TLSs. These genes were utilized to construct a prognosis model, which was subsequently validated in two independent cohorts. Additionally, the study investigated the molecular features of different populations of TLSs from multiple perspectives. The model’ s forecasting accuracy was verified by analyzing nomogram and decision curves, taking into account the patients’ clinical traits.

Results

The analysis of immune cell infiltration showed a notably greater presence of Macrophage M0 cells in the group at high risk than in the low-risk group. The pathway enrichment analysis demonstrated the activation among common cancer-related pathways, including ECM receptor interaction, pathways in cancer, and focal adhesion, in the high-risk group. Additionally, the methylation study revealed notable disparities in DNA methylation between two TLS groups across four regions: TSS200, 5’ UTR, 1stExon, and Body. A variety of notably distinct sites were linked with PVT1. Furthermore, by constructing a competing endogenous RNA network, several mRNAs and lncRNAs were identified that compete for the binding of hsa-mir-221.

Conclusion

Overall, this research sheds light on the molecular properties of TLSs across various pancreatic cancer stages and suggests possible focal points for the treatment of pancreatic cancer.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646317271240821071544
2024-12-01
2024-11-18
Loading full text...

Full text loading...

References

  1. Schumacher TonN. Tertiary lymphoid structures in cancer.Science20223756576eabf941910.1126/science.abf9419
    [Google Scholar]
  2. PitzalisC. JonesG.W. BombardieriM. JonesS.A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity.Nat. Rev. Immunol.201414744746210.1038/nri3700 24948366
    [Google Scholar]
  3. Dieu-NosjeanM.C. GocJ. GiraldoN.A. Sautès-FridmanC. FridmanW.H. Tertiary lymphoid structures in cancer and beyond.Trends Immunol.2014351157158010.1016/j.it.2014.09.006 25443495
    [Google Scholar]
  4. Sautès-FridmanC. PetitprezF. CalderaroJ. FridmanW.H. Tertiary lymphoid structures in the era of cancer immunotherapy.Nat. Rev. Cancer201919630732510.1038/s41568‑019‑0144‑6 31092904
    [Google Scholar]
  5. SatoY. SilinaK. van den BroekM. HiraharaK. YanagitaM. The roles of tertiary lymphoid structures in chronic diseases.Nat. Rev. Nephrol.202319852553710.1038/s41581‑023‑00706‑z 37046081
    [Google Scholar]
  6. ColbeckE.J. AgerA. GallimoreA. JonesG.W. Tertiary Lymphoid Structures in Cancer: Drivers of Antitumor Immunity, Immunosuppression, or Bystander Sentinels in Disease?Front. Immunol.20178183010.3389/fimmu.2017.01830 29312327
    [Google Scholar]
  7. ZhuG. NemotoS. MaillouxA.W. Perez-VillarroelP. NakagawaR. FalahatR. BerglundA.E. MuléJ.J. Induction of Tertiary Lymphoid Structures With Antitumor Function by a Lymph Node-Derived Stromal Cell Line.Front. Immunol.20189160910.3389/fimmu.2018.01609 30061886
    [Google Scholar]
  8. CabritaR. LaussM. SannaA. DoniaM. Skaarup LarsenM. MitraS. JohanssonI. PhungB. HarbstK. Vallon-ChristerssonJ. van SchoiackA. LövgrenK. WarrenS. JirströmK. OlssonH. PietrasK. IngvarC. IsakssonK. SchadendorfD. SchmidtH. BastholtL. CarneiroA. WargoJ.A. SvaneI.M. JönssonG. Author Correction: Tertiary lymphoid structures improve immunotherapy and survival in melanoma.Nature20205807801E110.1038/s41586‑020‑2155‑6 32238929
