Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

The COVID-19 virus has killed more than 6.3 million people worldwide. The misuse of antibiotics increased during epidemics, leading to the spread of MDRs. Although antibiotic use is increasing in both developed and developing countries, the utility level and abuse are higher in developing countries. This could have negative consequences for the vaccine, especially considering that many developing countries reported the emergence of many resistant microbes even before the pandemic. Infectious diseases, social and cultural pressures, and telemedicine facilities can all contribute to the overuse of antibiotics. The emergence of multidrug resistance is a major concern, especially in developing countries where health services are already inadequate and diagnostic capacity and facilities for disease prevention and control are inadequate. This might be the major cause of the extensive spread of such diseases. Improper waste management and disposal in hospitals and communities make it easy for clean water to leak from the area, causing many diseases and causing many antibiotics. The potential for microplastics to be turned into anti-bacterial products is also of particular concern for low- and middle-income countries. In the present review, we aim to examine the impact of multidrug resistance in ESKAPE infections coupled with healthcare-associated infections and determine their risk of secondary infection in COVID-19 patients in low- and middle-income countries during the COVID-19 epidemic from a multidisciplinary perspective, identify the challenge for developing countries and seek solutions to solve this problem.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975284845231205102151
2024-01-31
2025-01-06
Loading full text...

Full text loading...

References

  1. KhanS. SiddiqueR. BaiQ. Coronaviruses disease 2019 (COVID-19): Causative agent, mental health concerns, and potential management options.J. Infect. Public Health202013121840184410.1016/j.jiph.2020.07.010 32741731
    [Google Scholar]
  2. MogasaleV.V. SaldanhaP. PaiV. RekhaP.D. MogasaleV. A descriptive analysis of antimicrobial resistance patterns of WHO priority pathogens isolated in children from a tertiary care hospital in India.Sci. Rep.2021111511610.1038/s41598‑021‑84293‑8 33664307
    [Google Scholar]
  3. TenfordeM.W. SelfW.H. AdamsK. Association between mRNA vaccination and COVID-19 hospitalization and disease severity.JAMA2021326202043205410.1001/jama.2021.19499 34734975
    [Google Scholar]
  4. López-JácomeL.E. Fernández-RodríguezD. Franco-CendejasR. Increment antimicrobial resistance during the COVID-19 pandemic: Results from the Invifar Network.Microb. Drug Resist.2022283338345 34870473
    [Google Scholar]
  5. de KrakerM.E.A. StewardsonA.J. HarbarthS. Will 10 million people die a year due to antimicrobial resistance by 2050?PLoS Med.20161311e100218410.1371/journal.pmed.1002184 27898664
    [Google Scholar]
  6. CookeJ. Antimicrobial resistance: A major priority for global focus.Eur. J. Hosp. Pharm. Sci. Pract.2022292636410.1136/ejhpharm‑2022‑003241 35190449
    [Google Scholar]
  7. BurkiT.K. Superbugs: an arms race against bacteria.Lancet Respir. Med.20186966810.1016/S2213‑2600(18)30271‑6 29937248
    [Google Scholar]
  8. MirzaeiR. GoodarziP. AsadiM. Bacterial co‐infections with SARS‐CoV ‐2.IUBMB Life202072102097211110.1002/iub.2356 32770825
    [Google Scholar]
  9. LangfordB.J. SoM. RaybardhanS. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis.Clin. Microbiol. Infect.202026121622162910.1016/j.cmi.2020.07.016 32711058
    [Google Scholar]
  10. HolubarM. Antimicrobial resistance: A global public health emergency further exacerbated by international travel.J. Travel Med.2020271taz09510.1093/jtm/taz095 31776565
    [Google Scholar]
  11. RasheedF. SaeedM. AlikhanN.F. Emergence of resistance to fluoroquinolones and third-generation cephalosporins in Salmonella typhi in Lahore, Pakistan.Microorganisms202089133610.3390/microorganisms8091336 32883020
