Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Monoclonal antibodies (mAbs) are magic bullets proved to be a wonder in the pharmaceutical as well as medical fields. These are produced by various methods like hybridoma technology, phage display technology, YAC technology, and transgenic animals and plants. Based on the percentage of animal origin, mAbs are divided into chimeric, murine, humanized, and fully human. This review covers the history and methods of mAb production, immunotoxicity (Immunosuppression, immunostimulant, autoimmunity, hypersensitivity) associated with mAbs, and targets of mAbs. It also compiles mAb production using AI, new modifications, and novel mAbs, with its various clinical trial information ensuring the use of mAbs in rare diseases and disorders.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646313765240610062419
2024-06-01
2025-07-15
Loading full text...

Full text loading...

References

  1. Evaluate. Evaluate forecasts global pharmaceutical market to be worth $1.6tn in 2028.Available From: https://www.evaluate.com/about/press-releases/evaluate-forecasts-global-pharmaceutical-market-be-worth-16tn-2028#:~:text=London%2C%20UK%20and%20Boston%2C%20MA,report%20published%20by%20Evaluate%20Ltd
  2. Fact MR Monoclonal antibodies market.2023Available From: https://www.factmr.com/report/monoclonal-antibodies-market#:~:text=Newly%20released%20data%20by%20Fact,CAGR%20of%2011.7%25%20through%202033
  3. KaufmannS.H.E. Emil von Behring: Translational medicine at the dawn of immunology.Nat. Rev. Immunol.201717634134310.1038/nri.2017.3728393925
    [Google Scholar]
  4. SantosM. QuintilioW. ManieriTM TsurutaLR MoroAM. Advances and challenges in therapeutic monoclonal antibodies drug development.Braz. J. Pharm. Sci.201854spe
    [Google Scholar]
  5. CooperM.D. The early history of B cells.Nat. Rev. Immunol.201515319119710.1038/nri380125656707
    [Google Scholar]
  6. KöhlerG. MilsteinC. Continuous cultures of fused cells secreting antibody of predefined specificity.Nature1975256551749549710.1038/256495a01172191
    [Google Scholar]
  7. NormanD.J. ShieldCF BarryJ. HenellK. FunnellMB LemonJ.A. U.S. clinical study of Orthoclone OKT3 in renal transplantation.Transplant. Proc.198719221273105136
    [Google Scholar]
  8. HwangW.Y.K. FooteJ. Immunogenicity of engineered antibodies.Methods200536131010.1016/j.ymeth.2005.01.00115848070
    [Google Scholar]
  9. HardingF.A. SticklerM.M. RazoJ. DuBridgeR. The immunogenicity of humanized and fully human antibodies.MAbs20102325626510.4161/mabs.2.3.1164120400861
    [Google Scholar]
  10. FosterR.H. WisemanL.R. Abciximab.Drugs199856462966510.2165/00003495‑199856040‑000149806109
    [Google Scholar]
  11. FeugierP. A review of rituximab, the first anti-CD20 monoclonal antibody used in the treatment of B non-Hodgkin’s lymphomas.Future Oncol.20151191327134210.2217/fon.15.5725952779
    [Google Scholar]
  12. JonesP.T. DearP.H. FooteJ. NeubergerM.S. WinterG. Replacing the complementarity-determining regions in a human antibody with those from a mouse.Nature1986321606952252510.1038/321522a03713831
    [Google Scholar]
  13. AlmagroJ.C. FranssonJ. Humanization of antibodies.Front. Biosci.2008131619163317981654
    [Google Scholar]
  14. DangV.T. MandakhalikarK.D. NgO.W. TanY.J. A simple methodology for conversion of mouse monoclonal antibody to human-mouse chimeric form.Clin. Dev. Immunol.201320131610.1155/2013/71696124078817
    [Google Scholar]
  15. ChangK.H. KimM.S. HongG.W. ShinY.N. KimS.H. Conversion of a murine monoclonal antibody A13 targeting epidermal growth factor receptor to a human monoclonal antibody by guided selection.Exp. Mol. Med.2012441525910.3858/emm.2012.44.1.00522064379
    [Google Scholar]
