Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Objective

as a carcinogen, has been related to the development of gastric cancer, particularly in developing countries. The main challenge with therapy is the recurrence of antibiotic-resistant bacteria, and vaccination is still a problem. Therefore, the objective of the current study was to rationally design a multi-epitope vaccine using two immunogenic proteins found in .

Methods

Promising epitopes for the Leb-binding adhesin A (BabA) and vacuolating cytotoxin (VacA) proteins were characterized through an immunoinformatics approach. Epitope-rich fragments were selected based on high-binding affinities with HLA classes I and II to be specifically presented to B and T lymphocytes and to selectively elicit both humoral and cellular immune responses.

Results

Six constructs were planned by fusing these fragments in different arrangements with the help of GPGPG linkers. The most stable three-dimensional structure was found in Construct 6 during molecular dynamics. To improve immunogenicity and stability, an adjuvant called human β-defensin 2 (hBD-2) was joined to the N-terminus of Construct 6. Following molecular docking, the final vaccine reacted appropriately with each toll-like receptor 2 (TLR-2), TLR3, and TLR-4. The final DNA sequence was optimized for expression in K12 and cloned into a pET-28a(+) plasmid. As a result of the vaccination , substantial responses were developed against .

Conclusion

According to the immune response simulation, activated B and T lymphocytes and memory cell production increased. Macrophages and dendritic cells proliferated continuously, and IFN-γ and Cytokines, such as IL-2 were raised.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646302487240524103934
2024-06-01
2025-06-24
Loading full text...

Full text loading...

References

  1. OleastroM. MénardA. The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis.Biology2013231110113410.3390/biology203111024833057
    [Google Scholar]
  2. BajJ. FormaA. SitarzM. PortincasaP. GarrutiG. KrasowskaD. MaciejewskiR. Helicobacter pylori virulence factors—mechanisms of bacterial pathogenicity in the gastric microenvironment.Cells20201012710.3390/cells1001002733375694
    [Google Scholar]
  3. AlipourM. Molecular Mechanism of Helicobacter pylori-induced gastric cancer.J. Gastrointest. Cancer2021521233010.1007/s12029‑020‑00518‑532926335
    [Google Scholar]
  4. BravoD. HoareA. SotoC. ValenzuelaM.A. QuestA.F.G. Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects.World J. Gastroenterol.201824283071308910.3748/wjg.v24.i28.307130065554
    [Google Scholar]
  5. BurucoaC. AxonA. Epidemiology of Helicobacter pylori infection.Helicobacter201722S1Suppl. 1e1240310.1111/hel.1240328891138
    [Google Scholar]
  6. ReshetnyakV.I. BurmistrovA.I. MaevI.V. Helicobacter pylori : Commensal, symbiont or pathogen?World J. Gastroenterol.202127754556010.3748/wjg.v27.i7.54533642828
    [Google Scholar]
  7. MachlowskaJ. BajJ. SitarzM. MaciejewskiR. SitarzR. Gastric cancer: epidemiology, risk factors, classification, genomic characteristics, and treatment strategies.Int. J. Mol. Sci.20202111401210.3390/ijms2111401232512697
    [Google Scholar]
