Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Objective

Shear flow is a mechanical signal regulating the function of Endothelial Cells (ECs). The present study aimed to investigate the effects of different matrices on cell binding, Nitric Oxide (NO) production, protein S-nitrosylation, expression of adhesion proteins, ROS generation, and cell viability in ECs under shear flow.

Methods

The ECs growing on glass slides separately coated with poly-L-lysine (p-Lys), collagen (Colla), fibronectin (Fibro), and a combined matrix (Colla+Fibro) were exposed to shear flow (25 dyne/cm2) for 0, 1, 4, 8 h. The number of ECs remaining attached on the glass slide was calculated. The expressions of endothelial Nitric Oxide Synthase (eNOS), peNOSS1177, VE-cadherin, FAK, and S-nitrosylated proteins were investigated by western blotting. The production of Nitric Oxide (NO) was measured by a specific reagent. Finally, the levels of ROS and cell viability were monitored.

Results

Under a constant shear flow for 1 h, the physiological responses of ECs were similar between these four matrices. When shear flow was extended to 4 and 8 h, higher cell binding, elevated NO production, increased S-nitrosylated proteins, enhanced expressions of FAK and VE-cadherin, mildly accumulated ROS, and cell death were observed in the matrix of Fibro and Colla+Fibro.

Conclusion

We have concluded fibronectin to be the optimal matrix facilitating NO-mediated S-nitrosylation that might be essential for superior binding efficiency, thereby preventing the stripping of ECs under shear flow. The results can be broadly applied to diverse biomechanical studies.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646300960240606093535
2024-06-01
2025-06-11
Loading full text...

Full text loading...