  16. WangZ. WangY. LiZ. LiJ. DongZ. Humanization of a mouse monoclonal antibody neutralizing TNF-α by guided selection.J. Immunol. Methods20002411-217118410.1016/S0022‑1759(00)00203‑910915859
    [Google Scholar]
  17. FrenzelA. SchirrmannT. HustM. Phage display-derived human antibodies in clinical development and therapy.MAbs2016871177119410.1080/19420862.2016.121214927416017
    [Google Scholar]
  18. MallbrisL. DaviesJ. GlasebrookA. TangY. GlaesnerW. NickoloffB.J. Molecular insights into fully human and humanized monoclonal antibodies: What are the differences and should dermatologists care?J. Clin. Aesthet. Dermatol.201697131527672407
    [Google Scholar]
  19. JakobovitsA. Production of fully human antibodies by transgenic mice.Curr. Opin. Biotechnol.19956556156610.1016/0958‑1669(95)80093‑X7579668
    [Google Scholar]
  20. LonbergN. Human monoclonal antibodies from transgenic mice.Handb. Exp. Pharmacol.2008181181699710.1007/978‑3‑540‑73259‑4_418071942
    [Google Scholar]
  21. TyagiP. ChuE. JainV.K. Recent results and ongoing trials with panitumumab (ABX-EGF), a fully human anti-epidermal growth factor receptor antibody, in metastatic colorectal cancer.Clin. Colorectal Cancer200551212310.1016/S1533‑0028(11)70161‑X15929802
    [Google Scholar]
  22. ReddyG.K. NadlerE. JainV.K. Denosumab (AMG 162), a fully human monoclonal antibody against RANK ligand activity.Support. Cancer Ther.200531141510.1016/S1543‑2912(13)60114‑918632429
    [Google Scholar]
  23. HirayamaA. HonarpourN. YoshidaM. YamashitaS. HuangF. WassermanS.M. TeramotoT. Effects of evolocumab (AMG 145), a monoclonal antibody to PCSK9, in hypercholesterolemic, statin-treated Japanese patients at high cardiovascular risk--primary results from the phase 2 YUKAWA study.Circ. J.20147851073108210.1253/circj.CJ‑14‑013024662398
    [Google Scholar]
  24. ChioatoA. NosedaE. StevensM. GaitatzisN. KleinschmidtA. PicaudH. Treatment with the interleukin-17A-blocking antibody secukinumab does not interfere with the efficacy of influenza and meningococcal vaccinations in healthy subjects: Results of an open-label, parallel-group, randomized single-center study.Clin. Vaccine Immunol.201219101597160210.1128/CVI.00386‑1222875601
    [Google Scholar]
  25. PappK.A. LeonardiC. MenterA. OrtonneJ.P. KruegerJ.G. KricorianG. ArasG. LiJ. RussellC.B. ThompsonE.H.Z. BaumgartnerS. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis.N. Engl. J. Med.2012366131181118910.1056/NEJMoa110901722455412
    [Google Scholar]
  26. AntoniaS. GoldbergS.B. BalmanoukianA. ChaftJ.E. SanbornR.E. GuptaA. NarwalR. SteeleK. GuY. KarakunnelJ.J. RizviN.A. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: A multicentre, phase 1b study.Lancet Oncol.201617329930810.1016/S1470‑2045(15)00544‑626858122
    [Google Scholar]
  27. TepperS. AshinaM. ReuterU. BrandesJ.L. DoležilD. SilbersteinS. WinnerP. LeonardiD. MikolD. LenzR. Safety and efficacy of erenumab for preventive treatment of chronic migraine: A randomised, double-blind, placebo-controlled phase 2 trial.Lancet Neurol.201716642543410.1016/S1474‑4422(17)30083‑228460892
    [Google Scholar]
  28. BartlettB.L. TyringS.K. Ustekinumab for chronic plaque psoriasis.Lancet200837196251639164010.1016/S0140‑6736(08)60702‑318486724
    [Google Scholar]
  29. ChurchL.D. McDermottM.F. Canakinumab, a fully-human mAb against IL-1beta for the potential treatment of inflammatory disorders.Curr. Opin. Mol. Ther.2009111818919169963
    [Google Scholar]
  30. ZhouH. JangH. FleischmannR.M. Bouman-ThioE. XuZ. MariniJ.C. PendleyC. JiaoQ. ShankarG. MarciniakS.J. CohenS.B. RahmanM.U. BakerD. MascelliM.A. DavisH.M. EverittD.E. Pharmacokinetics and safety of golimumab, a fully human anti-TNF-alpha monoclonal antibody, in subjects with rheumatoid arthritis.J. Clin. Pharmacol.200747338339610.1177/009127000629818817322150
    [Google Scholar]