    [Google Scholar]
  9. ZhangY. XuM. RenY. BaY. LiuS. ZuoA. XuH. WengS. HanX. LiuZ. Tertiary lymphoid structural heterogeneity determines tumour immunity and prospects for clinical application.Mol. Cancer2024231757510.1186/s12943‑024‑01980‑6 38582847
    [Google Scholar]
  10. HelminkB.A. ReddyS.M. GaoJ. ZhangS. BasarR. ThakurR. YizhakK. Sade-FeldmanM. BlandoJ. HanG. GopalakrishnanV. XiY. ZhaoH. AmariaR.N. TawbiH.A. CogdillA.P. LiuW. LeBleuV.S. KugeratskiF.G. PatelS. DaviesM.A. HwuP. LeeJ.E. GershenwaldJ.E. LucciA. AroraR. WoodmanS. KeungE.Z. GaudreauP.O. ReubenA. SpencerC.N. BurtonE.M. HayduL.E. LazarA.J. ZapassodiR. HudgensC.W. LedesmaD.A. OngS. BaileyM. WarrenS. RaoD. KrijgsmanO. RozemanE.A. PeeperD. BlankC.U. SchumacherT.N. ButterfieldL.H. ZelazowskaM.A. McBrideK.M. KalluriR. AllisonJ. PetitprezF. FridmanW.H. Sautès-FridmanC. HacohenN. RezvaniK. SharmaP. TetzlaffM.T. WangL. WargoJ.A. B cells and tertiary lymphoid structures promote immunotherapy response.Nature2020577779154955510.1038/s41586‑019‑1922‑8 31942075
    [Google Scholar]
  11. TrübM. ZippeliusA. Tertiary Lymphoid Structures as a Predictive Biomarker of Response to Cancer Immunotherapies.Front. Immunol.20211267456510.3389/fimmu.2021.674565 34054861
    [Google Scholar]
  12. PetitprezF. de ReynièsA. KeungE.Z. ChenT.W.W. SunC.M. CalderaroJ. JengY.M. HsiaoL.P. LacroixL. BougoüinA. MoreiraM. LacroixG. NatarioI. AdamJ. LucchesiC. LaizetY. ToulmondeM. BurgessM.A. BolejackV. ReinkeD. WaniK.M. WangW.L. LazarA.J. RolandC.L. WargoJ.A. ItalianoA. Sautès-FridmanC. TawbiH.A. FridmanW.H. B cells are associated with survival and immunotherapy response in sarcoma.Nature2020577779155656010.1038/s41586‑019‑1906‑8 31942077
    [Google Scholar]
  13. LaussM. DoniaM. SvaneI.M. JönssonG. B Cells and Tertiary Lymphoid Structures: Friends or Foes in Cancer Immunotherapy?Clin. Cancer Res.20222891751175810.1158/1078‑0432.CCR‑21‑1130 34965949
    [Google Scholar]
  14. GermainC. GnjaticS. TamzalitF. KnockaertS. RemarkR. GocJ. LepelleyA. BechtE. KatsahianS. BizouardG. ValidireP. DamotteD. AlifanoM. MagdeleinatP. CremerI. TeillaudJ.L. FridmanW.H. Sautès-FridmanC. Dieu-NosjeanM.C. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer.Am. J. Respir. Crit. Care Med.2014189783284410.1164/rccm.201309‑1611OC 24484236
    [Google Scholar]
  15. YangJ. XuY. ChenY. Therapeutic perspectives for adult soft tissue sarcoma-updates from the 2022 ASCO annual meeting.Cancer Biol. Med.202219101496150210.20892/j.issn.2095‑3941.2022.0394
    [Google Scholar]
  16. GuJ. WangJ. SunY. MaoX. QianC. TangX. WangJ. XieH. LingL. ZhaoY. LiuX. ZhangK. PanH. WangS. WangC. ZhouW. Immune cells within tertiary lymphoid structures are associated with progression‐free survival in patients with locoregional recurrent breast cancer.Cancer Med.2024131e686410.1002/cam4.6864 38133211
    [Google Scholar]
  17. LadányiA. KissJ. MohosA. SomlaiB. LiszkayG. GildeK. FejősZ. GaudiI. DobosJ. TímárJ. Prognostic impact of B-cell density in cutaneous melanoma.Cancer Immunol. Immunother.201160121729173810.1007/s00262‑011‑1071‑x 21779876
    [Google Scholar]
  18. YangJ. XuJ. LiuH. XiaoW. ZhangG. Deep insight into the B-cell associated tertiary lymphoid structure and tumor immunotherapy.Cancer Biol. Med.20232121710.20892/j.issn.2095‑3941.2023.0308 38038337
    [Google Scholar]