  8. ZengM. MaoX.H. LiJ.X. TongW.D. WangB. ZhangY.J. GuoG. ZhaoZ.J. LiL. WuD.L. LuD.S. TanZ.M. LiangH.Y. WuC. LiD.H. LuoP. ZengH. ZhangW.J. ZhangJ.Y. GuoB.T. ZhuF.C. ZouQ.M. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial.Lancet2015386100021457146410.1016/S0140‑6736(15)60310‑526142048
    [Google Scholar]
  9. KumarS. DhimanM. Inflammasome activation and regulation during Helicobacter pylori pathogenesis.Microb. Pathog.201812546847410.1016/j.micpath.2018.10.01230316008
    [Google Scholar]
  10. PiscioneM. MazzoneM. Di MarcantonioM.C. MuraroR. MincioneG. Eradication of Helicobacter pylori and gastric cancer: a controversial relationship.Front. Microbiol.20211263085210.3389/fmicb.2021.63085233613500
    [Google Scholar]
  11. XuC. SoyfooD.M. WuY. XuS. Virulence of Helicobacter pylori outer membrane proteins: an updated review.Eur. J. Clin. Microbiol. Infect. Dis.202039101821183010.1007/s10096‑020‑03948‑y32557327
    [Google Scholar]
  12. SharndamaH.C. MbaI.E. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms.Braz. J. Microbiol.2022531335010.1007/s42770‑021‑00675‑034988937
    [Google Scholar]
  13. RoyR. JonniyaN.A. SkM.F. KarP. Comparative structural dynamics of isoforms of Helicobacter pylori adhesin BabA bound to Lewis b hexasaccharide via multiple replica molecular dynamics simulations.Front. Mol. Biosci.2022985289510.3389/fmolb.2022.85289535586194
    [Google Scholar]
  14. HageN. HowardT. PhillipsC. BrassingtonC. OvermanR. DebreczeniJ. GellertP. StolnikS. WinklerG.S. FalconeF.H. Structural basis of Lewis b antigen binding by the Helicobacter pylori adhesin BabA.Sci. Adv.201517e150031510.1126/sciadv.150031526601230
    [Google Scholar]
  15. MatosR. AmorimI. MagalhãesA. HaesebrouckF. GärtnerF. ReisC.A. Adhesion of Helicobacter species to the human gastric mucosa: a deep look into glycans role.Front. Mol. Biosci.2021865643910.3389/fmolb.2021.65643934026832
    [Google Scholar]
  16. MagalhãesA. Marcos-PintoR. NairnA.V. dela RosaM. FerreiraR.M. Junqueira-NetoS. FreitasD. GomesJ. OliveiraP. SantosM.R. MarcosN.T. XiaogangW. FigueiredoC. OliveiraC. Dinis-RibeiroM. CarneiroF. MoremenK.W. DavidL. ReisC.A. Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways.Biochim. Biophys. Acta Mol. Basis Dis.2015185291928193910.1016/j.bbadis.2015.07.00126144047
    [Google Scholar]
  17. AnsariS. YamaokaY. Helicobacter pylori BabA in adaptation for gastric colonization.World J. Gastroenterol.201723234158416910.3748/wjg.v23.i23.415828694656
    [Google Scholar]
  18. KableM.E. HansenL.M. StyerC.M. DeckS.L. RakhimovaO. ShevtsovaA. EatonK.A. MartinM.E. GideonssonP. BorénT. SolnickJ.V. Host determinants of expression of the Helicobacter pylori BabA adhesin.Sci. Rep.2017714649910.1038/srep4649928418004
    [Google Scholar]
  19. DoohanD. RezkithaY.A.A. WaskitoL.A. YamaokaY. MiftahussururM. Helicobacter pylori BabA–SabA key roles in the adherence phase: The synergic mechanism for successful colonization and disease development.Toxins (Basel)202113748510.3390/toxins1307048534357957
    [Google Scholar]
  20. FischerW. TegtmeyerN. StinglK. BackertS. Four chromosomal type IV secretion systems in Helicobacter pylori: composition, structure and function.Front. Microbiol.202011159210.3389/fmicb.2020.0159232754140
    [Google Scholar]