  31. CoiffierB. LepretreS. PedersenL.M. GadebergO. FredriksenH. van OersM.H.J. WooldridgeJ. KloczkoJ. HolowieckiJ. HellmannA. WalewskiJ. FlensburgM. PetersenJ. RobakT. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: A phase 1-2 study.Blood200811131094110010.1182/blood‑2007‑09‑11178118003886
    [Google Scholar]
  32. MorseM.A. Technology evaluation: Ipilimumab, Medarex/Bristol-Myers Squibb.Curr. Opin. Mol. Ther.20057658859716370382
    [Google Scholar]
  33. WolchokJ.D. KlugerH. CallahanM.K. PostowM.A. RizviN.A. LesokhinA.M. SegalN.H. AriyanC.E. GordonR.A. ReedK. BurkeM.M. CaldwellA. KronenbergS.A. AgunwambaB.U. ZhangX. LowyI. InzunzaH.D. FeelyW. HorakC.E. HongQ. KormanA.J. WiggintonJ.M. GuptaA. SznolM. Nivolumab plus ipilimumab in advanced melanoma.N. Engl. J. Med.2013369212213310.1056/NEJMoa130236923724867
    [Google Scholar]
  34. de WeersM. TaiYT. van der VeerMS. BakkerJM. VinkT. JacobsDC. OomenLA. PeippM. ValeriusT. SlootstraJW. MutisT. BleekerWK. AndersonKC. LokhorstHM. van de WinkelJG. ParrenPW. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors.J Immunol201118631840184810.4049/jimmunol.1003032
    [Google Scholar]
  35. ChioreanE.G. SweeneyC. YoussoufianH. QinA. DontabhaktuniA. LoizosN. NippgenJ. AmatoR. A phase I study of olaratumab, an anti-platelet-derived growth factor receptor alpha (PDGFRα) monoclonal antibody, in patients with advanced solid tumors.Cancer Chemother. Pharmacol.201473359560410.1007/s00280‑014‑2389‑924452395
    [Google Scholar]
  36. RothE.M. DillerP. Alirocumab for hyperlipidemia: Physiology of PCSK9 inhibition, pharmacodynamics and Phase I and II clinical trial results of a PCSK9 monoclonal antibody.Future Cardiol.201410218319910.2217/fca.13.10724762246
    [Google Scholar]
  37. WenzelS. FordL. PearlmanD. SpectorS. SherL. SkobierandaF. WangL. KirkesseliS. RocklinR. BockB. HamiltonJ. MingJ.E. RadinA. StahlN. YancopoulosG.D. GrahamN. PirozziG. Dupilumab in persistent asthma with elevated eosinophil levels.N. Engl. J. Med.2013368262455246610.1056/NEJMoa130404823688323
    [Google Scholar]
  38. HuizingaT.W.J. FleischmannR.M. JassonM. RadinA.R. van AdelsbergJ. FioreS. HuangX. YancopoulosG.D. StahlN. GenoveseM.C. Sarilumab, a fully human monoclonal antibody against IL-6Rα in patients with rheumatoid arthritis and an inadequate response to methotrexate: Efficacy and safety results from the randomised SARIL-RA-MOBILITY Part A trial.Ann. Rheum. Dis.20147391626163410.1136/annrheumdis‑2013‑20440524297381
    [Google Scholar]
  39. MigdenM.R. RischinD. SchmultsC.D. GuminskiA. HauschildA. LewisK.D. ChungC.H. Hernandez-AyaL. LimA.M. ChangA.L.S. RabinowitsG. ThaiA.A. DunnL.A. HughesB.G.M. KhushalaniN.I. ModiB. SchadendorfD. GaoB. SeebachF. LiS. LiJ. MathiasM. BoothJ. MohanK. StankevichE. BabikerH.M. BranaI. Gil-MartinM. HomsiJ. JohnsonM.L. MorenoV. NiuJ. OwonikokoT.K. PapadopoulosK.P. YancopoulosG.D. LowyI. FuryM.G. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma.N. Engl. J. Med.2018379434135110.1056/NEJMoa180513129863979
    [Google Scholar]
  40. BaiG. SunC. GuoZ. WangY. ZengX. SuY. ZhaoQ. MaB. Accelerating antibody discovery and design with artificial intelligence: Recent advances and prospects.Semin. Cancer Biol.202395132410.1016/j.semcancer.2023.06.00537355214
    [Google Scholar]
  41. ManisJ.P. FeldwegA.M. Overview of therapeutic monoclonal antibodies. UpToDate Waltham.MAUpToDate Inc2020
    [Google Scholar]
  42. PR NewswireFirst-ever computationally designed antibody, created by biolojic design, entering human clinical trial in cancer patients.Available From: https://www.prnewswire.com/news-releases/first-ever-computationally-designed-antibody-created-by-biolojic-design-entering-human-clinical-trial-in-cancer-patients-301517389.html#:~:text=Computational%20design%20of%20antibodies%20such,design%20of%20epitope%2Dspecific%20antibodies
