Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Neuroblastoma, a malignancy predominantly affecting young children, originates from neural crest cells in the sympathetic nervous system. It primarily appears in the adrenal gland but can also affect nerve tissues in regions, such as the chest, neck, abdomen, and pelvis. Despite advancements in treatment, high-risk neuroblastoma patients often face poor prognoses, underscoring the need for ongoing research. This review paper examines the numerous factors responsible for neuroblastoma, emphasizing the importance of approaching the disorder with more strategic therapeutic methods. MicroRNAs, particularly miR-124, play critical roles in gene regulation and cancer pathogenesis. Abundant in the brain, miR-124 functions as a tumor suppressor by inhibiting cell growth, migration, and invasion and is often dysregulated in neuroblastoma. This study investigates the molecular functions of miR-124 in neuroblastoma, its potential as a biomarker, and its application in targeted therapy. MiR-124 regulates key pathways in neuroblastoma, including PI3K/AKT, TGF-β, and p53 signaling, impacting cell proliferation, apoptosis, and metastasis. The study also explores the promise of miR-124 as a biomarker for neuroblastoma through liquid biopsy, enabling non-invasive diagnosis and disease monitoring. Therapeutic strategies targeting miR-124 pathways show potential for overcoming chemotherapy resistance and improving treatment efficacy. The research underscores the significance of miR-124 in neuroblastoma, aiming to enhance early diagnosis, identify specific drug targets, and expand treatment options, ultimately improving patient outcomes.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646331003240821061517
2024-12-01
2025-01-18
Loading full text...

Full text loading...

References

  1. BrodeurG.M. Neuroblastoma: biological insights into a clinical enigma.Nat. Rev. Cancer20033320321610.1038/nrc101412612655
    [Google Scholar]
  2. SmithV. FosterJ. High-Risk Neuroblastoma Treatment Review.Children (Basel)20185911410.3390/children509011430154341
    [Google Scholar]
  3. HuangS. GongN. LiJ. HongM. LiL. ZhangL. ZhangH. The role of ncRNAs in neuroblastoma: mechanisms, biomarkers and therapeutic targets.Biomark. Res.20221011810.1186/s40364‑022‑00368‑235392988
    [Google Scholar]
  4. BertholdF. HeroB. Neuroblastoma.Drugs20005961261127710.2165/00003495‑200059060‑0000610882162
    [Google Scholar]
  5. AckermannS. CartolanoM. HeroB. WelteA. KahlertY. RoderwieserA. BartenhagenC. WalterE. GechtJ. KerschkeL. VollandR. MenonR. HeuckmannJ.M. GartlgruberM. HartliebS. HenrichK.O. OkonechnikovK. AltmüllerJ. NürnbergP. LefeverS. de WildeB. SandF. IkramF. RosswogC. FischerJ. TheissenJ. HertwigF. SinghiA.D. SimonT. VogelW. PernerS. KrugB. SchmidtM. RahmannS. AchterV. LangU. VokuhlC. OrtmannM. BüttnerR. EggertA. SpelemanF. O’SullivanR.J. ThomasR.K. BertholdF. VandesompeleJ. SchrammA. WestermannF. SchulteJ.H. PeiferM. FischerM. A mechanistic classification of clinical phenotypes in neuroblastoma.Science201836264191165117010.1126/science.aat676830523111
    [Google Scholar]
  6. LuoY.B. CuiX.C. YangL. ZhangD. WangJ.X. Advances in the surgical treatment of neuroblastoma.Chin. Med. J. (Engl.)2018131192332233710.4103/0366‑6999.24180330246719
    [Google Scholar]
  7. ZhuoZ. LinL. MiaoL. LiM. HeJ. Advances in liquid biopsy in neuroblastoma.Fundament. Res.20222690391510.1016/j.fmre.2022.08.005
    [Google Scholar]
  8. ØraI. EggertA. Progress in treatment and risk stratification of neuroblastoma: impact on future clinical and basic research.Semin Cancer Biol.2011214217228
    [Google Scholar]
  9. Lettieri-BarbatoD. AquilanoK. PunzianoC. MinopoliG. FaraonioR. MicroRNAs, long non-coding RNAs, and circular RNAs in the redox control of cell senescence.Antioxidants202211348010.3390/antiox1103048035326131
    [Google Scholar]
  10. RoldoC. MissiagliaE. HaganJ.P. FalconiM. CapelliP. BersaniS. CalinG.A. VoliniaS. LiuC.G. ScarpaA. CroceC.M. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior.J. Clin. Oncol.200624294677468410.1200/JCO.2005.05.519416966691
    [Google Scholar]
  11. TewariD. PatniP. BishayeeA. SahAN. BishayeeA. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy.Seminars Cancer BiologyAcademic Press2022
    [Google Scholar]
  12. WongK.Y. SoC.C. LoongF. ChungL.P. LamW.W.L. LiangR. LiG.K.H. JinD.Y. ChimC.S. Epigenetic inactivation of the miR-124-1 in haematological malignancies.PLoS One201164e1902710.1371/journal.pone.001902721544199
    [Google Scholar]
  13. DengX. MaL. WuM. ZhangG. JinC. GuoY. LiuR. miR-124 radiosensitizes human glioma cells by targeting CDK4.J. Neurooncol.2013114326327410.1007/s11060‑013‑1179‑223761023
    [Google Scholar]
  14. SunY. LuoZ.M. GuoX.M. SuD.F. LiuX. An updated role of microRNA-124 in central nervous system disorders: a review.Front. Cell. Neurosci.2015919310.3389/fncel.2015.0019326041995
    [Google Scholar]
  15. GonzaloL. TossoliniI. GulaniczT. CambiagnoD.A. Kasprowicz-MaluskiA. SmolinskiD.J. MammarellaM.F. ArielF.D. MarquardtS. Szweykowska-KulinskaZ. JarmolowskiA. ManavellaP.A. R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants.Nat. Plants20228440241810.1038/s41477‑022‑01125‑x35449404
    [Google Scholar]
  16. CaiX. HagedornC.H. CullenB.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs.RNA200410121957196610.1261/rna.713520415525708
    [Google Scholar]
  17. SusterI. FengY. Multifaceted Regulation of MicroRNA Biogenesis: Essential Roles and Functional Integration in Neuronal and Glial Development.Int. J. Mol. Sci.20212213676510.3390/ijms2213676534201807
    [Google Scholar]
  18. RodenC. GaillardJ. KanoriaS. RennieW. BarishS. ChengJ. PanW. LiuJ. CotsapasC. DingY. LuJ. Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin-containing transcripts and human genetic variation.Genome Res.201727337438410.1101/gr.208900.11628087842
    [Google Scholar]
  19. AuyeungV.C. UlitskyI. McGearyS.E. BartelD.P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing.Cell2013152484485810.1016/j.cell.2013.01.03123415231
    [Google Scholar]
  20. QuattroneA. MontuoriG. The m6A RNA modification sustains neuroblastoma tumor aggressiveness.Ph.D. Thesis, University of Trento, 2018-2019.
    [Google Scholar]
  21. DonayoA.O. Processing and Regulation of Polycistronic microRNAs in cancer.CanadaMcGill University2021
    [Google Scholar]
  22. WhiteE.J.F. MatsangosA.E. WilsonG.M. AUF1 regulation of coding and noncoding RNA.Wiley Interdiscip. Rev. RNA201782e139310.1002/wrna.139327620010
    [Google Scholar]
  23. KrivdovaG. Elucidating the Function of MicroRNAs and Argonautes in Normal Hematopoiesis and Acute Myeloid Leukemia.Doctoral dissertation, University of Toronto, 2022.
    [Google Scholar]
  24. LoffredaA. RigamontiA. BarabinoS. LenzkenS. RNA-binding proteins in the regulation of miRNA activity: a focus on neuronal functions.Biomolecules2015542363238710.3390/biom504236326437437
    [Google Scholar]
  25. SinkovicsJ.G. SinkovicsJ.G. Viral Genomic Insertions in the Host Cell’s Genome.RNA/DNA and Cancer2016207246
    [Google Scholar]
  26. ŞAHİNB. Proteomics analysis of mitochondrial dysfunction triggered by complex specific electron transport chain inhibitors reveals common pathways involving protein misfolding in an SH-SY5Y in vitro cell model.Turk. J. Biol.2017415765784
    [Google Scholar]
  27. DexheimerP.J. CochellaL. MicroRNAs: from mechanism to organism.Front. Cell Dev. Biol.2020840910.3389/fcell.2020.0040932582699
    [Google Scholar]
  28. DargyteM. Noncanonical Post-Transcriptional Roles for SR Proteins During MicroRNA Biogenesis.PhD thesis, University of California, 2021.
  29. LambertM.P. TerroneS. GiraudG. Benoit-PilvenC. CluetD. CombaretV. MortreuxF. AuboeufD. BourgeoisC.F. The RNA helicase DDX17 controls the transcriptional activity of REST and the expression of proneural microRNAs in neuronal differentiation.Nucleic Acids Res.201846157686770010.1093/nar/gky54529931089
    [Google Scholar]
  30. WuJ. CangS. LiuC. OchiaiW. ChiaoJ.W. Development of human prostate cancer stem cells involves epigenomic alteration and PI3K/AKT pathway activation.Exp. Hematol. Oncol.2020911210.1186/s40164‑020‑00168‑032537260
    [Google Scholar]
  31. FitrianaM. HwangW.L. ChanP.Y. HsuehT.Y. LiaoT.T. Roles of microRNAs in Regulating Cancer Stemness in Head and Neck Cancers. Cancers 2021, 13.MicroRNA and Cancer.17422021197
    [Google Scholar]
  32. MestdaghP. BoströmA.K. ImpensF. FredlundE. Van PeerG. De AntonellisP. von StedingkK. GhesquièreB. SchulteS. DewsM. Thomas-TikhonenkoA. SchulteJ.H. ZolloM. SchrammA. GevaertK. AxelsonH. SpelemanF. VandesompeleJ. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma.Mol. Cell201040576277310.1016/j.molcel.2010.11.03821145484
    [Google Scholar]
  33. ZammitV. BaronB. AyersD. MiRNA influences in neuroblast modulation: an introspective analysis.Genes (Basel)2018912610.3390/genes901002629315268
    [Google Scholar]
  34. XuZ. SunY. WangD. SunH. LiuX. SNHG16 promotes tumorigenesis and cisplatin resistance by regulating miR-338-3p/PLK4 pathway in neuroblastoma cells.Cancer Cell Int.202020123610.1186/s12935‑020‑01291‑y32536824
    [Google Scholar]
  35. Ribeiro FrancoP.I. RodriguesA.P. de MenezesL.B. Pacheco MiguelM. Tumor microenvironment components: Allies of cancer progression.Pathol. Res. Pract.2020216115272910.1016/j.prp.2019.15272931735322
    [Google Scholar]
  36. MassaguéJ. TGFβ in Cancer.Cell2008134221523010.1016/j.cell.2008.07.00118662538
    [Google Scholar]
  37. PereyA.C. The role of the rho-associated coiled-coil containing kinase (ROCK) in cytokine-induced chemokine responses in intestinal epithelial cells.Doctoral dissertation, State University of New York at Binghamton, 2017.
    [Google Scholar]
  38. LynchJ. StallingsRL. Genetics of Pediatric Tumors.Pediatric Surgery: General Pediatric Surgery, Tumors, Trauma and TransplantationBerlin, HeidelbergSpringer202110.1007/978‑3‑662‑43559‑5_143
    [Google Scholar]
  39. BudiH.S. YounusL.A. LaftaM.H. ParveenS. MohammadH.J. Al-qaimZ.H. JawadM.A. ParraR.M.R. MustafaY.F. AlhachamiF.R. KarampoorS. MirzaeiR. The role of miR-128 in cancer development, prevention, drug resistance, and immunotherapy.Front. Oncol.202312106797410.3389/fonc.2022.106797436793341
    [Google Scholar]
  40. AdamK. NingJ. ReinaJ. HunterT. NME/NM23/NDPK and histidine phosphorylation.Int. J. Mol. Sci.20202116584810.3390/ijms2116584832823988
    [Google Scholar]
  41. LynchJ. FayJ. MeehanM. BryanK. WattersK.M. MurphyD.M. StallingsR.L. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-β signalling pathway.Carcinogenesis201233597698510.1093/carcin/bgs11422382496
    [Google Scholar]
  42. PatilM.R. BihariA. A comprehensive study of p53 protein.J. Cell. Biochem.2022123121891193710.1002/jcb.3033136183376
    [Google Scholar]
  43. VelculescuV.E. El-DeiryW.S. Biological and clinical importance of the p53 tumor suppressor gene.Clin. Chem.199642685886810.1093/clinchem/42.6.8588665676
    [Google Scholar]
  44. SinghN. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders.Genomics202111353250327310.1016/j.ygeno.2021.07.01534302945
    [Google Scholar]
  45. InomistovaM. KlymniukH. KhranovskaN. PavlykS. ShaidaE. GorbachA. SkachkovaO. ShymonD. Expression of genes involved in p53 pathway regulation in neuroblastoma: a short review.Exp. Oncol.202244426627136811541
    [Google Scholar]
  46. MorandiF. SabatiniF. PodestàM. AiroldiI. Immunotherapeutic strategies for neuroblastoma: present, past and future.Vaccines (Basel)2021914310.3390/vaccines901004333450862
    [Google Scholar]
  47. ZahnreichS. SchmidbergerH. Childhood cancer: occurrence, treatment and risk of second primary malignancies.Cancers (Basel)20211311260710.3390/cancers1311260734073340
    [Google Scholar]
  48. KostiA. DuL. ShivramH. QiaoM. BurnsS. GarciaJ.G. PertsemlidisA. IyerV.R. KokovayE. PenalvaL.O.F. ELF4 is a target of miR-124 and promotes neuroblastoma proliferation and undifferentiated state.Mol. Cancer Res.2020181687810.1158/1541‑7786.MCR‑19‑018731624087
    [Google Scholar]
  49. MatthayK.K. MarisJ.M. SchleiermacherG. NakagawaraA. MackallC.L. DillerL. WeissW.A. Neuroblastoma.Nat. Rev. Dis. Primers2016211607810.1038/nrdp.2016.7827830764
    [Google Scholar]
  50. WangW. DuY. DattaS. FowlerJ.F. SangH.T. AlbadariN.G. LiW. FosterJ. ZhangR. Targeting the MYCN-MDM2 pathways for cancer therapy: Are they druggable?Genes Dis.202310115610.1016/j.gendis.2023.101156
    [Google Scholar]
  51. LeichterA.L. SullivanM.J. EcclesM.R. ChatterjeeA. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours.Mol. Cancer20171611510.1186/s12943‑017‑0584‑028093071
    [Google Scholar]
  52. NolanJ.C. MiRNA-124-3p Reduces Cell Viability in Cisplatin Resistant Neuroblastoma Cell Models.Doctoral dissertation, Royal College of Surgeons in Ireland, 2017.
    [Google Scholar]
  53. WengR. CohenS.M. Drosophila miR-124 regulates neuroblast proliferation through its target anachronism.Development201213981427143410.1242/dev.07514322378639
    [Google Scholar]
  54. AkbarA. MalekianF. BaghbanN. KodamS.P. UllahM. Methodologies to isolate and purify clinical grade extracellular vesicles for medical applications.Cells202211218610.3390/cells1102018635053301
    [Google Scholar]
  55. SilberJ. HashizumeR. FelixT. HarionoS. YuM. BergerM.S. HuseJ.T. VandenBergS.R. JamesC.D. HodgsonJ.G. GuptaN. Expression of miR-124 inhibits growth of medulloblastoma cells.Neuro-oncol.2013151839010.1093/neuonc/nos28123172372
    [Google Scholar]
  56. Pilotto HemingC. Niemeyer FilhoP. Moura-NetoV. AranV. Recent advances in the use of liquid biopsy to fight central nervous system tumors.Cancer Treat. Res. Commun.20233510070910.1016/j.ctarc.2023.10070937088042
    [Google Scholar]
  57. Marrugo-RamírezJ. MirM. SamitierJ. Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy.Int. J. Mol. Sci.20181910287710.3390/ijms1910287730248975
    [Google Scholar]
  58. LiuT. ZhuJ. DuW. NingW. ZhangY. ZengY. LiuZ. HuangJ.A. AKT2 drives cancer progression and is negatively modulated by miR-124 in human lung adenocarcinoma.Respir. Res.202021122710.1186/s12931‑020‑01491‑032873299
    [Google Scholar]
  59. NolanJ.C. SalvucciM. CarberryS. BaratA. SeguraM.F. FennJ. PrehnJ.H.M. StallingsR.L. PiskarevaO. A context-dependent role for MiR-124-3p on cell phenotype, viability and chemosensitivity in neuroblastoma in vitro.Front. Cell Dev. Biol.2020855955310.3389/fcell.2020.55955333330445
    [Google Scholar]
  60. GalardiA. CollettiM. Di PaoloV. VitulloP. AntonettiL. RussoI. Di GiannataleA. Exosomal MiRNAs in pediatric cancers.Int. J. Mol. Sci.20192018460010.3390/ijms2018460031533332
    [Google Scholar]
  61. AravindanN. JainD. SomasundaramD.B. HermanS. AravindanS. Cancer stem cells in neuroblastoma therapy resistance.Cancer Drug Resist.20192494896710.20517/cdr.2019.7231867574
    [Google Scholar]
  62. HanZ.B. YangZ. ChiY. ZhangL. WangY. JiY. WangJ. ZhaoH. HanZ.C. MicroRNA-124 suppresses breast cancer cell growth and motility by targeting CD151.Cell. Physiol. Biochem.201331682383210.1159/00035010023816858
    [Google Scholar]
  63. KciukM. YahyaE.B. MohamedM.M.I. AbdulsamadM.A. AllaqA.A. GielecińskaA. KontekR. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets.Cancers (Basel)20231513329810.3390/cancers1513329837444408
    [Google Scholar]
  64. ChoKH. XuB. BlenkironC. FraserM. Emerging roles of miRNAs in brain development and perinatal brain injury.Front Physiol.202010227
    [Google Scholar]
  65. O'NeillKL. Development of a Neuron Specific Non-Viral Delivery System for Rho-Kinase 2 Short Interfering RNA.Master's thesis, Faculdade de Engenharia da Universidade do Porto, 2019.
    [Google Scholar]
  66. BuzzettiM. Mechanisms of medulloblastoma vulnerability and new targeted therapies.phD thesis, University of Salford, 2020.
    [Google Scholar]
  67. KattaS.S. NagatiV. PaturiA.S.V. MurakondaS.P. MurakondaA.B. PandeyM.K. GuptaS.C. PasupulatiA.K. ChallagundlaK.B. Neuroblastoma: Emerging trends in pathogenesis, diagnosis, and therapeutic targets.J. Control. Release202335744445910.1016/j.jconrel.2023.04.00137023798
    [Google Scholar]
  68. SanukiR. YamamuraT. Tumor suppressive effects of miR-124 and its function in neuronal development.Int. J. Mol. Sci.20212211591910.3390/ijms2211591934072894
    [Google Scholar]
  69. PathaniaA.S. Crosstalk between Noncoding RNAs and the Epigenetics Machinery in Pediatric Tumors and Their Microenvironment.Cancers (Basel)20231510283310.3390/cancers1510283337345170
    [Google Scholar]
  70. ChaudhryK.A. JacobiJ.J. GillardB.M. KarasikE. MartinJ.C. da Silva FernandesT. HurleyE. FeltriM.L. AttwoodK.M. TwistC.J. SmiragliaD.J. LongM.D. Bianchi-SmiragliaA. Aryl hydrocarbon receptor is a tumor promoter in MYCN-amplified neuroblastoma cells through suppression of differentiation.iScience2023261110830310.1016/j.isci.2023.10830338026169
    [Google Scholar]
  71. XuJ. ZhengY. WangL. LiuY. WangX. LiY. ChiG. miR-124: a promising therapeutic target for central nervous system injuries and diseases.Cell. Mol. Neurobiol.20224272031205310.1007/s10571‑021‑01091‑633886036
    [Google Scholar]
  72. NeoW.H. YapK. LeeS.H. LooiL.S. KhandeliaP. NeoS.X. MakeyevE.V. SuI. MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression.J. Biol. Chem.201428930207882080110.1074/jbc.M113.52549324878960
    [Google Scholar]
  73. ZhaoZ. MaX. SungD. LiM. KostiA. LinG. ChenY. PertsemlidisA. HsiaoT.H. DuL. microRNA-449a functions as a tumor suppressor in neuroblastoma through inducing cell differentiation and cell cycle arrest.RNA Biol.201512553855410.1080/15476286.2015.102349525760387
    [Google Scholar]
  74. WuM. WangM. JiaH. WuP. Extracellular vesicles: emerging anti-cancer drugs and advanced functionalization platforms for cancer therapy.Drug Deliv.20222912513253810.1080/10717544.2022.210440435915054
    [Google Scholar]
  75. BayraktarE. BayraktarR. OztatliciH. Lopez-BeresteinG. AmeroP. Rodriguez-AguayoC. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update.Noncoding RNA2023922710.3390/ncrna902002737104009
    [Google Scholar]
  76. ChenX. HeD. DongX.D. DongF. WangJ. WangL. TangJ. HuD.N. YanD. TuL. MicroRNA-124a is epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uveal melanoma.Invest. Ophthalmol. Vis. Sci.20135432248225610.1167/iovs.12‑1097723404119
    [Google Scholar]
  77. WeiJ. KongLY. WangF. XuS. DoucetteT. FergusonSD. YangY. McEneryK. JethwaK. GjyshiO. QiaoW. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma.Cancer Res.2013731339133926
    [Google Scholar]
  78. JiangH. JinC. LiuJ. HuaD. ZhouF. LouX. ZhaoN. LanQ. HuangQ. YoonJ.G. ZhengS. LinB. Next generation sequencing analysis of miRNAs: MiR-127-3p inhibits glioblastoma proliferation and activates TGF-β signaling by targeting SKI.OMICS201418319620610.1089/omi.2013.012224517116
    [Google Scholar]
  79. LiW. HuangH. SuJ. JiX. ZhangX. ZhangZ. WangH. Retraction Note to: miR-124 Acts as a Tumor Suppressor in Glioblastoma via the Inhibition of Signal Transducer and Activator of Transcription 3.Mol. Neurobiol.20175410846110.1007/s12035‑017‑0682‑428707071
    [Google Scholar]
  80. QiaoW. GuoB. ZhouH. XuW. ChenY. LiangY. DongB. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA.Biochem. Biophys. Res. Commun.20174861434810.1016/j.bbrc.2017.02.12028242198
    [Google Scholar]
  81. AgirreX. Vilas-ZornozaA. Jiménez-VelascoA. Martin-SuberoJ.I. CordeuL. GárateL. San José-EnerizE. AbizandaG. Rodríguez-OteroP. FortesP. RifónJ. BandrésE. CalasanzM.J. MartínV. HeinigerA. TorresA. SiebertR. Román-GomezJ. PrósperF. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia.Cancer Res.200969104443445310.1158/0008‑5472.CAN‑08‑402519435910
    [Google Scholar]
  82. TivnanA. ZhaoJ. JohnsT.G. DayB.W. StringerB.W. BoydA.W. TiwariS. GilesK.M. TeoC. McDonaldK.L. The tumor suppressor microRNA, miR-124a, is regulated by epigenetic silencing and by the transcriptional factor, REST in glioblastoma.Tumour Biol.20143521459146510.1007/s13277‑013‑1200‑624068568
    [Google Scholar]
  83. XiaH. CheungW.K.C. NgS.S. JiangX. JiangS. SzeJ. LeungG.K.K. LuG. ChanD.T.M. BianX.W. KungH. PoonW.S. LinM.C. Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells.J. Biol. Chem.2012287139962997110.1074/jbc.M111.33262722253443
    [Google Scholar]
  84. SilberJ. LimD.A. PetritschC. PerssonA.I. MaunakeaA.K. YuM. VandenbergS.R. GinzingerD.G. JamesC.D. CostelloJ.F. BergersG. WeissW.A. Alvarez-BuyllaA. HodgsonJ.G. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells.BMC Med.2008611410.1186/1741‑7015‑6‑1418577219
    [Google Scholar]
  85. YeoC.D. KimY.A. LeeH.Y. KimJ.W. KimS.J. LeeS.H. KimY.K. Roflumilast treatment inhibits lung carcinogenesis in benzo(a)pyrene-induced murine lung cancer model.Eur. J. Pharmacol.201781218919510.1016/j.ejphar.2017.07.00428684234
    [Google Scholar]
  86. YurinoA. TakenakaK. YamauchiT. NunomuraT. UeharaY. JinnouchiF. MiyawakiK. KikushigeY. KatoK. MiyamotoT. IwasakiH. KunisakiY. AkashiK. Enhanced reconstitution of human erythropoiesis and thrombopoiesis in an immunodeficient mouse model with KitWv mutations.Stem Cell Reports20167342543810.1016/j.stemcr.2016.07.00227499200
    [Google Scholar]
  87. Pineton de ChambrunM. LarcherR. PèneF. ArgaudL. DemouleA. JammeM. CoudroyR. MathianA. GibelinA. AzoulayE. Tandjaoui-LambiotteY. DargentA. BeloncleF.M. RaphalenJ.H. Couteau-ChardonA. de ProstN. DevaquetJ. ContouD. GaugainS. TrouillerP. GrangéS. LedochowskiS. LemarieJ. FaguerS. DegosV. CombesA. LuytC.E. AmouraZ. SAPHIR study group CAPS criteria fail to identify most severely-ill thrombotic antiphospholipid syndrome patients requiring intensive care unit admission.J. Autoimmun.201910310229210.1016/j.jaut.2019.06.00331253464
    [Google Scholar]
  88. SeegerR.C. BrodeurG.M. SatherH. DaltonA. SiegelS.E. WongK.Y. HammondD. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas.N. Engl. J. Med.1985313181111111610.1056/NEJM1985103131318024047115
    [Google Scholar]
  89. LookA.T. HayesF.A. ShusterJ.J. DouglassE.C. CastleberryR.P. BowmanL.C. SmithE.I. BrodeurG.M. Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study.J. Clin. Oncol.19919458159110.1200/JCO.1991.9.4.5812066755
    [Google Scholar]
  90. Janoueix-LeroseyI. SchleiermacherG. MichelsE. MosseriV. RibeiroA. LequinD. VermeulenJ. CouturierJ. PeuchmaurM. ValentA. PlantazD. RubieH. Valteau-CouanetD. ThomasC. CombaretV. RousseauR. EggertA. MichonJ. SpelemanF. DelattreO. Overall genomic pattern is a predictor of outcome in neuroblastoma.J. Clin. Oncol.20092771026103310.1200/JCO.2008.16.063019171713
    [Google Scholar]
  91. PhilipT. ZuckerJ.M. BernardJ.L. BordigoniP. Brunat-MentignyM. LutzP. Ferritin as a tumor marker in neuroblastoma: a study of 63 cases.Cancer1984532208215
    [Google Scholar]
  92. YuA.L. GilmanA.L. OzkaynakM.F. LondonW.B. KreissmanS.G. ChenH.X. SmithM. AndersonB. VillablancaJ.G. MatthayK.K. ShimadaH. GruppS.A. SeegerR. ReynoldsC.P. BuxtonA. ReisfeldR.A. GilliesS.D. CohnS.L. MarisJ.M. SondelP.M. Children’s Oncology Group Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma.N. Engl. J. Med.2010363141324133410.1056/NEJMoa091112320879881
    [Google Scholar]
  93. LuoH. ZhaoQ. WeiW. ZhengL. YiS. LiG. WangW. ShengH. PuH. MoH. ZuoZ. LiuZ. LiC. XieC. ZengZ. LiW. HaoX. LiuY. CaoS. LiuW. GibsonS. ZhangK. XuG. XuR. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer.Sci. Transl. Med.202012524eaax753310.1126/scitranslmed.aax753331894106
    [Google Scholar]
  94. HaoX. LuoH. KrawczykM. WeiW. WangW. WangJ. FlaggK. HouJ. ZhangH. YiS. JafariM. LinD. ChungC. CaugheyB.A. LiG. DharD. ShiW. ZhengL. HouR. ZhuJ. ZhaoL. FuX. ZhangE. ZhangC. ZhuJ.K. KarinM. XuR.H. ZhangK. DNA methylation markers for diagnosis and prognosis of common cancers.Proc. Natl. Acad. Sci. USA2017114287414741910.1073/pnas.170357711428652331
    [Google Scholar]
  95. NicoliniA. FerrariP. DuffyMJ. Prognostic and predictive biomarkers in breast cancer: Past, present and future.Seminars in cancer biologyAcademic Press2018
    [Google Scholar]
  96. WeigelM.T. DowsettM. Current and emerging biomarkers in breast cancer: prognosis and prediction.Endocr. Relat. Cancer2010174R245R26210.1677/ERC‑10‑013620647302
    [Google Scholar]
  97. DuffyM.J. WalshS. McDermottE.W. CrownJ. Biomarkers in breast cancer: where are we and where are we going?Adv. Clin. Chem.20157112310.1016/bs.acc.2015.05.00126411409
    [Google Scholar]
  98. HoldenriederS. Biomarkers along the continuum of care in lung cancer.Scandinavian J. Clin. Laborat. Investig.201676S245S40S4510.1080/00365513.2016.1208446
    [Google Scholar]
  99. HenryL.N. HayesD.F. RamseyS.D. HortobagyiG.N. BarlowW.E. GralowJ.R. Promoting quality and evidence-based care in early-stage breast cancer follow-up.J. Natl. Cancer Inst.20141064dju03410.1093/jnci/dju03424627271
    [Google Scholar]
  100. VermaM. ManneU. Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations.Crit. Rev. Oncol. Hematol.200660191810.1016/j.critrevonc.2006.04.00216829121
    [Google Scholar]
  101. LudwigJ.A. WeinsteinJ.N. Biomarkers in cancer staging, prognosis and treatment selection.Nat. Rev. Cancer200551184585610.1038/nrc173916239904
    [Google Scholar]
  102. ZhaoN. GuoM. WangK. ZhangC. LiuX. Identification of pan-cancer prognostic biomarkers through integration of multi-omics data.Front. Bioeng. Biotechnol.2020826810.3389/fbioe.2020.0026832300588
    [Google Scholar]
/content/journals/cp/10.2174/0115701646331003240821061517
Loading
/content/journals/cp/10.2174/0115701646331003240821061517
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test