Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Objectives

Drug resistance reduces the antitumor efficacy of chemotherapy. Therefore, it is important to know how to reverse drug resistance. In this work, we investigated drug resistance reversal by StemRegenin-1(SR-1) in MCF-7/ADR cells and the mechanism by which it exerts its drug resistance effect.

Methods

MTT test and protein blot were employed as the two main cell tests. The cells were treated with SR-1 and ADM to detect the changes in their proteomics, and then the effects of AhR downstream proteins, glucuronidase, and drug-resistant proteins were verified. The accumulation of ADM in the combined cells and its effect on the cell cycle were detected by flow cytometry. , a BALB/C mice xenograft test was conducted to observe the anti-tumor effect and side effects of the drug combination.

Results

SR-1 combined with ADM inhibited cell proliferation and significantly decreased the expression of CYP1A1, UGT1A6, P-gP (ABCB1), and MRP1 (ABCC1). Furthermore, SR-1 caused apoptosis and cell cycle arrest. experiments showed that SR-1 significantly enhanced the antitumor effects of ADM and reduced the toxic effects of ADM.

Conclusion

SR-1 inhibited AhR activity, decreased its downstream protein CYP1A1 and the expression of UGT1A6, P-gP, and MRP1 in MCF-7/ADR cells, and reversed drug resistance in MCF-7/ADR cells through AhR/ABC transports and AhR/UGTs pathways.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646317215240712103448
2024-06-01
2025-06-21
Loading full text...

Full text loading...

References

  1. PopaC.N. BirlaR.D. DinuD.E. IosifC. BogaseriuE. MatesI.N. Breast cancer response to neoadjuvant chemotherapy quantified by residual cancer burden (RCB) score.Farmacia202270471271910.31925/farmacia.2022.4.17
    [Google Scholar]
  2. YigitbasiT. Calibasi-KocalG. BuyukusluN. Kemal AtahanM. KupeliH. YigitS. TarcanE. BaskinY. SELDI-TOF-MS profiling of metastatic phenotype in histopathological subtypes of breast cancer.Curr. Proteomics201815321422010.2174/1570164615666180309154038
    [Google Scholar]
  3. WeverO. BoeckA. MaynardD. BrackeM. HendrixA. Protein secretome analysis of evolving and responding tumor ecosystems.Curr. Proteomics201310212013510.2174/15701646112099990003
    [Google Scholar]
  4. SarhangiN. HajjariS. HeydariS.F. GanjizadehM. RouhollahF. HasanzadM. Breast cancer in the era of precision medicine.Mol. Biol. Rep.20224910100231003710.1007/s11033‑022‑07571‑235733061
    [Google Scholar]
  5. WangH. ShanS. WangH. WangX. CircATXN7 contributes to the progression and doxorubicin resistance of breast cancer via modulating miR-149-5p/HOXA11 pathway.Anticancer Drugs2022331e700e71010.1097/CAD.000000000000124334845164
    [Google Scholar]
  6. SerbanD. DascaluA.M. TribusL.C. CosteaD.O. TudorC. SahranavardT. RezaeeR. StanaD. CristeaB.M. TudosieM.S. BobircaF. SerbanB. MotofeiI. TroteaT. CosteaA.C. CristianD.A. Intravitreal anti-vegf therapy for ocular metastasis in breast cancer.Farmacia20227061037104510.31925/farmacia.2022.6.5
    [Google Scholar]
  7. XuY. LiaoS. WangL. WangY. WeiW. SuK. TuY. ZhuS. Galeterone sensitizes breast cancer to chemotherapy via targeting MNK/eIF4E and β-catenin.Cancer Chemother. Pharmacol.2021871859310.1007/s00280‑020‑04195‑w33159561