  43. FDACoronavirus (COVID-19) Update: FDA authorizes new monoclonal antibody for treatment of COVID-19 that retains activity against omicron variant.Available From: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-new-monoclonal-antibody-treatment-covid-19-retains#:~:text=The%20FDA%20is%20carefully%20monitoring,2%20omicron%20subvariant
  44. FDAUpdate: FDA authorizes new long-acting monoclonal antibodies for pre-exposure prevention of COVID-19 in certain individuals.Available From: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-new-long-acting-monoclonal-antibodies-pre-exposure
  45. LuR.M. HwangY.C. LiuI.J. LeeC.C. TsaiH.Z. LiH.J. WuH.C. Development of therapeutic antibodies for the treatment of diseases.J. Biomed. Sci.2020271110.1186/s12929‑019‑0592‑z31894001
    [Google Scholar]
  46. LimS.M. PetersS. Ortega GranadosA.L. PintoG.J. FuentesC.S. Lo RussoG. SchenkerM. AhnJ.S. ReckM. SzijgyartoZ. HuseinovicN. ZografosE. BussE. StjepanovicN. O’DonnellS. de MarinisF. Dostarlimab or pembrolizumab plus chemotherapy in previously untreated metastatic non-squamous non-small cell lung cancer: The randomized PERLA phase II trial.Nat. Commun.2023141730110.1038/s41467‑023‑42900‑437951954
    [Google Scholar]
  47. MaudeS.L. BarrettD. TeacheyD.T. GruppS.A. Managing cytokine release syndrome associated with novel T cell-engaging therapies.Cancer J.201420211912210.1097/PPO.000000000000003524667956
    [Google Scholar]
  48. ActorJK A functional overview of the immune system and immune components.Introductory Immunology2019116
    [Google Scholar]
  49. CruseJ.M. LewisR.E. WangH. GezienaM. MarshS.G. KennedyL.J. Cluster of differentiation (CD) antigens.Immunology guidebook.Elsevier200447124
    [Google Scholar]
  50. JanewayC. TraversP. WalportM. ShlomchikM.J. Immunobiology: the immune system in health and disease.Garland PublisherNew York20012154
    [Google Scholar]
  51. SinghS. KumarN.K. DwiwediP. CharanJ. KaurR. SidhuP. ChughV.K. Monoclonal antibodies: A review.Curr. Clin. Pharmacol.2018132859910.2174/157488471266617080912472828799485
    [Google Scholar]
  52. ShahrabiS. GhanavatM. Maleki BehzadM. PurrahmanD. SakiN. CD markers polymorphisms as prognostic biomarkers in hematological malignancies.Oncol. Rev.202014246610.4081/oncol.2020.46632782727
    [Google Scholar]
  53. VaillantJ QurieA. InterleukinTreasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  54. BaselgaJ. The EGFR as a target for anticancer therapy--focus on cetuximab.Eur. J. Cancer200137Suppl 4S16S22
    [Google Scholar]
  55. LiverToxClinical and Research Information on Drug-Induced Liver Injury.Bethesda, MDNIDDK2012
    [Google Scholar]
  56. NahtaR. HungM.C. EstevaF.J. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells.Cancer Res.20046472343234610.1158/0008‑5472.CAN‑03‑385615059883
    [Google Scholar]
  57. RamucirumabAvailable From: https://go.drugbank.com/drugs/DB05578
  58. CollinsJ.M. GulleyJ.L. Product review: Avelumab, an anti-PD-L1 antibody.Hum. Vaccin. Immunother.201915489190810.1080/21645515.2018.155167130481100
    [Google Scholar]
  59. GuoL. ZhangH. ChenB. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor.J. Cancer20178341041610.7150/jca.1714428261342
    [Google Scholar]
  60. DangT.O. OgunniyiA. BarbeeM.S. DrilonA. Pembrolizumab for the treatment of PD-L1 positive advanced or metastatic non-small cell lung cancer.Expert Rev. Anticancer Ther.2016161132010.1586/14737140.2016.112362626588948
    [Google Scholar]
  61. ParikhR.R. BreveF. MagnussonP. BehzadiP. PergolizziJ. The use of monoclonal antibody-based proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors in the treatment of hypercholesterolemia.Cureus2022146e2564110.7759/cureus.2564135795514
    [Google Scholar]