  19. PimentaE. BarnesB. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers.Cancers (Basel)20146296999710.3390/cancers6020969 24762633
    [Google Scholar]
  20. FremdC. SchuetzF. SohnC. BeckhoveP. DomschkeC. B cell-regulated immune responses in tumor models and cancer patients.OncoImmunology201327e2544310.4161/onci.25443 24073382
    [Google Scholar]
  21. HongF. FujunY. LihongQ. Prognostic significance of gene signature of tertiary lymphoid structures in patients with lung adenocarcinoma.Front. Oncol.20211169323410.3389/fonc.2021.693234
    [Google Scholar]
  22. FridmanW.H. MeylanM. PetitprezF. SunC.M. ItalianoA. Sautès-FridmanC. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome.Nat. Rev. Clin. Oncol.202219744145710.1038/s41571‑022‑00619‑z 35365796
    [Google Scholar]
  23. MartinetL. FilleronT. Le GuellecS. RochaixP. GarridoI. GirardJ.P. High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin β-producing dendritic cells in human breast cancer.J. Immunol.201319142001200810.4049/jimmunol.1300872 23825314
    [Google Scholar]
  24. BarmpoutisP. Di CapiteM. Tertiary lymphoid structures (TLS) identification and density assessment on H and E-stained digital slides of lung cancer.PLoS One2021169e025690710.1371/journal.pone.0256907
    [Google Scholar]
  25. SunH. ShiY. RanH. PengJ. LiQ. ZhengG. HeY. LiuS. ChangW. XiaoY. Prognostic value of tertiary lymphoid structures (TLS) in digestive system cancers: a systematic review and meta-analysis.BMC Cancer2023231124810.1186/s12885‑023‑11738‑w 38110876
    [Google Scholar]
  26. BergomasF. GrizziF. DoniA. PesceS. LaghiL. AllavenaP. MantovaniA. MarchesiF. Tertiary intratumor lymphoid tissue in colo-rectal cancer.Cancers (Basel)20114111010.3390/cancers4010001 24213222
    [Google Scholar]
  27. WirsingA.M. RikardsenO.G. SteigenS.E. Uhlin-HansenL. Hadler-OlsenE. Characterisation and prognostic value of tertiary lymphoid structures in oral squamous cell carcinoma.BMC Clin. Pathol.20141413810.1186/1472‑6890‑14‑38 25177210
    [Google Scholar]
  28. HuiZ. ZhangJ. RenY. LiX. YanC. YuW. WangT. XiaoS. ChenY. ZhangR. WeiF. YouJ. RenX. Single-cell profiling of immune cells after neoadjuvant pembrolizumab and chemotherapy in IIIA non-small cell lung cancer (NSCLC).Cell Death Dis.202213760710.1038/s41419‑022‑05057‑4 35831283
    [Google Scholar]
  29. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.3337 25822800
    [Google Scholar]
  30. QianS. WenY. MeiL. ZhuX. ZhangH. XuC. Development and validation of a novel anoikis-related gene signature for predicting prognosis in ovarian cancer.Aging (Albany NY)20231593410342610.18632/aging.204634 37179119
    [Google Scholar]
  31. WangD. ZhangY. WangX. ZhangL. XuS. Construction and validation of an aging-related gene signature predicting the prognosis of pancreatic cancer.Front. Genet.202314102226510.3389/fgene.2023.1022265 36741321
    [Google Scholar]
  32. LiuY. ZhuD. XingH. HouY. SunY.A. 6 gene risk score system constructed for predicting the clinical prognosis of pancreatic adenocarcinoma patients.Oncol. Rep.20194131521153010.3892/or.2019.6979 30747226
    [Google Scholar]
  33. ZhangM.J. Cox proportional hazards regression models for survival data in cancer research.Cancer Treat. Res.2002113597010.1007/978‑1‑4757‑3571‑0_4 12613350
    [Google Scholar]