    [Google Scholar]
  8. YazganB. OzcelikO. AyarA. RendaG. YıldırımT. Cytotoxic and apoptotic effect of iris taochia plant extracts on human breast cancer (MCF-7) cells.Curr. Proteomics20221919110110.2174/1570164618666210402152159
    [Google Scholar]
  9. van der SpekY.M. KroepJ.R. TollenaarR.A.E.M. MeskerW.E. Chemotherapy resistance and stromal targets in breast cancer treatment: A review.Mol. Biol. Rep.202047108169817710.1007/s11033‑020‑05853‑133006013
    [Google Scholar]
  10. AkramM. IqbalM. DaniyalM. KhanA.U. Awareness and current knowledge of breast cancer.Biol. Res.20175013310.1186/s40659‑017‑0140‑928969709
    [Google Scholar]
  11. FisusiF.A. AkalaE.O. Drug combinations in breast cancer therapy.Pharm. Nanotechnol.20197132310.2174/221173850766619012211122430666921
    [Google Scholar]
  12. MarianiG. New developments in the treatment of metastatic breast cancer: From chemotherapy to biological therapy.Ann. Oncol.200516Suppl. 2ii191ii19410.1093/annonc/mdi71915958455
    [Google Scholar]
  13. ChenQ. MengY.Q. XuX.F. GuJ. Blockade of GLUT1 by WZB117 resensitizes breast cancer cells to adriamycin.Anticancer Drugs201728888088710.1097/CAD.000000000000052928609310
    [Google Scholar]
  14. ChenY. JiaY. MaoM. GuY. XuC. YangJ. HuW. ShenJ. HuD. ChenC. LiZ. ChenL. RuanJ. ShenP. ZhouJ. WeiQ. WangL. PLAC8 promotes adriamycin resistance via blocking autophagy in breast cancer.J. Cell. Mol. Med.202125146948696210.1111/jcmm.1670634117724
    [Google Scholar]
  15. LiZ. WangN. YueT. LiuL. Matrine reverses the drug resistance of K562/ADM cells to ADM and VCR via promoting autophagy.Transl. Cancer Res.20209278679410.21037/tcr.2019.12.1135117424
    [Google Scholar]
  16. AkiyamaS. ChenZ.S. KitazonoM. SumizawaT. FurukawaT. AikouT. [Mechanisms for resistance to anticancer agents and the reversal of the resistance].Hum. Cell19991239510210695015
    [Google Scholar]
  17. CernyM.A. SpracklinD.K. ObachR.S. Human absorption, distribution, metabolism, and excretion studies: Origins, innovations, and importance.Drug Metab. Dispos.202351664765610.1124/dmd.122.00100636973000
    [Google Scholar]
  18. BeaumontC. YoungG.C. CavalierT. YoungM.A. Human absorption, distribution, metabolism and excretion properties of drug molecules: A plethora of approaches.Br. J. Clin. Pharmacol.20147861185120010.1111/bcp.1246825041729
    [Google Scholar]
  19. JohnsonW.W. P-glycoprotein-mediated efflux as a major factor in the variance of absorption and distribution of drugs: Modulation of chemotherapy resistance.Methods Find. Exp. Clin. Pharmacol.200224850151410.1358/mf.2002.24.8.70507112500430
    [Google Scholar]
  20. ManciucC. MihaiI.F. Filip-CiubotaruF. LacatusuG.A. Resistance profile of multidrug-resistant urinary tract infections and their susceptibility to carbapenems.Farmacia202068471572110.31925/farmacia.2020.4.18
    [Google Scholar]
  21. MirandaF. PrazeresH. MendesF. MartinsD. SchmittF. Resistance to endocrine therapy in HR + and/or HER2 + breast cancer: The most promising predictive biomarkers.Mol. Biol. Rep.202249171773310.1007/s11033‑021‑06863‑334739691
    [Google Scholar]