  62. GuagnozziD. CaprilliR. Natalizumab in the treatment of Crohn’s disease.Biologics20082227528419707360
    [Google Scholar]
  63. BesendorfL. MüllerT.M. GeppertC.I. SchneiderI. MühlL. AtreyaI. VitaliF. AtreyaR. NeurathM.F. ZundlerS. Vedolizumab blocks α4β7 integrin-mediated T cell adhesion to MAdCAM-1 in microscopic colitis.Therap. Adv. Gastroenterol.20221510.1177/1756284822109889935784193
    [Google Scholar]
  64. KawakamiT. BlankU. From IgE to omalizumab.J. Immunol.2016197114187419210.4049/jimmunol.1601476
    [Google Scholar]
  65. MohdA.B. MohdO.B. AlabdallatY.J. Al DwairyS.Y. GhannamR.A. HanaqtahB.M. AlbakriK.A. Safety and efficacy of dinutuximab in the treatment of neuroblastoma: A review.J. Res. Med. Sci.2023287138116487
    [Google Scholar]
  66. Familial Hypercholesterolemia.Available From: https://rarediseases.org/rare-diseases/familial-hypercholesterolemia/
  67. BegleyK.J. Monoclonal antibodies for the treatment of hypercholesterolemia.US Pharm.20164121720
    [Google Scholar]
  68. ShamsudeenI. McCrindleBW. HegeleRA. Treatment of homozygous familial hypercholesterolemia with ANGPTL3 inhibitor, evinacumab.JCEM Case Reports202313luad058
    [Google Scholar]
  69. WiegmanA. Greber-PlatzerS. AliS. ReijmanM.D. BrintonE.A. CharngM.J. SrinivasanS. Baker-SmithC. BaumS. BrothersJ.A. HartzJ. MoriartyP.M. MendellJ. BihorelS. BanerjeeP. GeorgeR.T. HirshbergB. PordyR. Evinacumab for pediatric patients with homozygous familial hypercholesterolemia.Circulation2024149534335310.1161/CIRCULATIONAHA.123.06552937860863
    [Google Scholar]
  70. Thrombotic thrombocytopenic purpura.Available From: https://rarediseases.org/rare-diseases/thrombotic-thrombocytopenic-purpura/
  71. ScullyM. CatalandS.R. PeyvandiF. CoppoP. KnöblP. Kremer HovingaJ.A. MetjianA. de la RubiaJ. PavenskiK. CallewaertF. BiswasD. De WinterH. ZeldinR.K. HERCULES Investigators HERCULES Investigators. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura.N. Engl. J. Med.2019380433534610.1056/NEJMoa180631130625070
    [Google Scholar]
  72. Hereditary Angioedema.Available From: https://rarediseases.org/rare-diseases/hereditary-angioedema/
  73. FDAFDA approves new treatment for rare hereditary disease.Available From: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-new-treatment-rare-hereditary-disease
  74. MaurerM. LumryWR. LiHH. Aygören-PürsünE. BussePJ. JacobsJ. NurseC. AhmedMA. WattM. YuM SPRING investigators. Lanadelumab in patients 2 to less than 12 years old with hereditary angioedema: Results from the phase 3 SPRING study.JACI2024121201211
    [Google Scholar]
  75. Hemophilia A.Available From: https://rarediseases.org/rare-diseases/hemophilia-a/
  76. PipeS.W. ShimaM. LehleM. ShapiroA. ChebonS. FukutakeK. KeyN.S. PortronA. SchmittC. Podolak-DawidziakM. Selak BienzN. HermansC. Campinha-BacoteA. KiialainenA. PeerlinckK. LevyG.G. Jiménez-YusteV. Efficacy, safety, and pharmacokinetics of emicizumab prophylaxis given every 4 weeks in people with haemophilia A (HAVEN 4): A multicentre, open-label, non-randomised phase 3 study.Lancet Haematol.201966e295e30510.1016/S2352‑3026(19)30054‑731003963
    [Google Scholar]
  77. Complement hyperactivation-angiopathic thrombosis-protein-losing enteropathy syndrome.Available From: https://www.orpha.net/consor/cgi-bin/Disease_Search.php?lng=EN&data_id=28482&Disease_Disease_Search_diseaseGroup=CHAPLE-syndrome&Disease_Disease_Search_diseaseType=Pat&Disease(s)/group%20of%20diseases=Complement-hyperactivation-angiopathic-thrombosis-protein-losing-enteropathy-syndrome&title=Complement%20hyperactivation-angiopathic%20thrombosis-protein-losing%20enteropathy%20syndrome&search=Disease_Search_Simple
  78. Veopoz™ (pozelimab-bbfg) receives fda approval as the first treatment for children and adults with chaple disease.Available From: https://investor.regeneron.com/news-releases/news-release-details/veopoztm-pozelimab-bbfg-receives-fda-approval-first-treatment