  21. KashaniS.S. TalebkhanY. EbrahimzadehF. OghalaieA. MohajeraniN. NahvijouA. Helicobacter pylori BabA Expression, Gastric Mucosal Injury and Clinical Outcome.Helicobacter201015368
    [Google Scholar]
  22. KimS.Y. WooC.W. LeeY.M. SonB.R. KimJ.W. ChaeH.B. YounS.J. ParkS.M. Genotyping CagA, VacA subtype, IceA1, and BabA of Helicobacter pylori isolates from Korean patients, and their association with gastroduodenal diseases.J. Korean Med. Sci.200116557958410.3346/jkms.2001.16.5.57911641526
    [Google Scholar]
  23. PalframanS.L. KwokT. GabrielK. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis.Front. Cell. Infect. Microbiol.201229210.3389/fcimb.2012.0009222919683
    [Google Scholar]
  24. BoquetP. RicciV. Intoxication strategy of Helicobacter pylori VacA toxin.Trends Microbiol.201220416517410.1016/j.tim.2012.01.00822364673
    [Google Scholar]
  25. GangwerK.A. MushrushD.J. StauffD.L. SpillerB. McClainM.S. CoverT.L. LacyD.B. Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain.Proc. Natl. Acad. Sci. USA200710441162931629810.1073/pnas.070744710417911250
    [Google Scholar]
  26. McClainM.S. CaoP. CoverT.L. Amino-terminal hydrophobic region of Helicobacter pylori vacuolating cytotoxin (VacA) mediates transmembrane protein dimerization.Infect. Immun.20016921181118410.1128/IAI.69.2.1181‑1184.200111160018
    [Google Scholar]
  27. FoegedingN. CastonR. McClainM. OhiM. CoverT. An overview of Helicobacter pylori VacA toxin biology.Toxins (Basel)20168617310.3390/toxins806017327271669
    [Google Scholar]
  28. NecchiV. SommiP. VanoliA. FioccaR. RicciV. SolciaE. Natural history of Helicobacter pylori VacA toxin in human gastric epithelium in vivo: vacuoles and beyond.Sci. Rep.2017711452610.1038/s41598‑017‑15204‑z29109534
    [Google Scholar]
  29. CoverT.L. TummuruM.K. CaoP. ThompsonS.A. BlaserM.J. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains.J. Biol. Chem.199426914105661057310.1016/S0021‑9258(17)34097‑88144644
    [Google Scholar]
  30. AhmadT.A. EweidaA.E. El-SayedL.H. T-cell epitope mapping for the design of powerful vaccines.Vaccine Rep.20166132210.1016/j.vacrep.2016.07.002
    [Google Scholar]
  31. VitaR. MahajanS. OvertonJ.A. DhandaS.K. MartiniS. CantrellJ.R. WheelerD.K. SetteA. PetersB. The immune epitope database (IEDB): 2018 update.Nucleic Acids Res.201947D1D339D34310.1093/nar/gky100630357391
    [Google Scholar]
  32. PaulS SidneyJ SetteA PetersB. TepiTool: a pipeline for computational prediction of T cell epitope candidatesCurrent protocols in immunology2016114118.19.118.19.2410.1002/cpim.12
    [Google Scholar]
  33. ReynissonB. AlvarezB. PaulS. PetersB. NielsenM. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data.Nucleic Acids Res.202048W1W449W45410.1093/nar/gkaa37932406916
    [Google Scholar]
  34. JespersenM.C. PetersB. NielsenM. MarcatiliP. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes.Nucleic Acids Res.201745W1W24W2910.1093/nar/gkx34628472356
    [Google Scholar]
  35. DimitrovI. FlowerD.R. DoytchinovaI. AllerTOP - a server for in silico prediction of allergensBMC Bioinformatics.2013146
    [Google Scholar]
  36. KumarS. StecherG. LiM. KnyazC. TamuraK. MEGA X: molecular evolutionary genetics analysis across computing platforms.Mol. Biol. Evol.20183561547154910.1093/molbev/msy09629722887