    [Google Scholar]
  12. GetahunH. SmithI. TrivediK. PaulinS. BalkhyH.H. Tackling antimicrobial resistance in the COVID-19 pandemic.Bull. World Health Organ.2020987442442A10.2471/BLT.20.268573 32742026
    [Google Scholar]
  13. RossatoL. NegrãoF.J. SimionattoS. Could the COVID-19 pandemic aggravate antimicrobial resistance?Am. J. Infect. Control20204891129113010.1016/j.ajic.2020.06.192 32603851
    [Google Scholar]
  14. BengoecheaJ.A. BamfordC.G.G. SARS ‐CoV‐2, bacterial co‐infections, and AMR: the deadly trio in COVID ‐19?EMBO Mol. Med.2020127e1256010.15252/emmm.202012560 32453917
    [Google Scholar]
  15. MurrayA.K. The novel coronavirus COVID-19 outbreak: Global implications for antimicrobial resistance.Front. Microbiol.202011102010.3389/fmicb.2020.01020 32574253
    [Google Scholar]
  16. IwuC.J. JordanP. JajaI.F. IwuC.D. WiysongeC.S. Treatment of COVID-19: Implications for antimicrobial resistance in Africa.Pan Afr. Med. J.202035S2119
    [Google Scholar]
  17. MurniI.K. DukeT. KinneyS. DaleyA.J. SoenartoY. Reducing hospital-acquired infections and improving the rational use of antibiotics in a developing country: An effectiveness study.Arch. Dis. Child.2015100545445910.1136/archdischild‑2014‑307297 25503715
    [Google Scholar]
  18. LarsenJ. RaisenC.L. BaX. Emergence of methicillin resistance predates the clinical use of antibiotics.Nature2022602789513514110.1038/s41586‑021‑04265‑w 34987223
    [Google Scholar]
  19. GhoshS. BornmanC. ZaferM.M. Antimicrobial Resistance Threats in the emerging COVID-19 pandemic: Where do we stand?J. Infect. Public Health202114555556010.1016/j.jiph.2021.02.011 33848884
    [Google Scholar]
  20. CantónR. GijónD. Ruiz-GarbajosaP. Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic.Curr. Opin. Crit. Care202026543344110.1097/MCC.0000000000000755 32739970
    [Google Scholar]
  21. MurrayC.J.L. IkutaK.S. ShararaF. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑0 35065702
    [Google Scholar]
  22. PlantaM.B. The role of poverty in antimicrobial resistance.J. Am. Board Fam. Med.200720653353910.3122/jabfm.2007.06.070019 17954860
    [Google Scholar]
  23. WirtzV.J. DreserA. GonzalesR. Trends in antibiotic utilization in eight Latin American countries, 1997-2007.Rev. Panam. Salud Publica201027321922510.1590/S1020‑49892010000300009 20414511
    [Google Scholar]
  24. DomínguezD.C. ChacónL.M. WallaceD.J. Anthropogenic activities and the problem of antibiotic resistance in Latin America: a water issue.Water20211319269310.3390/w13192693
    [Google Scholar]
  25. BrowneA.J. ChipetaM.G. Haines-WoodhouseG. Global antibiotic consumption and usage in humans, 2000–18: A spatial modelling study.Lancet Planet. Health2021512e893e90410.1016/S2542‑5196(21)00280‑1 34774223
    [Google Scholar]
  26. LancetT. The antimicrobial crisis: Enough advocacy, more action.Lancet20203951022024710.1016/S0140‑6736(20)30119‑7 31982048
    [Google Scholar]
  27. RawsonT.M. MooreL.S.P. ZhuN. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing.Clin. Infect. Dis.202071924592468 32358954
    [Google Scholar]
  28. AyukekbongJ.A. NtemgwaM. AtabeA.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies.Antimicrob. Resist. Infect. Control2017614710.1186/s13756‑017‑0208‑x 28515903
    [Google Scholar]
  29. RiceL.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE.J. Infect. Dis.200819781079108110.1086/533452 18419525
    [Google Scholar]
  30. SantajitS. IndrawattanaN. Mechanisms of antimicrobial resistance in ESKAPE pathogens.BioMed Res. Int.201620161810.1155/2016/2475067 27274985
    [Google Scholar]
  31. IguchiS. MizutaniT. HiramatsuK. KikuchiK. Rapid acquisition of linezolid resistance in methicillin-resistant Staphylococcus aureus: Role of hypermutation and homologous recombination.PLoS One2016115e015551210.1371/journal.pone.0155512 27182700
    [Google Scholar]