  79. PozelimabPozelimab (Internet)Available From: https://go.drugbank.com/drugs/DB15218
  80. HoyS.M. Pozelimab: First approval.Drugs202383161551155710.1007/s40265‑023‑01955‑937856038
    [Google Scholar]
  81. SongY. ZhouK. ZouD. ZhouJ. HuJ. YangH. ZhangH. JiJ. XuW. JinJ. LvF. FengR. GaoS. GuoH. ZhouL. HuangJ. NovotnyW. KimP. YuY. WuB. ZhuJ. Zanubrutinib in relapsed/refractory mantle cell lymphoma: Long-term efficacy and safety results from a phase 2 study.Blood2022139213148315810.1182/blood.202101416235303070
    [Google Scholar]
  82. Impact innovation predictability access, FDA’s center for drug evaluation and research january 2020.2020Available From: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/new-drug-therapy-approvals-2019#acceleratedapprovalprogram
  83. WHOGuidelines for the production and quality control of monoclonal antibodies and related products intended for medicinal use.Available From: https://www.who.int/publications/m/item/guideline-for-the-safe-production-and-quality-control-of-monoclonal-antibodies 2022
  84. DescotesJ. Immunotoxicity of monoclonal antibodies.MAbs20091210411110.4161/mabs.1.2.790920061816
    [Google Scholar]
  85. KeaneJ. GershonS. WiseR.P. Mirabile-LevensE. KasznicaJ. SchwietermanW.D. SiegelJ.N. BraunM.M. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent.N. Engl. J. Med.2001345151098110410.1056/NEJMoa01111011596589
    [Google Scholar]
  86. EllisC.R. AzmatC. Adalimumab.StatPearls PublishingTreasure Island (FL)2020
    [Google Scholar]
  87. LiJ. ZhangZ. WuX. ZhouJ. MengD. ZhuP. Risk of adverse events after anti-TNF treatment for inflammatory rheumatological disease. A meta-analysis.Front. Pharmacol.20211274639610.3389/fphar.2021.74639634790122
    [Google Scholar]
  88. HarroldL.R. LitmanH.J. SaundersK.C. DandreoK.J. GershensonB. GreenbergJ.D. LowR. StarkJ. SurukiR. JaganathanS. KremerJ.M. YassineM. One-year risk of serious infection in patients treated with certolizumab pegol as compared with other TNF inhibitors in a real-world setting: Data from a national U.S. rheumatoid arthritis registry.Arthritis Res. Ther.2018201210.1186/s13075‑017‑1496‑529329557
    [Google Scholar]
  89. SieperJ. LandewéR. RudwaleitM. van der HeijdeD. DougadosM. MeasePJ. BraunJ. DeodharA. KivitzA. WalshJ. HoepkenB. NurminenT. MaksymowychWP. Effect of certolizumab pegol over ninety-six weeks in patients with axial spondyloarthritis: results from a phase III randomized trial.A&R2015673668677
    [Google Scholar]
  90. ZiyadehN.J. GeldhofA. NoëlW. Otero-LobatoM. EsslingerS. ChakravartyS.D. WangY. SeegerJ.D. Post-approval safety surveillance study of golimumab in the treatment of rheumatic disease using a united states healthcare claims database.Clin. Drug Investig.202040111021104010.1007/s40261‑020‑00959‑732779120
    [Google Scholar]
  91. GuarneraC. BramantiP. MazzonE. Alemtuzumab: A review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis.Ther. Clin. Risk Manag.20171387187910.2147/TCRM.S13439828761351
    [Google Scholar]
  92. FraserG. SmithC.A. ImrieK. MeyerR. Hematology Disease Site Groupof Cancer Care Ontario’s Program in Evidence-Based Care Alemtuzumab in chronic lymphocytic leukemia.Curr. Oncol.20071439610910.3747/co.2007.11817593982
    [Google Scholar]
  93. DescotesJ. VialT. Flu-like syndrome and cytokines.Flu-Like Syndrome and Cytokines2007193204
    [Google Scholar]
  94. WingM. Monoclonal antibody first dose cytokine release syndromes-mechanisms and prediction.J. Immunotoxicol.200851111510.1080/1547691080189743318382853
    [Google Scholar]
  95. HanselT.T. KropshoferH. SingerT. MitchellJ.A. GeorgeA.J.T. The safety and side effects of monoclonal antibodies.Nat. Rev. Drug Discov.20109432533810.1038/nrd300320305665