  34. LiuX. MorelliD. LittlejohnsT.J. CliftonD.A. CliftonL. Combining machine learning with Cox models to identify predictors for incident post-menopausal breast cancer in the UK Biobank.Sci. Rep.2023131922110.1038/s41598‑023‑36214‑0 37286615
    [Google Scholar]
  35. RibattiD. Chapter 1 - Tumor microenvironment.202110.1016/B978‑0‑12‑822803‑6.00008‑9
    [Google Scholar]
  36. PenetM.F. Molecular and Functional Imaging and Theranostics of the Tumor Microenvironment, Molecular Imaging.2nd edAcademic Press20211007102910.1016/B978‑0‑12‑816386‑3.00069‑7
    [Google Scholar]
  37. DengJ. LiK. LuoW. Singular Value Decomposition-Driven Non-negative Matrix Factorization with Application to Identify the Association Patterns of Sarcoma Recurrence.Interdiscip. Sci.202410.1007/s12539‑024‑00606‑1 38424397
    [Google Scholar]
  38. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv007 25605792
    [Google Scholar]
  39. AshburnerM. BallC.A. BlakeJ.A. BotsteinD. ButlerH. CherryJ.M. DavisA.P. DolinskiK. DwightS.S. EppigJ.T. HarrisM.A. HillD.P. Issel-TarverL. KasarskisA. LewisS. MateseJ.C. RichardsonJ.E. RingwaldM. RubinG.M. SherlockG. Gene Ontology: tool for the unification of biology.Nat. Genet.2000251252910.1038/75556 10802651
    [Google Scholar]
  40. KanehisaM. GotoS. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.27 10592173
    [Google Scholar]
  41. SubramanianA. TamayoP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proceed. Nat. Acad. Sci. Am.200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  42. LiH.Y. JinN. HanY.P. JinX.F. Pathway crosstalk analysis in prostate cancer based on protein-protein network data.Neoplasma2017641223110.4149/neo_2017_103 27881001
    [Google Scholar]
  43. YuG. WangL.G. YanG.R. HeQ.Y. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis.Bioinformatics201531460860910.1093/bioinformatics/btu684 25677125
    [Google Scholar]
  44. LairdP.W. Principles and challenges of genome-wide DNA methylation analysis.Nat. Rev. Genet.201011319120310.1038/nrg2732 20125086
    [Google Scholar]
  45. Mahmoodi ChalbataniG. GharagouzlooE. MalekraeisiM.A. AziziP. EbrahimiA. HamblinM.R. MahmoodzadehH. ElkordE. MiriS.R. SanatiM.H. PanahiB. The integrative multi-omics approach identifies the novel competing endogenous RNA (ceRNA) network in colorectal cancer.Sci. Rep.2023131194541945410.1038/s41598‑023‑46620‑z 37945594
    [Google Scholar]
  46. WuJ. JinS. GuW. WanF. ZhangH. ShiG. QuY. YeD. Construction and Validation of a 9-Gene Signature for Predicting Prognosis in Stage III Clear Cell Renal Cell Carcinoma.Front. Oncol.20199152[J].10.3389/fonc.2019.00152
    [Google Scholar]
  47. WangX.X. WuL.H. AiL. PanW. RenJ.Y. ZhangQ. ZhangH.M. Construction of an HCC recurrence model based on the investigation of immune-related lncRNAs and related mechanisms.Mol. Ther. Nucleic Acids2021261387140010.1016/j.omtn.2021.11.006 34900397
    [Google Scholar]
  48. WuJ. ZhouJ. ChaiY. QinC. CaiY. XuD. LeiY. MeiZ. LiM. ShenL. FangG. YangZ. CaiS. XiongN. Novel prognostic features and personalized treatment strategies for mitochondria-related genes in glioma patients.Front. Endocrinol. (Lausanne)202314117218210.3389/fendo.2023.1172182
    [Google Scholar]
  49. LuoY. LiuL. ChengZ. Identification and analysis of diverse cell death patterns in diabetic kidney disease using microarray-based transcriptome profiling and single-nucleus RNA sequencing.Comput. Biol. Med.202416910778010.1016/j.compbiomed.2023.107780