  22. Dos SantosF.A. PereiraM.C. de OliveiraT.B. Mendonça JuniorF.J.B. de LimaM.C.A. PittaM.G.R. PittaI.R. de Melo RêgoM.J.B. da Rocha PittaM.G. Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells.Anticancer Drugs201829215716610.1097/CAD.000000000000058129256900
    [Google Scholar]
  23. HuangK.M. HuS. SparreboomA. Drug transporters and anthracycline-induced cardiotoxicity.Pharmacogenomics2018191188388810.2217/pgs‑2018‑005629991332
    [Google Scholar]
  24. DeanM. MoitraK. AllikmetsR. The human ATP-binding cassette (ABC) transporter superfamily.Hum. Mutat.20224391162118210.1002/humu.2441835642569
    [Google Scholar]
  25. RobeyR.W. PluchinoK.M. HallM.D. FojoA.T. BatesS.E. GottesmanM.M. Revisiting the role of ABC transporters in multidrug-resistant cancer.Nat. Rev. Cancer201818745246410.1038/s41568‑018‑0005‑829643473
    [Google Scholar]
  26. AminkengF. RossC.J.D. RassekhS.R. HwangS. RiederM.J. BhavsarA.P. SmithA. SanataniS. GelmonK.A. BernsteinD. HaydenM.R. AmstutzU. CarletonB.C. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity.Br. J. Clin. Pharmacol.201682368369510.1111/bcp.1300827197003
    [Google Scholar]
  27. BockK.W. From differential induction of UDP-glucuronosyltransferases in rat liver to characterization of responsible ligand-activated transcription factors, and their multilevel crosstalk in humans.Biochem. Pharmacol.201182191610.1016/j.bcp.2011.03.01121420387
    [Google Scholar]
  28. SteventonG. Uridine diphosphate glucuronosyltransferase 1A1.Xenobiotica2020501647610.1080/00498254.2019.161791031092094
    [Google Scholar]
  29. YangG. GeS. SinghR. BasuS. ShatzerK. ZenM. LiuJ. TuY. ZhangC. WeiJ. ShiJ. ZhuL. LiuZ. WangY. GaoS. HuM. Glucuronidation: Driving factors and their impact on glucuronide disposition.Drug Metab. Rev.201749210513810.1080/03602532.2017.129368228266877
    [Google Scholar]
  30. FujiwaraR. YokoiT. NakajimaM. Structure and protein–protein interactions of Human UDP-Glucuronosyltransferases.Front. Pharmacol.2016738810.3389/fphar.2016.0038827822186
    [Google Scholar]
  31. KiangT. EnsomM. ChangT. UDP-glucuronosyltransferases and clinical drug-drug interactions.Pharmacol. Ther.200510619713210.1016/j.pharmthera.2004.10.01315781124
    [Google Scholar]
  32. ZhuL. ZhaoL. WangH. WangY. PanD. YaoJ. LiZ. WuG. GuoQ. Oroxylin A reverses P-glycoprotein-mediated multidrug resistance of MCF7/ADR cells by G2/M arrest.Toxicol. Lett.2013219210711510.1016/j.toxlet.2013.01.01923470866
    [Google Scholar]
  33. ZhouB.G. WeiC.S. ZhangS. ZhangZ. GaoH. Matrine reversed multidrug resistance of breast cancer MCF-7/ADR cells through PI3K/AKT signaling pathway.J. Cell. Biochem.201811953885389110.1002/jcb.2650229130495
    [Google Scholar]
  34. WangZ. SnyderM. KenisonJ.E. YangK. LaraB. LydellE. BennaniK. NovikovO. FedericoA. MontiS. SherrD.H. How the AHR became important in cancer: The role of chronically active AHR in cancer aggression.Int. J. Mol. Sci.202022138710.3390/ijms2201038733396563
    [Google Scholar]
  35. UngT.T. NguyenT.T. LiS. HanJ.Y. JungY.D. Nicotine stimulates CYP1A1 expression in human hepatocellular carcinoma cells via AP-1, NF-κB, and AhR.Toxicol. Lett.202134915516410.1016/j.toxlet.2021.06.01334171359
    [Google Scholar]
  36. ChenY. WangY. FuY. YinY. XuK. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation.Cell Biosci.20231318510.1186/s13578‑023‑01046‑y37179416