    [Google Scholar]
  96. AlamoA. CondorelliR.A. La VigneraS. CalogeroA.E. Autoimmune thyroid disease following treatment with alemtuzumab for multiple sclerosis.Int. J. Immunopathol. Pharmacol.20193310.1177/205873841984369030968726
    [Google Scholar]
  97. OzkanC. AltinovaAE. CeritET. YalcinMM. TorunerFB. AkturkM. CakirN. Infliximab-induced destructive thyroiditis followed by hypothyroidism: A case report.Endocr. Abstr20142011e207e210
    [Google Scholar]
  98. CernigliaB. JudsonM.A. Infliximab-Induced Hypothyroidism: A Novel Case and Postulations concerning the Mechanism.Case Rep. Med.201320131210.1155/2013/21693924348571
    [Google Scholar]
  99. DelivanisD.A. GustafsonM.P. BornschleglS. MertenM.M. KottschadeL. WithersS. DietzA.B. RyderM. Pembrolizumab-induced thyroiditis: Comprehensive clinical review and insights into underlying involved mechanisms.J. Clin. Endocrinol. Metab.201710282770278010.1210/jc.2017‑0044828609832
    [Google Scholar]
  100. PeiróI. PalmeroR. IglesiasP. DíezJ.J. Simó-ServatA. MarínJ.A. JiménezL. Domingo-DomenechE. Mancho-ForaN. NadalE. VillabonaC. Thyroid dysfunction induced by nivolumab: Searching for disease patterns and outcomes.Endocrine201964360561310.1007/s12020‑019‑01871‑730805887
    [Google Scholar]
  101. AzmatU. LiebnerD. Joehlin-PriceA. AgrawalA. NabhanF. Treatment of Ipilimumab Induced Graves’ Disease in a Patient with Metastatic Melanoma.Case Rep. Endocrinol.201620161410.1155/2016/208752526881150
    [Google Scholar]
  102. KoscheC. OwenJ.L. ChoiJ.N. Widespread subacute cutaneous lupus erythematosus in a patient receiving checkpoint inhibitor immunotherapy with ipilimumab and nivolumab.Dermatol. Online J.2019251013030/qt4md713j810.5070/D3251004582131735010
    [Google Scholar]
  103. KangM.J. LeeY.H. LeeJ. Etanercept-induced systemic lupus erythematosus in a patient with rheumatoid arthritis.J. Korean Med. Sci.200621594694910.3346/jkms.2006.21.5.94617043436
    [Google Scholar]
  104. WilkersonE. HazeyM.A. BahramiS. CallenJ.P. Golimumab-exacerbated subacute cutaneous lupus erythematosus.Arch. Dermatol.2012148101186119010.1001/archdermatol.2012.185623069957
    [Google Scholar]
  105. BongartzT. SuttonA.J. SweetingM.J. BuchanI. MattesonE.L. MontoriV. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials.JAMA2006295192275228510.1001/jama.295.19.227516705109
    [Google Scholar]
  106. Bar-AdV. ZhangQ.E. HarariP.M. AxelrodR. RosenthalD.I. TrottiA. JonesC.U. GardenA.S. SongG. FooteR.L. RabenD. ShenoudaG. SpencerS.A. HarrisJ. LeQ.T. Correlation between the severity of cetuximab-induced skin rash and clinical outcome for head and neck cancer patients: The RTOG experience.Int. J. Radiat. Oncol. Biol. Phys.20169551346135410.1016/j.ijrobp.2016.03.01127212198
    [Google Scholar]
  107. GemmeteJ.J. MukherjiS.K. Panitumumab (Vectibix): Fig 1.AJNR Am. J. Neuroradiol.20113261002100310.3174/ajnr.A260121596817
    [Google Scholar]
  108. JoensuuH. Kellokumpu-LehtinenP.L. BonoP. AlankoT. KatajaV. AsolaR. UtriainenT. KokkoR. HemminkiA. TarkkanenM. Turpeenniemi-HujanenT. JyrkkiöS. FlanderM. HelleL. IngalsuoS. JohanssonK. JääskeläinenA.S. PajunenM. RauhalaM. Kaleva-KerolaJ. SalminenT. LeinonenM. ElomaaI. IsolaJ. FinHer Study Investigators Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer.N. Engl. J. Med.2006354880982010.1056/NEJMoa05302816495393
    [Google Scholar]
  109. IsabweG.A.C. Garcia NeuerM. de las Vecillas SanchezL. LynchD.M. MarquisK. CastellsM. Hypersensitivity reactions to therapeutic monoclonal antibodies: Phenotypes and endotypes.J. Allergy Clin. Immunol.20181421159170.e210.1016/j.jaci.2018.02.01829518427
    [Google Scholar]
  110. BaldoB.A. Immune- and non-immune-mediated adverse effects of monoclonal antibody therapy: A survey of 110 approved antibodies.Antibodies20221111710.3390/antib1101001735323191