    [Google Scholar]
  37. WalkerJ.M. The proteomics protocols handbook.Springer200510.1385/1592598900
    [Google Scholar]
  38. LamiableA. ThévenetP. ReyJ. VavrusaM. DerreumauxP. TufféryP. PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex.Nucleic Acids Res.201644W1W449W45410.1093/nar/gkw32927131374
    [Google Scholar]
  39. BurleyS.K. BhikadiyaC. BiC. BittrichS. ChenL. CrichlowG.V. ChristieC.H. DalenbergK. Di CostanzoL. DuarteJ.M. DuttaS. FengZ. GanesanS. GoodsellD.S. GhoshS. GreenR.K. GuranovićV. GuzenkoD. HudsonB.P. LawsonC.L. LiangY. LoweR. NamkoongH. PeisachE. PersikovaI. RandleC. RoseA. RoseY. SaliA. SeguraJ. SekharanM. ShaoC. TaoY.P. VoigtM. WestbrookJ.D. YoungJ.Y. ZardeckiC. ZhuravlevaM. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences.Nucleic Acids Res.202149D1D437D45110.1093/nar/gkaa103833211854
    [Google Scholar]
  40. Bitencourt-FerreiraG. PintroV.O. de AzevedoW.F. Docking with AutoDock4Methods Mol Biol.20192053125148
    [Google Scholar]
  41. TarrahimofradH. RahimnahalS. ZamaniJ. JahangirianE. AminzadehS. Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9.Sci. Rep.20211112448510.1038/s41598‑021‑03932‑234966175
    [Google Scholar]
  42. YangJ. YanR. RoyA. XuD. PoissonJ. ZhangY. The I-TASSER Suite: protein structure and function prediction.Nat. Methods20151217810.1038/nmeth.321325549265
    [Google Scholar]
  43. RobertsonM.J. Tirado-RivesJ. JorgensenW.L. Improved peptide and protein torsional energetics with the OPLS-AA force field.J. Chem. Theory Comput.20151173499350910.1021/acs.jctc.5b0035626190950
    [Google Scholar]
  44. DestaIT PorterKA XiaB KozakovD VajdaS Performance and its limits in rigid-body protein-protein dockingStructure202028910711081
    [Google Scholar]
  45. SchrodingerL.L.C. [PyMOL] PyMOL 2.5.1 Released.2015Available from: https://sourceforge.net/p/pymol/mailman/message/37313542/
  46. AraiR. Design of helical linkers for fusion proteins and protein-based nanostructures.Methods Enzymol.202164720923010.1016/bs.mie.2020.10.00333482989
    [Google Scholar]
  47. DoytchinovaI.A. FlowerD.R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines.BMC Bioinformatics200781410.1186/1471‑2105‑8‑417207271
    [Google Scholar]
  48. DimitrovI. BangovI. FlowerD.R. DoytchinovaI. AllerTOP v.2—a server for in silico prediction of allergens.J. Mol. Model.2014206227810.1007/s00894‑014‑2278‑524878803
    [Google Scholar]
  49. GroteA. HillerK. ScheerM. MünchR. NörtemannB. HempelD.C. JahnD. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host.Nucleic Acids Res.200533Web ServerSuppl. 2W526W53110.1093/nar/gki37615980527
    [Google Scholar]
  50. GlickB.R. PattenC.L. Molecular biotechnology: Principles and applications of recombinant DNA.John Wiley & Sons2022
    [Google Scholar]
  51. CastiglioneF. DebD. SrivastavaA.P. LiòP. LisoA. From infection to immunity: understanding the response to SARS-CoV2 through in-silico modeling.Front. Immunol.20211264697210.3389/fimmu.2021.64697234557181
    [Google Scholar]
  52. CastiglioneF. MantileF. De BerardinisP. PriscoA. How the interval between prime and boost injection affects the immune response in a computational model of the immune system.Comput. Math. Methods Med.201220121910.1155/2012/84232922997539