  32. NaylorN.R. AtunR. ZhuN. Estimating the burden of antimicrobial resistance: A systematic literature review.Antimicrob. Resist. Infect. Control2018715810.1186/s13756‑018‑0336‑y 29713465
    [Google Scholar]
  33. ZamanS.B. HussainM.A. NyeR. MehtaV. MamunK.T. HossainN. A review on antibiotic resistance: Alarm bells are ringing.Cureus201796e140310.7759/cureus.1403 28852600
    [Google Scholar]
  34. PartridgeS.R. KwongS.M. FirthN. JensenS.O. Mobile genetic elements associated with antimicrobial resistance.Clin. Microbiol. Rev.2018314e00088e1710.1128/CMR.00088‑17 30068738
    [Google Scholar]
  35. WoodfordN. EllingtonM.J. The emergence of antibiotic resistance by mutation.Clin. Microbiol. Infect.200713151810.1111/j.1469‑0691.2006.01492.x 17184282
    [Google Scholar]
  36. ZhenX. LundborgC.S. SunX. HuX. DongH. Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review.Antimicrob. Resist. Infect. Control20198113710.1186/s13756‑019‑0590‑7 31417673
    [Google Scholar]
  37. MarturanoJ.E. LoweryT.J. ESKAPE pathogens in bloodstream infections are associated with higher cost and mortality but can be predicted using diagnoses upon admission.Open Forum Infect. Dis.2019612ofz50310.1093/ofid/ofz503 31844639
    [Google Scholar]
  38. De AngelisG. FioriB. MenchinelliG. Incidence and antimicrobial resistance trends in bloodstream infections caused by ESKAPE and Escherichia coli at a large teaching hospital in Rome, a 9-year analysis (2007–2015).Eur. J. Clin. Microbiol. Infect. Dis.20183791627163610.1007/s10096‑018‑3292‑9 29948360
    [Google Scholar]
  39. FounouR.C. FounouL.L. EssackS.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis.PLoS One20171212e018962110.1371/journal.pone.0189621 29267306
    [Google Scholar]
  40. De SocioG.V. RubbioniP. BottaD. Measurement and prediction of antimicrobial resistance in bloodstream infections by ESKAPE pathogens and Escherichia coli.J. Glob. Antimicrob. Resist.20191915416010.1016/j.jgar.2019.05.013 31112804
    [Google Scholar]
  41. AyobamiO. BrinkwirthS. EckmannsT. MarkwartR. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: A systematic review and meta-analysis.Emerg. Microbes Infect.202211144345110.1080/22221751.2022.2030196 35034585
    [Google Scholar]
  42. KaramiZ. KnoopB.T. DofferhoffA.S.M. Few bacterial co-infections but frequent empiric antibiotic use in the early phase of hospitalized patients with COVID-19: Results from a multicentre retrospective cohort study in The Netherlands.Infect Dis202153210211010.1080/23744235.2020.1839672 33103530
    [Google Scholar]
  43. KleinE.Y. MonteforteB. GuptaA. The frequency of influenza and bacterial coinfection: A systematic review and meta‐analysis.Influenza Other Respir. Viruses201610539440310.1111/irv.12398 27232677
    [Google Scholar]
  44. ZhouF. YuT. DuR. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study.Lancet2020395102291054106210.1016/S0140‑6736(20)30566‑3 32171076
    [Google Scholar]
  45. FirthA. PrathapanP. Azithromycin: The first broad-spectrum therapeutic.Eur. J. Med. Chem.202020711273910.1016/j.ejmech.2020.112739 32871342
    [Google Scholar]
  46. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  47. BeovićB. DoušakM. Ferreira-CoimbraJ. Antibiotic use in patients with COVID-19: A ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey.J. Antimicrob. Chemother.202075113386339010.1093/jac/dkaa326 32766706
    [Google Scholar]
  48. CherryG. RockeJ. ChuM. Loss of smell and taste: A new marker of COVID-19? Tracking reduced sense of smell during the coronavirus pandemic using search trends.Expert Rev. Anti Infect. Ther.202018111165117010.1080/14787210.2020.1792289 32673122
    [Google Scholar]
  49. PinkI. RaupachD. FugeJ. C-reactive protein and procalcitonin for antimicrobial stewardship in COVID-19.Infection202149593594310.1007/s15010‑021‑01615‑8 34021897
    [Google Scholar]
  50. LandryA. DochertyP. OuelletteS. CartierL.J. Causes and outcomes of markedly elevated C-reactive protein levels.Can. Fam. Physician2017636e316e323 28615410
    [Google Scholar]