    [Google Scholar]
  111. AbbasM. MoussaM. AkelH. Type I Hypersensitivity Reaction.Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  112. BajwaS.F. MohammedR.H. Type II Hypersensitivity Reaction.Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  113. UsmanN. AnnamarajuP. Type III Hypersensitivity Reaction.Treasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  114. RiveC.M. BourkeJ. PhillipsE.J. Testing for drug hypersensitivity syndromes.Clin. Biochem. Rev.2013341153823592889
    [Google Scholar]
  115. DaverN. McClainK. AllenC.E. ParikhS.A. OtrockZ. Rojas-HernandezC. BlechaczB. WangS. MinkovM. JordanM.B. La RoséeP. KantarjianH.M. A consensus review on malignancy-associated hemophagocytic lymphohistiocytosis in adults.Cancer2017123173229324010.1002/cncr.3082628621800
    [Google Scholar]
  116. MalissenN. LacotteJ. Du-ThanhA. Gaudy-MarquesteC. GuillotB. GrobJ.J. Macrophage activation syndrome: A new complication of checkpoint inhibitors.Eur. J. Cancer201777888910.1016/j.ejca.2017.02.01628365531
    [Google Scholar]
  117. CorteseI. ReichD.S. NathA. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease.Nat. Rev. Neurol.2021171375110.1038/s41582‑020‑00427‑y33219338
    [Google Scholar]
  118. FeskeS. Posterior reversible encephalopathy syndrome: A review.Semin. Neurol.201131220221510.1055/s‑0031‑127799021590625
    [Google Scholar]
  119. ElinoffJ.M. SalitR.B. AckermanH.C. The tumor lysis syndrome.N. Engl. J. Med.2011365657157410.1056/NEJMc110664121830982
    [Google Scholar]
  120. KaukonenK.M. BaileyM. PilcherD. CooperD.J. BellomoR. Systemic inflammatory response syndrome criteria in defining severe sepsis.N. Engl. J. Med.2015372171629163810.1056/NEJMoa141523625776936
    [Google Scholar]
  121. DrueyK.M. GreippP.R. Narrative review: The systemic capillary leak syndrome.Ann. Intern. Med.20101532909810.7326/0003‑4819‑153‑2‑201007200‑0000520643990
    [Google Scholar]
  122. AbdeldaimD.T. SchindowskiK. Fc-engineered therapeutic antibodies: Recent advances and future directions.Pharmaceutics20231510240210.3390/pharmaceutics1510240237896162
    [Google Scholar]
  123. LazarG.A. DangW. KarkiS. VafaO. PengJ.S. HyunL. ChanC. ChungH.S. EivaziA. YoderS.C. VielmetterJ. CarmichaelD.F. HayesR.J. DahiyatB.I. Engineered antibody Fc variants with enhanced effector function.Proc. Natl. Acad. Sci. USA2006103114005401010.1073/pnas.050812310316537476
    [Google Scholar]
  124. KassemS. DialloB.K. El-MurrN. CarriéN. TangA. FournierA. BonnevauxH. NicolazziC. CuisinierM. ArnouldI. SidhuS.S. CorreJ. Avet-LoiseauH. TeillaudJ.L. van de VeldeH. WiederschainD. ChironM. MartinetL. Virone-OddosA. SAR442085, a novel anti-CD38 antibody with enhanced antitumor activity against multiple myeloma.Blood202213981160117610.1182/blood.202101244835201323
    [Google Scholar]
  125. SassoJ.M. TenchovR. BirdR. IyerK.A. RalhanK. RodriguezY. ZhouQ.A. The evolving landscape of antibody–drug conjugates: In depth analysis of recent research progress.Bioconjug. Chem.202334111951200010.1021/acs.bioconjchem.3c0037437821099
    [Google Scholar]
  126. LiuK. LiM. LiY. LiY. ChenZ. TangY. YangM. DengG. LiuH. A review of the clinical efficacy of FDA-approved antibody‒drug conjugates in human cancers.Mol. Cancer20242316210.1186/s12943‑024‑01963‑738519953
    [Google Scholar]
  127. QuinterosD.A. BermúdezJ.M. RavettiS. CidA. AllemandiD.A. PalmaS.D. Therapeutic use of monoclonal antibodies: General aspects and challenges for drug delivery.Nanostructures for Drug Delivery20172017807833
    [Google Scholar]
/content/journals/cp/10.2174/0115701646313765240610062419
Loading
/content/journals/cp/10.2174/0115701646313765240610062419
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test