    [Google Scholar]
  53. CastiglioneF. BernaschiM. C-immSim: Playing with the immune response.Proceedings of the sixteenth International Symposium on Mathematical Theory of Networks and Systems (MTNS2004)2004
    [Google Scholar]
  54. YeD. BlankeS.R. Mutational analysis of the Helicobacter pylori vacuolating toxin amino terminus: identification of amino acids essential for cellular vacuolation.Infect. Immun.20006874354435710.1128/IAI.68.7.4354‑4357.200010858259
    [Google Scholar]
  55. CoverT.L. BlankeS.R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality.Nat. Rev. Microbiol.20053432033210.1038/nrmicro109515759043
    [Google Scholar]
  56. YeD. WillhiteD.C. BlankeS.R. Identification of the minimal intracellular vacuolating domain of the Helicobacter pylori vacuolating toxin.J. Biol. Chem.1999274149277928210.1074/jbc.274.14.927710092603
    [Google Scholar]
  57. YuanL.Z. ShiX. TangD. ZhengS.P. XiaoZ.M. WangF. Construction and preservation of a stable and highly expressed recombinant Helicobacter pylori vacuolating cytotoxin A with apoptotic activity.BMC Microbiol.202121122910.1186/s12866‑021‑02262‑734407768
    [Google Scholar]
  58. TombolaF. PagliacciaC. CampelloS. TelfordJ.L. MontecuccoC. PapiniE. ZorattiM. How the loop and middle regions influence the properties of Helicobacter pylori VacA channels.Biophys. J.20018163204321510.1016/S0006‑3495(01)75956‑511720986
    [Google Scholar]
  59. MoyatM. VelinD. Use of VacA as a vaccine antigen.Toxins (Basel)20168618110.3390/toxins806018127338474
    [Google Scholar]
  60. CastonR.R. SierraJ.C. FoegedingN.J. TruelockM.D. CampbellA.M. Frick-ChengA.E. BimczokD. WilsonK.T. McClainM.S. CoverT.L. Functional properties of Helicobacter pylori VacA toxin m1 and m2 variants.Infect. Immun.2020886e00032-2010.1128/IAI.00032‑2032284370
    [Google Scholar]
  61. MoonensK. GideonssonP. SubediS. BugaytsovaJ. RomaõE. MendezM. NordénJ. FallahM. RakhimovaL. ShevtsovaA. LahmannM. CastaldoG. BrännströmK. CoppensF. LoA.W. NyT. SolnickJ.V. VandenbusscheG. OscarsonS. HammarströmL. ArnqvistA. BergD.E. MuyldermansS. BorénT. RemautH. Structural insights into polymorphic ABO glycan binding by Helicobacter pylori.Cell Host Microbe2016191556610.1016/j.chom.2015.12.00426764597
    [Google Scholar]
  62. ZhengW ZhangC LiY PearceR BellEW ZhangY Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulationsCell reports methods20211310001410.1016/j.crmeth.2021.100014
    [Google Scholar]
  63. BhattacharyaD. NowotnyJ. CaoR. ChengJ. 3Drefine: an interactive web server for efficient protein structure refinement.Nucleic Acids Res.201644W1W406W40910.1093/nar/gkw33627131371
    [Google Scholar]
  64. MaJ. QiuJ. WangS. JiQ. XuD. WangH. WuZ. LiuQ. A novel design of multi-epitope vaccine against Helicobacter pylori by immunoinformatics approach.Int. J. Pept. Res. Ther.20212721027104210.1007/s10989‑020‑10148‑x33424523
    [Google Scholar]
  65. ParvizpourS. PourseifM.M. RazmaraJ. RafiM.A. OmidiY. Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches.Drug Discov. Today20202561034104210.1016/j.drudis.2020.03.00632205198
    [Google Scholar]
  66. SakharkarK.R. SakharkarM.K. ChandraR. Post-genomic approaches in drug and vaccine development.1st EditionRiver PublishersNew York202210.1201/9781003339090