    [Google Scholar]
  37. SorgO. AhR signalling and dioxin toxicity.Toxicol. Lett.2014230222523310.1016/j.toxlet.2013.10.03924239782
    [Google Scholar]
  38. KorzeniewskiN. WheelerS. ChatterjeeP. DuensingA. DuensingS. A novel role of the aryl hydrocarbon receptor (AhR) in centrosome amplification - implications for chemoprevention.Mol. Cancer20109115310.1186/1476‑4598‑9‑15320565777
    [Google Scholar]
  39. CasadoS. AlonsoM. HerradónB. TarazonaJ.V. NavasJ.M.A. Activation of the aryl hydrocarbon receptor by carbaryl: Computational evidence of the ability of carbaryl to assume a planar conformation.Environ. Toxicol. Chem.200625123141314710.1897/06‑131R.117220082
    [Google Scholar]
  40. HsiehT.H. HsuC.Y. YangP.J. ChiuC.C. LiangS.S. Ou-YangF. KanJ.Y. HouM.F. WangT.N. TsaiE.M. DEHP mediates drug resistance by directly targeting AhR in human breast cancer.Biomed. Pharmacother.202214511240010.1016/j.biopha.2021.11240034801851
    [Google Scholar]
  41. SakakibaraY. KatohM. KondoY. NadaiM. Effects of β- naphthoflavone on Ugt1a6 and Ugt1a7 expression in rat brain.Biol. Pharm. Bull.2016391788310.1248/bpb.b15‑0057826725430
    [Google Scholar]
  42. MahringerA. BerndA. MillerD.S. FrickerG. Aryl hydrocarbon receptor ligands increase ABC transporter activity and protein expression in killifish (Fundulus heteroclitus) renal proximal tubules.Biol. Chem.2019400101335134510.1515/hsz‑2018‑042530913027
    [Google Scholar]
  43. AngelosM.G. RuhP.N. WebberB.R. BlumR.H. RyanC.D. BendzickL. ShimS. YingstA.M. TufaD.M. VernerisM.R. KaufmanD.S. Aryl hydrocarbon receptor inhibition promotes hematolymphoid development from human pluripotent stem cells.Blood2017129263428343910.1182/blood‑2016‑07‑73044028533309
    [Google Scholar]
  44. LimH.J. JangW.B. RethineswaranV.K. ChoiJ. LeeE.J. ParkS. JeongY. HaJ.S. YunJ. ChoiY.J. HongY.J. KwonS.M. StemRegenin-1 attenuates endothelial progenitor cell senescence by regulating the AhR pathway-mediated CYP1A1 and ROS generation.Cells20231215200510.3390/cells1215200537566085
    [Google Scholar]
  45. BriddellR.A. BroudyV.C. BrunoE. BrandtJ.E. SrourE.F. HoffmanR. Further phenotypic characterization and isolation of human hematopoietic progenitor cells using a monoclonal antibody to the c-kit receptor.Blood199279123159316710.1182/blood.V79.12.3159.bloodjournal791231591375842
    [Google Scholar]
  46. AshmanL.K. BühringH.J. AylettG.W. BroudyV.C. MüllerC. Epitope mapping and functional studies with three monoclonal antibodies to the C-KIT receptor tyrosine kinase, YB5.B8, 17F11, and SR-1.J. Cell. Physiol.1994158354555410.1002/jcp.10415803217510297
    [Google Scholar]
  47. WagnerJ.E.Jr BrunsteinC.G. BoitanoA.E. DeForT.E. McKennaD. SumstadD. BlazarB.R. TolarJ. LeC. JonesJ. CookeM.P. BleulC.C. Phase I/II trial of stemregenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft.Cell Stem Cell201618114415510.1016/j.stem.2015.10.00426669897
    [Google Scholar]
  48. KondoA. OhnishiA. NagaraH. TateishiJ. Neurotoxicity in primary sensory neurons of adriamycin administered through retrograde axoplasmic transport in rats.Neuropathol. Appl. Neurobiol.198713317719210.1111/j.1365‑2990.1987.tb00182.x2441307
    [Google Scholar]