References

  1. DavisM.J. EarleyS. LiY.S. ChienS. Vascular mechanotransduction.Physiol. Rev.202310321247142110.1152/physrev.00053.202136603156
    [Google Scholar]
  2. TamargoI.A. BaekK.I. KimY. ParkC. JoH. Flow-induced reprogramming of endothelial cells in atherosclerosis.Nat. Rev. Cardiol.2023201173875310.1038/s41569‑023‑00883‑137225873
    [Google Scholar]
  3. FangY. WuD. BirukovK.G. Mechanosensing and mechanoregulation of endothelial cell functions.Compr. Physiol.20199287390410.1002/cphy.c18002030873580
    [Google Scholar]
  4. MoF.E. Shear-regulated extracellular microenvironments and endothelial cell surface integrin receptors intertwine in atherosclerosis.Front. Cell Dev. Biol.2021964078110.3389/fcell.2021.64078133889574
    [Google Scholar]
  5. KimJ.S. SayocJ. BaekK.W. ParkJ.Y. Laminar shear stress protects against premature endothelial senescence by SIRT1-dependent mechanisms.Exercise Sci.2021302213220[https://doi.org/10.15857/ksep.2021.30.2.213].10.15857/ksep.2021.30.2.213
    [Google Scholar]
  6. HsiehH.J. LiuC.A. HuangB. TsengA.H.H. WangD.L. Shear-induced endothelial mechanotransduction: The interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications.J. Biomed. Sci.2014211310.1186/1423‑0127‑21‑324410814
    [Google Scholar]
  7. FarahC. MichelL.Y.M. BalligandJ.L. Nitric oxide signalling in cardiovascular health and disease.Nat. Rev. Cardiol.201815529231610.1038/nrcardio.2017.22429388567
    [Google Scholar]
  8. SessaW.C. Molecular control of blood flow and angiogenesis: Role of nitric oxide.J. Thromb. Haemost.20097Suppl. 1353710.1111/j.1538‑7836.2009.03424.x19630764
    [Google Scholar]
  9. HuangB. ChenS.C. WangD.L. Shear flow increases S-nitrosylation of proteins in endothelial cells.Cardiovasc. Res.200983353654610.1093/cvr/cvp15419447776
    [Google Scholar]
  10. ChiuJ.J. ChienS. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives.Physiol. Rev.201191132738710.1152/physrev.00047.200921248169
    [Google Scholar]
  11. RiehlB.D. KimE. LeeJ.S. DuanB. YangR. DonahueH.J. LimJ.Y. The role of fluid shear and metastatic potential in breast cancer cell migration.J. Biomech. Eng.20201421010100110.1115/1.404707632346724
    [Google Scholar]
  12. FanR. EmeryT. ZhangY. XiaY. SunJ. WanJ. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells.Sci. Rep.2016612707310.1038/srep2707327255403
    [Google Scholar]
  13. ParkM.G. JangH. LeeS.H. LeeC.J. Flow shear stress enhances the proliferative potential of cultured radial glial cells possibly via an activation of mechanosensitive calcium channel.Exp. Neurobiol.2017262718110.5607/en.2017.26.2.7128442943
    [Google Scholar]
  14. ZhangY. HeY. BharadwajS. HammamN. CarnageyK. MyersR. AtalaA. Van DykeM. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype.Biomaterials20093023-244021402810.1016/j.biomaterials.2009.04.00519410290
    [Google Scholar]
  15. AiH. LvovY.M. MillsD.K. JenningsM. AlexanderJ.S. JonesS.A. Coating and selective deposition of nanofilm on silicone rubber for cell adhesion and growth.Cell Biochem. Biophys.200338210311410.1385/CBB:38:2:10312777710
    [Google Scholar]
  16. ColomboE. CalcaterraF. CappellettiM. MavilioD. Della BellaS. Comparison of fibronectin and collagen in supporting the isolation and expansion of endothelial progenitor cells from human adult peripheral blood.PLoS One201386e6673410.1371/journal.pone.006673423824996
    [Google Scholar]
  17. CeruttiC. RidleyA.J. Endothelial cell-cell adhesion and signaling.Exp. Cell Res.20173581313810.1016/j.yexcr.2017.06.00328602626
    [Google Scholar]
  18. CaoloV. PeacockH.M. KasaaiB. SwennenG. GordonE. Claesson-WelshL. PostM.J. VerhammeP. JonesE.A.V. Shear Stress and VE-Cadherin.Arterioscler. Thromb. Vasc. Biol.20183892174218310.1161/ATVBAHA.118.31082329930007
    [Google Scholar]
  19. LuQ. RoundsS. Focal adhesion kinase and endothelial cell apoptosis.Microvasc. Res.2012831566310.1016/j.mvr.2011.05.00321624380
    [Google Scholar]
  20. YoungS.R.L. Gerard-O’RileyR. KimJ.B. PavalkoF.M. Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts.J. Bone Miner. Res.200924341142410.1359/jbmr.08110219016591
    [Google Scholar]
  21. WongA.K. LLanosP. BorodaN. RosenbergS.R. RabbanyS.Y. A parallel-plate flow chamber for mechanical characterization of endothelial cells exposed to laminar shear stress.Cell. Mol. Bioeng.20169112713810.1007/s12195‑015‑0424‑528989541
    [Google Scholar]
  22. ShiueT.W. ChenY.H. WuC.M. SinghG. ChenH.Y. HungC.H. LiawW.F. WangY.M. Nitric oxide turn-on fluorescent probe based on deamination of aromatic primary monoamines.Inorg. Chem.20125195400540810.1021/ic300379u22486484
    [Google Scholar]
  23. HuangB. LiaoC.L. LinY.P. ChenS.C. WangD.L. S-nitrosoproteome in endothelial cells revealed by a modified biotin switch approach coupled with Western blot-based two-dimensional gel electrophoresis.J. Proteome Res.20098104835484310.1021/pr900566219673540
    [Google Scholar]
  24. VijiR.I. Sameer KumarV.B. KiranM.S. SudhakaranP.R. Modulation of endothelial nitric oxide synthase by fibronectin.Mol. Cell. Biochem.20093231-29110010.1007/s11010‑008‑9967‑219052844
    [Google Scholar]
  25. BoughtonB.J. Fibronectin assays and their clinical application: A review.Cell Biochem. Funct.198532799010.1002/cbf.2900302023915233
    [Google Scholar]
  26. SchwefelK. SpieglerS. KirchmaierB.C. DellwegP.K.E. MuchC.D. Pané-FarréJ. StromT.M. RiedelK. FelborU. RathM. Fibronectin rescues aberrant phenotype of endothelial cells lacking either CCM1, CCM2 or CCM3.FASEB J.20203479018903310.1096/fj.201902888R32515053
    [Google Scholar]
  27. IlićD. KovačičB. JohkuraK. SchlaepferD.D. TomaševićN. HanQ. KimJ.B. HowertonK. BaumbuschC. OgiwaraN. StreblowD.N. NelsonJ.A. DazinP. ShinoY. SasakiK. DamskyC.H. FAK promotes organization of fibronectin matrix and fibrillar adhesions.J. Cell Sci.2004117217718710.1242/jcs.0084514657279
    [Google Scholar]
  28. NanW. HeY. WangS. ZhangY. Molecular mechanism of VE-cadherin in regulating endothelial cell behaviour during angiogenesis.Front. Physiol.202314123410410.3389/fphys.2023.123410437601629
    [Google Scholar]
  29. WangD.S. ProffitD. TsaoP.S. Mechanotransduction of endothelial oxidative stress induced by cyclic strain.Endothelium20018428329110.3109/1062332010909080611824481
    [Google Scholar]
  30. BrownG.C. Nitric oxide and mitochondrial respiration.Biochim. Biophys. Acta Bioenerg.199914112-335136910.1016/S0005‑2728(99)00025‑010320668
    [Google Scholar]
  31. SnyderE.L. LubanN.L.C. ShermanL.A. Fibronectin: Applications to clinical medicine.CRC Crit. Rev. Clin. Lab. Sci.1986231153410.3109/104083686091657933512168
    [Google Scholar]
  32. ValerioL. SheriffJ. TranP.L. BrengleW. RedaelliA. FioreG.B. PappalardoF. BluesteinD. SlepianM.J. Routine clinical anti-platelet agents have limited efficacy in modulating hypershear-mediated platelet activation associated with mechanical circulatory support.Thromb. Res.201816316217110.1016/j.thromres.2017.12.00129428715
    [Google Scholar]
/content/journals/cp/10.2174/0115701646300960240606093535
Loading
/content/journals/cp/10.2174/0115701646300960240606093535
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test