  51. KnightG.M. GloverR.E. McQuaidC.F. Antimicrobial resistance and COVID-19: Intersections and implications.eLife202110e6413910.7554/eLife.64139 33588991
    [Google Scholar]
  52. UkuhorH.O. The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics.J. Infect. Public Health2021141536010.1016/j.jiph.2020.10.018 33341485
    [Google Scholar]
  53. MaurerF.P. ChristnerM. HentschkeM. RohdeH. Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: Implications for patient care and antimicrobial stewardship programs.Infect. Dis. Rep.201791683910.4081/idr.2017.6839 28458798
    [Google Scholar]
  54. DrydenM. JohnsonA.P. Ashiru-OredopeD. SharlandM. Using antibiotics responsibly: Right drug, right time, right dose, right duration.J. Antimicrob. Chemother.201166112441244310.1093/jac/dkr370 21926080
    [Google Scholar]
  55. FinchR. Innovation—drugs and diagnostics.J. Antimicrob. Chemother.200760S1i79i8210.1093/jac/dkm165 17656390
    [Google Scholar]
  56. VogelsC.B.F. BritoA.F. WyllieA.L. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets.Nat. Microbiol.20205101299130510.1038/s41564‑020‑0761‑6 32651556
    [Google Scholar]
  57. PrasetyoputriA. Detection of bacterial co-infection in COVID-19 patients is a missing piece of the puzzle in the COVID-19 management in Indonesia.ACS Infect. Dis.20217220320510.1021/acsinfecdis.1c00006 33502840
    [Google Scholar]
  58. BogdanI. CituC. BratosinF. The impact of multiplex PCR in diagnosing and managing bacterial infections in COVID-19 patients self-medicated with antibiotics. Antibiotics.Antibiotics202211443710.3390/antibiotics11040437 35453189
    [Google Scholar]
  59. SandersJ.M. MonogueM.L. JodlowskiT.Z. CutrellJ.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review.JAMA2020323181824183610.1001/jama.2020.6019 32282022
    [Google Scholar]
  60. NgT.S.B. LeblancK. YeungD.F. TsangT.S.M. Medication use during COVID-19.Can. Fam. Physician202167317117910.46747/cfp.6703171 33727376
    [Google Scholar]
  61. ChauhanV. GalwankarS. RainaS. KrishnanV. Proctoring hydroxychloroquine consumption for health-care workers in india as per the revised national guidelines.J. Emerg. Trauma Shock202013217217310.4103/JETS.JETS_75_20 33013102
    [Google Scholar]
  62. ErkuD.A. BelachewS.A. AbrhaS. When fear and misinformation go viral: Pharmacists’ role in deterring medication misinformation during the ‘infodemic’ surrounding COVID-19.Res. Social Adm. Pharm.20211711954196310.1016/j.sapharm.2020.04.032 32387230
    [Google Scholar]
  63. KimM.S. AnM.H. KimW.J. HwangT.H. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis.PLoS Med.20201712e100350110.1371/journal.pmed.1003501 33378357
    [Google Scholar]
  64. Quincho-LopezA. Benites-IbarraC.A. Hilario-GomezM.M. Quijano-EscateR. Taype-RondanA. Self-medication practices to prevent or manage COVID-19: A systematic review.PLoS One20211611e025931710.1371/journal.pone.0259317 34727126
    [Google Scholar]
  65. BharadwajA. RastogiA. PandeyS. GuptaS. SohalJ.S. Multidrug-resistant bacteria: Their mechanism of action and prophylaxis.BioMed Res. Int.2022202211710.1155/2022/5419874 36105930
    [Google Scholar]
  66. SaxenaA. ChaudharyU. BharadwajA. A lung transcriptomic analysis for exploring host response in COVID-19.J. Pure Appl. Microbiol.202014S11077108110.22207/JPAM.14.SPL1.47
    [Google Scholar]
  67. BharadwajA. WahiN. SaxenaA. ChaudharyD. Proteome organization of COVID-19: Illustrating targets for vaccine development.J. Pure Appl. Microbiol.202014S183184010.22207/JPAM.14.SPL1.20
    [Google Scholar]
  68. Zavala-FloresE. Salcedo-MatienzoJ. Zavala-FloresE. Salcedo- Matienzo J. Medicacion prehospitalaria en pacientes hospitalizados por COVID-19 en un hospital publico de Lima-Peru.Acta Medica Peruana Colegio Medico del Peru202037393395
    [Google Scholar]
  69. ZhangA. HobmanE.V. De BarroP. YoungA. CarterD.J. ByrneM. Self-medication with antibiotics for protection against COVID-19: The role of psychological distress, knowledge of, and experiences with antibiotics.Antibiotics202110323210.3390/antibiotics10030232 33668953