    [Google Scholar]
  50. KochA. De MeyerT. JeschkeJ. Van CriekingeW. MEXPRESS: visualizing expression, DNA methylation and clinical TCGA data.BMC Genomics201516163610.1186/s12864‑015‑1847‑z 26306699
    [Google Scholar]
  51. HuZ.I. O’ReillyE.M. Therapeutic developments in pancreatic cancer.Nat. Rev. Gastroenterol. Hepatol.202421172410.1038/s41575‑023‑00840‑w 37798442
    [Google Scholar]
  52. KimJ.H. KimH.S. KimB.J. LeeJ. JangH.J. Prognostic value of c-Met overexpression in pancreatic adenocarcinoma: a meta-analysis.Oncotarget2017842730987310410.18632/oncotarget.20392 29069852
    [Google Scholar]
  53. HuL.P. ZhangX.X. JiangS.H. TaoL.Y. LiQ. ZhuL.L. YangM.W. HuoY.M. JiangY.S. TianG.A. CaoX.Y. ZhangY.L. YangQ. YangX.M. WangY.H. LiJ. XiaoG.G. SunY.W. ZhangZ.G. Targeting Purinergic Receptor P2Y2 Prevents the Growth of Pancreatic Ductal Adenocarcinoma by Inhibiting Cancer Cell Glycolysis.Clin. Cancer Res.20192541318133010.1158/1078‑0432.CCR‑18‑2297 30420446
    [Google Scholar]
  54. RenT. XueX. WangX. ZhouX. Bioinformatic and experimental analyses of key biomarkers in pancreatic cancer.Exp. Ther. Med.2021226135910.3892/etm.2021.10794
    [Google Scholar]
  55. AughtonK. ElanderN.O. hENT1 Predicts Benefit from Gemcitabine in Pancreatic Cancer but Only with Low CDA mRNA.Cancers20211322575810.3390/cancers13225758
    [Google Scholar]
  56. LiX. LiZ. ZhuH. YuX. Autophagy Regulatory Genes MET and RIPK2 Play a Prognostic Role in Pancreatic Ductal Adenocarcinoma: A Bioinformatic Analysis Based on GEO and TCGA.BioMed Res. Int.2020202011510.1155/2020/8537381 33204717
    [Google Scholar]
  57. MaoY. ShenJ. LuY. LinK. WangH. LiY. ChangP. WalkerM.G. LiD. RNA sequencing analyses reveal novel differentially expressed genes and pathways in pancreatic cancer.Oncotarget2017826425374254710.18632/oncotarget.16451 28418924
    [Google Scholar]
  58. XuC. SuiS. ShangY. YuZ. HanJ. ZhangG. NtimM. HuM. GongP. ChenH. ZhangX. The landscape of immune cell infiltration and its clinical implications of pancreatic ductal adenocarcinoma.J. Adv. Res.20202413914810.1016/j.jare.2020.03.009 32322419
    [Google Scholar]
  59. TulliaC. Antigen-presenting intratumoral b cells affect cd4+til phenotypes in non-small cell lung cancer patients.Cancer Immunol. Res.201751089890710.1158/2326‑6066.CIR‑17‑0075
    [Google Scholar]
  60. SangwooS. Role of B cells in responses to checkpoint blockade immunotherapy and overall survival of cancer patients.Clin. Cancer Res.202115226075608210.1158/1078‑0432.CCR‑21‑0697
    [Google Scholar]
  61. ZhangJ. SunH. LiuS. HuangW. GuJ. ZhaoZ. QinH. LuoL. YangJ. FangY. GeJ. NiB. WangH. Alteration of tumor-associated macrophage subtypes mediated by KRT6A in pancreatic ductal adenocarcinoma.Aging (Albany NY)20201222232172323210.18632/aging.104091 33221741
    [Google Scholar]
  62. EbrahimiS. HosseiniM. ShahidsalesS. MaftouhM. FernsG.A. Ghayour-MobarhanM. HassanianS.M. AvanA. Targeting the Akt/PI3K Signaling Pathway as a Potential Therapeutic Strategy for the Treatment of Pancreatic Cancer.Curr. Med. Chem.201724131321133110.2174/0929867324666170206142658 28176634
    [Google Scholar]
  63. GuanY. KuoW.L. StilwellJ.L. TakanoH. LapukA.V. FridlyandJ. MaoJ.H. YuM. MillerM.A. SantosJ.L. KallogerS.E. CarlsonJ.W. GinzingerD.G. CelnikerS.E. MillsG.B. HuntsmanD.G. GrayJ.W. Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer.Clin. Cancer Res.200713195745575510.1158/1078‑0432.CCR‑06‑2882 17908964