  49. IwasakiY. YamamotoT. KonnoH. IizukaH. KudoH. Eradication of herpes simplex virus persistence in rat trigeminal ganglia by retrograde axoplasmic transport.J. Virol.198659224224810.1128/jvi.59.2.242‑248.19862426462
    [Google Scholar]
  50. HossenS. HossainM.K. BasherM.K. MiaM.N.H. RahmanM.T. UddinM.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.J. Adv. Res.20191511810.1016/j.jare.2018.06.00530581608
    [Google Scholar]
  51. HuaJ. MutchD.G. HerzogT.J. Stable suppression of MDR-1 gene using siRNA expression vector to reverse drug resistance in a human uterine sarcoma cell line.Gynecol. Oncol.2005981313810.1016/j.ygyno.2005.03.04215921732
    [Google Scholar]
  52. ZhangY. ChenY. LuL.L. XieX.L. HuanR. WuL.F. TanL.N. XuT. JinY. The role and therapeutic potential of non-coding RNAs in resistance to EGFR-TKIs targeted therapy for non-small cell lung cancer.Curr. Med. Chem.20242024584738375847
    [Google Scholar]
  53. ChenY. TangY. GuoC. WangJ. BoralD. NieD. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters.Biochem. Pharmacol.20128381112112610.1016/j.bcp.2012.01.03022326308
    [Google Scholar]
  54. WuQ. YangZ. NieY. ShiY. FanD. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches.Cancer Lett.2014347215916610.1016/j.canlet.2014.03.01324657660
    [Google Scholar]
  55. MaR. WangY. YanL. MaL. WangZ. ChanH.C. ChiuS.K. ChenX. ZhuG. Efficient co-delivery of a Pt( iv ) prodrug and a p53 activator to enhance the anticancer activity of cisplatin.Chem. Commun. (Camb.)201551377859786210.1039/C4CC09879J25854514
    [Google Scholar]
  56. LiY.J. LeiY.H. YaoN. WangC.R. HuN. YeW.C. ZhangD.M. ChenZ.S. Autophagy and multidrug resistance in cancer.Chin. J. Cancer20173615210.1186/s40880‑017‑0219‑228646911
    [Google Scholar]
  57. TinoushB. ShirdelI. WinkM. Phytochemicals: Potential Lead Molecules for MDR Reversal.Front. Pharmacol.20201183210.3389/fphar.2020.0083232636741
    [Google Scholar]
  58. ZhouL. WangH. LiY. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance.Theranostics2018841059107410.7150/thno.2267929463999
    [Google Scholar]
  59. XuT. GuoP. HeY. PiC. WangY. FengX. HouY. JiangQ. ZhaoL. WeiY. Application of curcumin and its derivatives in tumor multidrug resistance.Phytother. Res.202034102438245810.1002/ptr.669432255545
    [Google Scholar]
  60. MurrayI.A. PattersonA.D. PerdewG.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe.Nat. Rev. Cancer2014141280181410.1038/nrc384625568920
    [Google Scholar]
  61. SládekováL. ManiS. DvořákZ. Ligands and agonists of the aryl hydrocarbon receptor AhR: Facts and myths.Biochem. Pharmacol.202321311562610.1016/j.bcp.2023.11562637247746
    [Google Scholar]
  62. SafeS. JinU. ParkH. ChapkinR.S. JayaramanA. Aryl Hydrocarbon Receptor (AHR) ligands as selective AHR modulators (SAhRMs).Int. J. Mol. Sci.20202118665410.3390/ijms2118665432932962
    [Google Scholar]
  63. TanK.P. WangB. YangM. BoutrosP.C. MacAulayJ. XuH. ChuangA.I. KosugeK. YamamotoM. TakahashiS. WuA.M.L. RossD.D. HarperP.A. ItoS. Aryl hydrocarbon receptor is a transcriptional activator of the human breast cancer resistance protein (BCRP/ABCG2).Mol. Pharmacol.201078217518510.1124/mol.110.06507820460431
    [Google Scholar]
  64. SondermannN.C. FaßbenderS. HartungF. HätäläA.M. RolfesK.M. VogelC.F.A. Haarmann-StemmannT. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway.Biochem. Pharmacol.202320811537110.1016/j.bcp.2022.11537136528068