    [Google Scholar]
  70. Hernando-AmadoS. CoqueT.M. BaqueroF. MartínezJ.L. Antibiotic resistance: Moving from individual health norms to social norms in one health and global health.Front. Microbiol.202011191410.3389/fmicb.2020.01914 32983000
    [Google Scholar]
  71. RayK.N. ShiZ. GidengilC.A. PoonS.J. Uscher-PinesL. MehrotraA. Antibiotic prescribing during pediatric direct- to-consumer telemedicine visits.Pediatrics20191435e2018249110.1542/peds.2018‑2491 30962253
    [Google Scholar]
  72. GwenziW. Leaving no stone unturned in light of the COVID-19 faecal-oral hypothesis? A water, sanitation and hygiene (WASH) perspective targeting low-income countries.Sci. Total Environ.202175314175110.1016/j.scitotenv.2020.141751 32911161
    [Google Scholar]
  73. UsmanM. FarooqM. HannaK. Environmental side effects of the injudicious use of antimicrobials in the era of COVID-19.Sci. Total Environ.202074514105310.1016/j.scitotenv.2020.141053 32702547
    [Google Scholar]
  74. GudapuriL. Cross-resistance between antiseptic agents and antimicrobial agents.J Epidemiol Infect Dis Cross Resist20171200009
    [Google Scholar]
  75. Pérez JorgeG. Rodrigues dos SGIC, Gontijo MTP. Les misérables: A parallel between antimicrobial resistance and COVID-19 in underdeveloped and developing countries.Curr. Infect. Dis. Rep.2022241117518610.1007/s11908‑022‑00788‑z 36211535
    [Google Scholar]
  76. ArshadA.R. IjazF. SiddiquiM.S. KhalidS. FatimaA. AftabR.K. COVID-19 pandemic and antimicrobial resistance in developing countries.Discoveries202192e12710.15190/d.2021.6 34754900
    [Google Scholar]
  77. JooS.H. ChoiH. Field grand challenge with emerging superbugs and the novel coronavirus (SARS-CoV-2) on plastics and in water.J. Environ. Chem. Eng.20219110472110.1016/j.jece.2020.104721 33173752
    [Google Scholar]
  78. BerendonkT.U. ManaiaC.M. MerlinC. Tackling antibiotic resistance: The environmental framework.Nat. Rev. Microbiol.201513531031710.1038/nrmicro3439 25817583
    [Google Scholar]
  79. Guerrero-LatorreL. BallesterosI. Villacrés-GrandaI. GrandaM.G. Freire-PaspuelB. Ríos-ToumaB. SARS-CoV-2 in river water: Implications in low sanitation countries.Sci. Total Environ.202074314083210.1016/j.scitotenv.2020.140832 32679506
    [Google Scholar]
  80. ZhangY. LuJ. WuJ. WangJ. LuoY. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system.Ecotoxicol. Environ. Saf.202018710985210.1016/j.ecoenv.2019.109852 31670243
    [Google Scholar]
  81. GaoW. HowdenB.P. StinearT.P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen.Curr. Opin. Microbiol.201841768210.1016/j.mib.2017.11.030 29227922
    [Google Scholar]
  82. Ahmad-MansourN. LoubetP. PougetC. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments.Toxins 2021131067710.3390/toxins13100677 34678970
    [Google Scholar]
  83. AnnavajhalaM.K. Gomez-SimmondsA. UhlemannA.C. Multidrugresistant Enterobacter cloacae complex emerging as a global, diversifying threat.Front. Microbiol.2019104410.3389/fmicb.2019.00044 30766518
    [Google Scholar]
  84. Adams-HaduchJ.M. PatersonD.L. SidjabatH.E. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania.Antimicrob. Agents Chemother.200852113837384310.1128/AAC.00570‑08 18725452
    [Google Scholar]
  85. AlonsoB. Fernández-BaratL. Di DomenicoE.G. Characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia.BMC Infect. Dis.202020190910.1186/s12879‑020‑05534‑1 33261585
    [Google Scholar]
  86. AzevedoP.A.A. FurlanJ.P.R. Oliveira-SilvaM. Nakamura-SilvaR. GomesC.N. CostaK.R.C. Detection of virulence and β-lactamase encoding genes in Enterobacter aerogenes and Enterobacter cloacae clinical isolates from Brazil.Braz. J. Microbiol.201849S1224228
    [Google Scholar]
/content/journals/covid/10.2174/0126667975284845231205102151
Loading
/content/journals/covid/10.2174/0126667975284845231205102151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test