    [Google Scholar]
  64. SunC. WangP. DongW. LiuH. SunJ. ZhaoL. LncRNA PVT1 promotes exosome secretion through YKT6, RAB7, and VAMP3 in pancreatic cancer.Aging (Albany NY)20201211104271044010.18632/aging.103268 32499447
    [Google Scholar]
  65. IlboudoA. ChouhanJ. McNeilB. OsborneJ. OgunwobiO. PVT1 Exon 9: A Potential Biomarker of Aggressive Prostate Cancer?Int. J. Environ. Res. Public Health20151311210.3390/ijerph13010012 26703666
    [Google Scholar]
  66. ZhouQ. ChenJ. FengJ. WangJ. Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid-stimulating hormone receptor (TSHR).Tumour Biol.20163733105311310.1007/s13277‑015‑4149‑9 26427660
    [Google Scholar]
  67. LiR. WangX. ZhuC. WangK. lncRNA PVT1: a novel oncogene in multiple cancers.Cell. Mol. Biol. Lett.20222718410.1186/s11658‑022‑00385‑x 36195846
    [Google Scholar]
  68. XieZ. ChenX. LiJ. GuoY. LiH. PanX. JiangJ. LiuH. WuB. Salivary HOTAIR and PVT1 as novel biomarkers for early pancreatic cancer.Oncotarget2016718254082541910.18632/oncotarget.8323 27028998
    [Google Scholar]
  69. ZhaoL. KongH. SunH. ChenZ. ChenB. ZhouM. LncRNA‐PVT1 promotes pancreatic cancer cells proliferation and migration through acting as a molecular sponge to regulate miR‐448.J. Cell. Physiol.201823354044405510.1002/jcp.26072 28657147
    [Google Scholar]
  70. ShiY. WangY. QianJ. YanX. HanY. YaoN. MaJ. MGMT expression affects the gemcitabine resistance of pancreatic cancer cells.Life Sci.202025911814810.1016/j.lfs.2020.118148 32721465
    [Google Scholar]
  71. WuX. HuangJ. YangZ. MicroRNA-221-3p is related to survival and promotes tumour progression in pancreatic cancer.Compreh. Stud. Funct. Clinicopathol.202020144310.1186/s12935‑020‑01529‑9
    [Google Scholar]
  72. ZhangZ. ZhaoW. LiY. LiY. ChengH. ZhengL. SunX. LiuH. ShaoR. YOD1 serves as a potential prognostic biomarker for pancreatic cancer.Cancer Cell Int.202222120310.1186/s12935‑022‑02616‑9 35642058
    [Google Scholar]
  73. YaoW. YaoY. HeW. ZhaoC. LiuD. WangG. WangZ. PABPC1 promotes cell proliferation and metastasis in pancreatic adenocarcinoma by regulating COL12A1 expression.Immun. Inflamm. Dis.2023117e91910.1002/iid3.919 37506150
    [Google Scholar]
  74. IwatateY. YokotaH. HoshinoI. IshigeF. KuwayamaN. ItamiM. MoriY. ChibaS. ArimitsuH. YanagibashiH. TakayamaW. UnoT. LinJ. NakamuraY. TatsumiY. ShimozatoO. NagaseH. Transcriptomic analysis reveals high ITGB1 expression as a predictor for poor prognosis of pancreatic cancer.PLoS One2022176e026863010.1371/journal.pone.0268630 35648752
    [Google Scholar]
  75. ZhuC. WangC. WangX. DongS. XuQ. ZhengJ. PABPC1 silencing inhibits pancreatic cancer cell proliferation and EMT, and induces apoptosis via PI3K/AKT pathway.Cytotechnology202476335136110.1007/s10616‑024‑00626‑1 38736728
    [Google Scholar]
  76. FeiH. ShiX. SunD. YangH. WangD. LiK. SiX. HuW. Integrated analysis identified the role of three family members of ARHGAP in pancreatic adenocarcinoma.Sci. Rep.20241411179010.1038/s41598‑024‑62577‑z 38783033
    [Google Scholar]
/content/journals/cp/10.2174/0115701646317271240821071544
Loading
/content/journals/cp/10.2174/0115701646317271240821071544
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test