    [Google Scholar]
  65. BrinchmannB.C. Le FerrecE. BissonW.H. PodechardN. HuitfeldtH.S. GallaisI. SergentO. HolmeJ.A. Lagadic-GossmannD. ØvrevikJ. Evidence of selective activation of aryl hydrocarbon receptor nongenomic calcium signaling by pyrene.Biochem. Pharmacol.201815811210.1016/j.bcp.2018.09.02330248327
    [Google Scholar]
  66. XiaH. ZhuX. ZhangX. JiangH. LiB. WangZ. LiD. JinY. Alpha-naphthoflavone attenuates non-alcoholic fatty liver disease in oleic acid-treated HepG2 hepatocytes and in high fat diet-fed mice.Biomed. Pharmacother.201911810928710.1016/j.biopha.2019.10928731401392
    [Google Scholar]
  67. XavierC.P.R. BelisarioD.C. RebeloR. AssarafY.G. GiovannettiE. KopeckaJ. VasconcelosM.H. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells.Drug Resist. Updat.20226210083310.1016/j.drup.2022.10083335429792
    [Google Scholar]
  68. ChangV.Y. WangJ.J. Pharmacogenetics of chemotherapy-induced cardiotoxicity.Curr. Oncol. Rep.20182075210.1007/s11912‑018‑0696‑829713898
    [Google Scholar]
  69. ChoiW.G. KimD.K. ShinY. ParkR. ChoY.Y. LeeJ.Y. KangH.C. LeeH.S. Liquid chromatography–tandem mass spectrometry for the simultaneous determination of doxorubicin and its metabolites doxorubicinol, doxorubicinone, doxorubicinolone, and 7-deoxydoxorubicinone in mouse plasma.Molecules2020255125410.3390/molecules2505125432164308
    [Google Scholar]
  70. HeJ. FortunatiE. LiuD.X. LiY. Pleiotropic roles of ABC transporters in breast cancer.Int. J. Mol. Sci.2021226319910.3390/ijms2206319933801148
    [Google Scholar]
  71. KammalaA. BensonM. GangulyE. RichardsonL. MenonR. Functional role and regulation of permeability-glycoprotein (P-gp) in the fetal membrane during drug transportation.Am. J. Reprod. Immunol.2022872e1351510.1111/aji.1351534873775
    [Google Scholar]
  72. MirzaeiS. GholamiM.H. HashemiF. ZabolianA. FarahaniM.V. HushmandiK. ZarrabiA. GoldmanA. AshrafizadehM. OriveG. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects.Drug Discov. Today202227243645510.1016/j.drudis.2021.09.02034624510
    [Google Scholar]
  73. PhumyenA. JantasornS. JumnainsongA. LeelayuwatC. Doxorubicin-conjugated bacteriophages carrying anti-MHC class I chain-related A for targeted cancer therapy in vitro.OncoTargets Ther.201472183219525506223
    [Google Scholar]
  74. Ciocan-CartitaC.A. JurjA. ZanoagaO. CojocneanuR. PopL.A. MoldovanA. MoldovanC. ZimtaA.A. RadulyL. Pop-BicaC. BuseM. BudisanL. ViragP. IrimieA. Gomes DiasS.M. Berindan-NeagoeI. BraicuC. New insights in gene expression alteration as effect of doxorubicin drug resistance in triple negative breast cancer cells.J. Exp. Clin. Cancer Res.202039124110.1186/s13046‑020‑01736‑233187552
    [Google Scholar]
  75. CaoW. LiY. HouY. YangM. FuX. ZhaoB. JiangH. FuX. Enhanced anticancer efficiency of doxorubicin against human glioma by natural borneol through triggering ROS-mediated signal.Biomed. Pharmacother.201911810926110.1016/j.biopha.2019.10926131374355
    [Google Scholar]
/content/journals/cp/10.2174/0115701646317215240712103448
Loading
/content/journals/cp/10.2174/0115701646317215240712103448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test