    [Google Scholar]
  67. KhanM. KhanS. AliA. AkbarH. SayafA.M. KhanA. WeiD.Q. Immunoinformatics approaches to explore Helicobacter pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine.Sci. Rep.2019911332110.1038/s41598‑019‑49354‑z31527719
    [Google Scholar]
  68. SuttonP. BoagJ.M. Status of vaccine research and development for Helicobacter pylori.Vaccine201937507295729910.1016/j.vaccine.2018.01.00129627231
    [Google Scholar]
  69. AbadiA.T.B. Vaccine against Helicobacter pylori : Inevitable approach.World J. Gastroenterol.201622113150315710.3748/wjg.v22.i11.315027003991
    [Google Scholar]
  70. MezaB. AscencioF. Sierra-BeltránA.P. TorresJ. AnguloC. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: An in silico approach.Infect. Genet. Evol.20174930931710.1016/j.meegid.2017.02.00728185986
    [Google Scholar]
  71. Urrutia-BacaV.H. Gomez-floresR. De La Garza-RamosM.A. Tamez-guerraP. Lucio-saucedaD.G. Rodríguez-padillaM.C. Immunoinformatics approach to design a novel epitope-based oral vaccine against Helicobacter pylori.J. Comput. Biol.201926101177119010.1089/cmb.2019.006231120321
    [Google Scholar]
  72. LiuK.Y. ShiY. LuoP. YuS. ChenL. ZhaoZ. MaoX.H. GuoG. WuC. ZouQ.M. Therapeutic efficacy of oral immunization with attenuated Salmonella typhimurium expressing Helicobacter pylori CagA, VacA and UreB fusion proteins in mice model.Vaccine201129386679668510.1016/j.vaccine.2011.06.09921745524
    [Google Scholar]
  73. MalfertheinerP. SchultzeV. RosenkranzB. KaufmannS.H.E. UlrichsT. NovickiD. NorelliF. ContorniM. PeppoloniS. BertiD. TorneseD. GanjuJ. PallaE. RappuoliR. ScharschmidtB.F. Del GiudiceG. Safety and immunogenicity of an intramuscular Helicobacter pylori vaccine in noninfected volunteers: a phase I study.Gastroenterology2008135378779510.1053/j.gastro.2008.05.05418619971
    [Google Scholar]
  74. GuoL. HongD. WangS. ZhangF. TangF. WuT. ChuY. LiuH. HeM. YangH. YinR. LiuK. Therapeutic protection against H. pylori infection in Mongolian gerbils by oral immunization with a tetravalent epitope-based vaccine with polysaccharide adjuvant.Front. Immunol.201910118510.3389/fimmu.2019.0118531191547
    [Google Scholar]
  75. AlErakyD.M. AbuohashishH.M. BugshanA.S. AbdelsalamM.M. AlHawajH.A. AlKhamisT.T. AlDossaryF.A. AlrayesN.M. RagabY.M. AbdelKhalekZ. HelmyO.M. RamadanM.A. Potential Antigenic Candidates for the Development of Peptide-Based Vaccines to Induce Immunization against Helicobacter pylori Infection in BALB/c Mice.Int. J. Mol. Sci.202223211282410.3390/ijms23211282436361614
    [Google Scholar]
  76. Dos Santos VianaI. Cordeiro SantosM.L. Santos MarquesH. Lima de Souza GonçalvesV. Bittencourt de BritoB. França da SilvaF.A. Oliveira e SilvaN. Dantas PinheiroF. Fernandes TeixeiraA. Tanajura CostaD. Oliveira SouzaB. Lima SouzaC. Vasconcelos OliveiraM. Freire de MeloF. Vaccine development against Helicobacter pylori : from ideal antigens to the current landscape.Expert Rev. Vaccines202120898999910.1080/14760584.2021.194545034139141
    [Google Scholar]
/content/journals/cp/10.2174/0115701646302487240524103934
Loading
/content/journals/cp/10.2174/0115701646302487240524103934
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test