Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Background

The spike glycoprotein of SARS-CoV-2, its S1-subunit, binds with host angiotensin-converting enzyme 2 (ACE-2) receptors, and its S2-subunit mediates the fusion of the virus to the host cell. The entry of SARS-CoV-2 inside the host cell can be prevented by inhibition of the receptor binding domain (RBD) of S1-subunit of the spike. , a native herb of Algeria, Spain and Morocco has antidepressant, analgesic, antimicrobial, anesthetic, antioxidant, anti-inflammatory, aphrodisiac, antidiabetic and immunostimulant effects. But, its antiviral effect has not been established yet.

Methodology

The present study deals with ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity), molecular docking and molecular dynamic simulation based investigation to evaluate the potential of constituents for effective spike RBD inhibition.

Results

ADMET analysis revealed that 10 out of 12 significant constituents belongs to toxicity class 4 to 6 proving least toxicity of the plant extract with high LD50 values. Molecular docking analysis of 10 considered compounds revealed that morphinan-6-one, 4,5.alpha.-epoxy-3-hydroxy-17-methyl, a derivative of morphine (well-known analgesic and anti-inflammatory compound) gave the maximum negative binding energy of -6.9 kcal/mol in best-docked conformation with spike RBD having 2 hydrogen bonds. Molecular dynamic simulation disclosed effective RMSD, RMSF, and Rg values over the simulation trajectory with significant hydrogen bonding proving stable interaction of the compound with that of the spike RBD.

Conclusion

Hence, all these outcomes revealed the outstanding potential of the extract to inhibit the spike RBD of SARS-CoV-2. Therefore, further investigation can develop natural and effective treatments against COVID-19 disease.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975280881240102111455
2024-01-25
2025-01-06
Loading full text...

Full text loading...

References

  1. NavabshanI. SakthivelB. PandiyanR. Computational lock and key and dynamic trajectory analysis of natural biophors against COVID-19 spike protein to identify effective lead molecules.Mol. Biotechnol.2021631089890810.1007/s12033‑021‑00358‑z 34159564
    [Google Scholar]
  2. VandelliA. MontiM. MilanettiE. Structural analysis of SARS-CoV-2 genome and predictions of the human interactome.Nucleic Acids Res.20204820112701128310.1093/nar/gkaa864 33068416
    [Google Scholar]
  3. HuangY. YangC. XuX. XüW. LiuS. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19.Acta Pharmacol. Sin.20204191141114910.1038/s41401‑020‑0485‑4 32747721
    [Google Scholar]
  4. ZhangG. CongY. LiuF.L. A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination.Nat. Nanotechnol.2022179993100310.1038/s41565‑022‑01177‑2 35995853
    [Google Scholar]
  5. PandeyA.K. VermaS. In silico structural inhibition of ACE-2 binding site of SARS-CoV-2 and SARS-CoV-2 omicron spike protein by lectin antiviral dyad system to treat COVID-19.Drug Dev. Ind. Pharm.2022481053955110.1080/03639045.2022.2137196 36250723
    [Google Scholar]
  6. SangP. TianS.H. MengZ.H. YangL.Q. Anti-HIV drug repurposing against SARS-CoV-2.RSC Advances20201027157751578310.1039/D0RA01899F 35493667
    [Google Scholar]
  7. AmeenF. MamidalaE. DavellaR. VallalaS. Rilpivirine inhibits SARS-CoV-2 protein targets: A potential multi-target drug.J. Infect. Public Health202114101454146010.1016/j.jiph.2021.07.012 34326009
    [Google Scholar]
  8. KalantariS. FardS.R. MalekiD. Comparing the effectiveness of atazanavir/ritonavir/dolutegravir/hydroxychloroquine and lopinavir/ritonavir/hydroxychloroquine treatment regimens in COVID‐19 patients.J. Med. Virol.202193126557656510.1002/jmv.27195 34255369
    [Google Scholar]
  9. HashemianS.M.R. SheidaA. TaghizadiehM. Paxlovid (Nirmatrelvir/Ritonavir): A new approach to COVID-19 therapy?Biomed. Pharmacother.202316211436710.1016/j.biopha.2023.114367
    [Google Scholar]
  10. FuL. ShaoS. FengY. Mechanism of microbial metabolite leupeptin in the treatment of COVID-19 by traditional Chinese medicine herbs.MBio2021125e022202110.1128/mBio.02220‑21 34579576
    [Google Scholar]
  11. GhildiyalR. PrakashV. ChaudharyV.K. GuptaV. GabraniR. Phytochemicals as antiviral agents: Recent updates.Plant-derived Bioactives202027929510.1007/978‑981‑15‑1761‑7_12
    [Google Scholar]
  12. OlukitibiT.A. AoZ. WarnerB. UnatR. KobasaD. YaoX. Significance of conserved regions in coronavirus spike protein for developing a novel vaccine against SARS-CoV-2 infection.Vaccines202311354510.3390/vaccines11030545 36992129
    [Google Scholar]
  13. JawhariF.Z. El MoussaouiA. BourhiaM. Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties.Molecules20202522546910.3390/molecules25225469 33238392
    [Google Scholar]
  14. AnnalakshmiR. UmaR. ChandranG.S. A treasure of medicinal herb - