Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

A pivotal impetus has led to the development of numerous small molecules to develop therapeutic strategies for type 2 diabetes. Novel heterocyclic derivatives are now available with expansive pharmacological activity designed specifically to activate Glucokinase (GK) in the body. This target is of particular significance in antidiabetic drug design since it is a newly validated target. Individuals with type 2 diabetes are unable to maintain blood glucose homeostasis due to impaired glucokinase function. The novel approach to managing type 2 diabetes relies on utilizing heterocyclic derivatives to activate the GK enzyme, also known as a metabolic enzyme.

Objective

In this research endeavor, the primary objective was to improve drug delivery while minimizing adverse effects by using molecules that activate glucokinase.

Methods

There are 53,000 compounds included in Maybridge's online repository, which has been subjected to rigorous scrutiny. Eight two compounds that encompass the specific oxadiazole core were selectively extracted from this extensive collection. ChemBioDraw Ultra was used for structural drawing, and AutoDock Vina 1.5.6 was used to perform docking analysis. For the online prediction of log P, the SwissADME algorithm was employed. A PKCSM software program was used to predict toxicity for leading compounds.

Results

Among all of the compounds, AD80 and AD27 displayed the highest affinity for GK receptors. These compounds, by adhering to Lipinski’s Rule of Five, exhibited good absorption and excretion profiles through the gastrointestinal (GI) tract. Lipinski’s Rule of Five refers to physicochemical properties that favor good oral bioavailability, and these specifications are zero to five hydrogen bond donors, zero to ten hydrogen bond acceptors, molecular weight below 500, and log P no more than five. These criteria ensure that the compounds of the invention have acceptable solubility and permeability, which are vital prerequisites when given orally, to be absorbed the gastrointestinal wall, metabolized, and found in the urine. Therefore, the chance of drug candidates exhibiting favorable pharmacokinetic characteristics is increased, enhancing their chances of being developed for oral administration. In comparison with standard drugs Dorzagliatin as a glucokinase activator (GKA) and MRK (co-crystallized ligand), these compounds exhibit no skin sensitization, AMES toxicity, or hepatotoxicity.

Conclusion

The recently designed lead molecules exhibit an improved pharmacokinetic profile, enhanced binding affinity, and minimal toxicity based on the computational study, potentially making them suitable candidates for further optimization as glucokinase activators.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646323264240821072359
2024-12-01
2024-11-18
Loading full text...

Full text loading...

References

  1. ForouhiN.G. WarehamN.J. Epidemiology of diabetes.Medicine (Abingdon)2022501063864310.1016/j.mpmed.2022.07.005
    [Google Scholar]
  2. PadhiS. NayakA.K. BeheraA. Type II diabetes mellitus: A review on recent drug based therapeutics.Biomed. Pharmacother.202013111070810.1016/j.biopha.2020.110708 32927252
    [Google Scholar]
  3. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275 32872570
    [Google Scholar]
  4. ZhengY. LeyS.H. HuF.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications.Nat. Rev. Endocrinol.2018142889810.1038/nrendo.2017.151 29219149
    [Google Scholar]
  5. KumarA. GangwarR. Ahmad ZargarA. KumarR. SharmaA. Prevalence of Diabetes in India: A Review of IDF Diabetes Atlas 10th Edition. Curr. Diabetes Rev.2024201e13042321575210.2174/1573399819666230413094200 37069712
    [Google Scholar]
  6. AnjanaR.M. DeepaM. PradeepaR. MahantaJ. NarainK. DasH.K. AdhikariP. RaoP.V. SabooB. KumarA. BhansaliA. JohnM. LuaiaR. ReangT. NingombamS. JampaL. BudnahR.O. ElangovanN. SubashiniR. VenkatesanU. UnnikrishnanR. DasA.K. MadhuS.V. AliM.K. PandeyA. DhaliwalR.S. KaurT. SwaminathanS. MohanV. AnjanaR.M. DeepaM. PradeepaR. MahantaJ. NarainK. DasH.K. AdhikariP. RaoP.V. SabooB. KumarA. BhansaliA. JohnM. LuaiaR. ReangT. NingombamS. JampaL. BudnahR.O. ElangovanN. SubashiniR. VenkatesanU. UnnikrishnanR. DasA.K. MadhuS.V. AliM.K. PandeyA. DhaliwalR.S. KaurT. SwaminathanS. MohanV. SudhaV. ParvathiS.J. JayashriR. VelmuruganK. BorahP.K. RaoS.B. PadhiyarJ.M. SharmaS. LalramengaP. DasS.K. SinghT.B. KakiT. BasaiawmoitM.R. ShuklaD.K. RaoM.N. JoshiP.P. DhandaniaV.K. JoshiS.R. YajnikC.S. Prevalence of diabetes and prediabetes in 15 states of India: Results from the ICMR–INDIAB population-based cross-sectional study.Lancet Diabetes Endocrinol.20175858559610.1016/S2213‑8587(17)30174‑2 28601585
    [Google Scholar]
  7. Public Health Agency of Canada. Diabetes in Canada: Facts and figures from a public health perspective.Ottawa, OntarioPublic Health Agency of Canada2011
    [Google Scholar]
  8. KingR. ThomsonM. The Southern European model of immigration: Do the cases of Malta, Cyprus and Slovenia fit? J.Southern Europe Balkans200810326529110.1080/14613190802493550
    [Google Scholar]
  9. RamachandranA. SnehalathaC. ShettyA.S. NandithaA. Trends in prevalence of diabetes in Asian countries.World J. Diabetes20123611011710.4239/wjd.v3.i6.110 22737281
    [Google Scholar]
  10. WangL. PengW. ZhaoZ. ZhangM. ShiZ. SongZ. ZhangX. LiC. HuangZ. SunX. WangL. ZhouM. WuJ. WangY. Prevalence and treatment of diabetes in China, 2013-2018.JAMA2021326242498250610.1001/jama.2021.22208 34962526
    [Google Scholar]
  11. SherifS. SumpioB.E. Economic development and diabetes prevalence in MENA countries: Egypt and Saudi Arabia comparison.World J. Diabetes20156230431110.4239/wjd.v6.i2.304 25789111
    [Google Scholar]
  12. TueiV.C. MaiyohG.K. HaC.E. Type 2 diabetes mellitus and obesity in sub‐Saharan Africa.Diabetes Metab. Res. Rev.201026643344510.1002/dmrr.1106 20641142
    [Google Scholar]
  13. HaiderS. ThayakaranR. SubramanianA. ToulisK.A. MooreD. PriceM.J. NirantharakumarK. Disease burden of diabetes, diabetic retinopathy and their future projections in the UK: Cross-sectional analyses of a primary care database.BMJ Open2021117e05005810.1136/bmjopen‑2021‑050058 34253675
    [Google Scholar]
  14. KahnS.E. CooperM.E. Del PratoS. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future.Lancet201438399221068108310.1016/S0140‑6736(13)62154‑6 24315620
    [Google Scholar]
  15. SaltielA.R. OlefskyJ.M. Inflammatory mechanisms linking obesity and metabolic disease.J. Clin. Invest.201712711410.1172/JCI92035 28045402
    [Google Scholar]
  16. OguntibejuO.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links.Int. J. Physiol. Pathophysiol. Pharmacol.20191134563 31333808
    [Google Scholar]
  17. XuJ. LinS. MyersR.W. AddonaG. BergerJ.P. CampbellB. ChenH. ChenZ. EiermannG.J. EloweN.H. FarrerB.T. FengW. FuQ. Kats-KaganR. KavanaM. MalkaniS. McMastersD.R. MitraK. PachanskiM.J. TongX. TrujilloM.E. XuL. ZhangB. ZhangF. ZhangR. ParmeeE.R. Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus.Bioorg. Med. Chem. Lett.20172792069207310.1016/j.bmcl.2016.10.085 28284804
    [Google Scholar]
  18. GaoQ. ZhangW. LiT. YangG. ZhuW. ChenN. JinH. The efficacy and safety of glucokinase activators for the treatment of type-2 diabetes mellitus.Medicine (Baltimore)202110040e2747610.1097/MD.0000000000027476 34622877
    [Google Scholar]
  19. DzyurkevichM.S. BabkovD.A. ShtyrlinN.V. MaykaO.Y. IksanovaA.G. VassilievP.M. BalakinK.V. SpasovA.A. TarasovV.V. BarretoG. ShtyrlinY.G. AlievG. Pyridoxine dipharmacophore derivatives as potent glucokinase activators for the treatment of type 2 diabetes mellitus.Sci. Rep.2017711607210.1038/s41598‑017‑16405‑2 29167582
    [Google Scholar]
  20. AshcroftF.M. LloydM. HaythorneE.A. Glucokinase activity in diabetes: Too much of a good thing?Trends Endocrinol. Metab.202334211913010.1016/j.tem.2022.12.007 36586779
    [Google Scholar]
  21. AltanV. The pharmacology of diabetic complications.Curr. Med. Chem.200310151317132710.2174/0929867033457287 12871132
    [Google Scholar]
  22. TahraniA.A. BarnettA.H. BaileyC.J. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus.Nat. Rev. Endocrinol.2016121056659210.1038/nrendo.2016.86 27339889
    [Google Scholar]
  23. HagiwaraA. CornuM. CybulskiN. PolakP. BetzC. TrapaniF. TerraccianoL. HeimM.H. RüeggM.A. HallM.N. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c.Cell Metab.201215572573810.1016/j.cmet.2012.03.015 22521878
    [Google Scholar]
  24. WalkerD.G. HollandG. The development of hepatic glucokinase in the neonatal rat.Biochem. J.196597384585410.1042/bj0970845 5883129
    [Google Scholar]
  25. ChakeraA.J. SteeleA.M. GloynA.L. ShepherdM.H. ShieldsB. EllardS. HattersleyA.T. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation.Diabetes Care20153871383139210.2337/dc14‑2769 26106223
    [Google Scholar]
  26. MatschinskyF.M. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene.J. Clin. Invest.200892520922098
    [Google Scholar]
  27. ChenL. MaglianoD.J. ZimmetP.Z. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives.Nat. Rev. Endocrinol.20128422823610.1038/nrendo.2011.183 22064493
    [Google Scholar]
  28. GomesM.B. RathmannW. CharbonnelB. KhuntiK. KosiborodM. NicolucciA. PocockS.J. ShestakovaM.V. ShimomuraI. TangF. WatadaH. ChenH. Cid-RuzafaJ. FeniciP. HammarN. SurmontF. JiL. Treatment of type 2 diabetes mellitus worldwide: Baseline patient characteristics in the global DISCOVER study.Diabetes Res. Clin. Pract.2019151203210.1016/j.diabres.2019.03.024 30904743
    [Google Scholar]
  29. ZimmetP.Z. Diabetes and its drivers: The largest epidemic in human history?Clin. Diabetes Endocrinol.2017311810.1186/s40842‑016‑0039‑3 28702255
    [Google Scholar]
  30. GinterE. SimkoV. Type 2 diabetes mellitus, pandemic in 21st century.Adv. Exp. Med. Biol.20127714250
    [Google Scholar]
  31. OlokobaA.B. ObateruO.A. OlokobaL.B. Type 2 diabetes mellitus: A review of current trends.Oman Med. J.201227426927310.5001/omj.2012.68 23071876
    [Google Scholar]
  32. CoxM.E. EdelmanD. Tests for screening and diagnosis of type 2 diabetes.Clin. Diabetes200927413213810.2337/diaclin.27.4.132
    [Google Scholar]
  33. YangW. WuH. CaiX. LinC. JiaoR. JiL. Evaluation of efficacy and safety of glucokinase activators—a systematic review and meta-analysis.Front. Endocrinol. (Lausanne)202314117519810.3389/fendo.2023.1175198 37223016
    [Google Scholar]
  34. Santos-BallardoC.L. Montes-ÁvilaJ. Rendon-MaldonadoJ.G. Ramos-PayanR. MontañoS. Sarmiento-SánchezJ.I. Acosta-CotaS.J. Ochoa-TeránA. Bastidas-BastidasP.J. Osuna-MartínezU. Design, synthesis, in silico, and in vitro evaluation of benzylbenzimidazolone derivatives as potential drugs on α-glucosidase and glucokinase as pharmacological targets.RSC Advances20231331211532116210.1039/D3RA02916F 37449031
    [Google Scholar]
  35. KaurA. ThakurS. DeswalG. ChopraB. DhingraA.K. GuarveK. GrewalA.S. In silico docking based screening of constituents from Persian shallot as modulators of human glucokinase.J. Diabetes Metab. Disord.202222154757010.1007/s40200‑022‑01176‑z 37255832
    [Google Scholar]
  36. ThilagavathiR. Hosseini-ZareM.S. MaliniM. SelvamC. A comprehensive review on glucokinase activators: Promising agents for the treatment of Type 2 diabetes.Chem. Biol. Drug Des.202299224726310.1111/cbdd.13979 34714587
    [Google Scholar]
  37. SharmaS. WadhwaK. ChoudharyM. BudhwarV. Ethnopharmacological perspectives of glucokinase activators in the treatment of diabetes mellitus.Nat. Prod. Res.202236112962297610.1080/14786419.2021.1931187 34044681
    [Google Scholar]
  38. SinghS. GhoshP. SharmaS. BhargavaS. KumarA.R. Tetrahydropalmatine from medicinal plants activates human glucokinase to regulate glucose homeostasis.Biotechnol. Appl. Biochem.2023712295313 38037220
    [Google Scholar]
  39. RenY. LiL. WanL. HuangY. CaoS. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists.J. Enzyme Inhib. Med. Chem.202237160661510.1080/14756366.2021.2025362 35067153
    [Google Scholar]
  40. NakamuraA. Glucokinase as a therapeutic target based on findings from the analysis of mouse models.Endocr. J.202269547948510.1507/endocrj.EJ21‑0742 35418527
    [Google Scholar]
  41. KhanA. UnnisaA. SohelM. DateM. PanpaliyaN. SabooS.G. SiddiquiF. KhanS. Investigation of phytoconstituents of Enicostemma littorale as potential glucokinase activators through molecular docking for the treatment of type 2 diabetes mellitus.In Silico Pharmacol.20211011610.1007/s40203‑021‑00116‑8 34926125
    [Google Scholar]
  42. RajasF. Gautier-SteinA. MithieuxG. Glucose-6 phosphate, a central hub for liver carbohydrate metabolism.Metabolites201991228210.3390/metabo9120282 31756997
    [Google Scholar]
  43. JežekP. HolendováB. JabůrekM. TauberJ. DlaskováA. Plecitá-HlavatáL. The pancreatic β-cell: The perfect redox system.Antioxidants202110219710.3390/antiox10020197 33572903
    [Google Scholar]
  44. SternishaS.M. MillerB.G. Molecular and cellular regulation of human glucokinase.Arch. Biochem. Biophys.201966319921310.1016/j.abb.2019.01.011 30641049
    [Google Scholar]
  45. PerseghinG. Exploring the in vivo mechanisms of action of glucokinase activators in type 2 diabetes.J. Clin. Endocrinol. Metab.201095114871487310.1210/jc.2010‑2049 21051584
    [Google Scholar]
  46. MatschinskyF.M. Assessing the potential of glucokinase activators in diabetes therapy.Nat. Rev. Drug Discov.20098539941610.1038/nrd2850 19373249
    [Google Scholar]
  47. CoghlanM. LeightonB. Glucokinase activators in diabetes management.Expert Opin. Investig. Drugs200817214516710.1517/13543784.17.2.145 18230050
    [Google Scholar]
  48. PalM. Recent advances in glucokinase activators for the treatment of type 2 diabetes.Drug Discov. Today20091415-1678479210.1016/j.drudis.2009.05.013 19520181
    [Google Scholar]
  49. HaddadD. DsouzaV.S. Al-MullaF. Al MadhounA. New-generation glucokinase activators: Potential game-changers in type 2 diabetes treatment.Int. J. Mol. Sci.202425157110.3390/ijms25010571 38203742
    [Google Scholar]
  50. PaliwalA. PaliwalV. JainS. PaliwalS. SharmaS. Current insight on the role of glucokinase and glucokinase regulatory protein in diabetes.Mini Rev. Med. Chem.202424767468810.2174/1389557523666230823151927 37612862
    [Google Scholar]
  51. SharmaP. ThakurA. GoyalA. Singh GrewalA. Molecular docking, 2D-QSAR and ADMET studies of 4-sulfonyl-2-pyridone heterocycle as a potential glucokinase activator.Results in Chemistry2023610110510.1016/j.rechem.2023.101105
    [Google Scholar]
  52. HamidA.A. Abdul-RasheedO.F. MahdiM.F. AtiaA.J. Design, synthesis, characterization, and biological evaluation of new diazole-benzamide derivatives as glucokinase activators with antihyperglycemic activity.Egypt. J. Chem.2022658451469
    [Google Scholar]
  53. KaziA.A. ChatpalliwarV.A. Design, synthesis, molecular docking and in vitro biological evaluation of benzamide derivatives as novel glucokinase activators.Curr. Enzym. Inhib.2022181617510.2174/1573408018666220218093451
    [Google Scholar]
  54. AroraS. GrewalA.S. SharmaN. AroraK. DhalioE. SinghS. Design, synthesis, and evaluation of some novel N-benzothiazol-2-yl benzamide derivatives as allosteric activators of human glucokinase.J. Appl. Pharm. Sci.20211113847
    [Google Scholar]
  55. KhadseS.C. AmnerkarN.D. DigholeK.S. DhoteA.M. PatilV.R. LokwaniD.K. UgaleV.G. CharbeN.B. ChatpalliwarV.A. Hetero-substituted sulfonamido-benzamide hybrids as glucokinase activators: Design, synthesis, molecular docking and in-silico ADME evaluation.J. Mol. Struct.2020122212891610.1016/j.molstruc.2020.128916
    [Google Scholar]
  56. KhadseS.C. AmnerkarN.D. DaveM.U. LokwaniD.K. PatilR.R. UgaleV.G. CharbeN.B. ChatpalliwarV.A. Quinazolin-4-one derivatives lacking toxicity-producing attributes as glucokinase activators: Design, synthesis, molecular docking, and in-silico ADMET prediction.Future J. Pharm. Sci.2019511110.1186/s43094‑019‑0012‑y
    [Google Scholar]
  57. GrewalA.S. KharbR. PrasadD.N. DuaJ.S. LatherV.N. ‐pyridin‐2‐yl benzamide analogues as allosteric activators of glucokinase: Design, synthesis, in vitro, in silico and in vivo evaluation.Chem. Biol. Drug Des.201993336437210.1111/cbdd.13423 30369030
    [Google Scholar]
  58. CharayaN. PanditaD. GrewalA.S. LatherV. Design, synthesis and biological evaluation of novel thiazol-2-yl benzamide derivatives as glucokinase activators.Comput. Biol. Chem.20187322122910.1016/j.compbiolchem.2018.02.018 29518630
    [Google Scholar]
  59. KohnT.J. DuX. LaiS. XiongY. KomorowskiR. VeniantM. FuZ. JiaoX. PattaropongV. ChowD. CardozoM. JinL. ConnM. DeWolfW.E.Jr KraserC.F. HinklinR.J. BoysM.L. MedinaJ.C. HouzeJ. DransfieldP. CowardP. 5-Alkyl-2-urea-substituted pyridines: Identification of efficacious glucokinase activators with improved properties.ACS Med. Chem. Lett.20167766667010.1021/acsmedchemlett.6b00145 27437074
    [Google Scholar]
  60. Cadila Healthcare Limited. Disubstituted benzamide derivatives as glucokinase (gk) activatorsWO Patent 20101502802010
  61. Cadila Healthcare Limited. Substituted benzamide derivatives as glucokinase (gk) activators.WO Patent 2011013142011
  62. ŞenolH. AğgülA.G. AtasoyS. GüzeldemirciN.U. Synthesis, characterization, molecular docking and in vitro anti-cancer activity studies of new and highly selective 1,2,3-triazole substituted 4-hydroxybenzohyrdazide derivatives.J. Mol. Struct.2023128313524710.1016/j.molstruc.2023.135247
    [Google Scholar]
  63. TokalıF.S. TaslimiP. SadeghiM. ŞenolH. Synthesis and evaluation of Quinazolin‐4(3 H)‐one derivatives as multitarget metabolic enzyme inhibitors: A biochemistry‐oriented drug design.ChemistrySelect2023825e20230115810.1002/slct.202301158
    [Google Scholar]
/content/journals/cp/10.2174/0115701646323264240821072359
Loading
/content/journals/cp/10.2174/0115701646323264240821072359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test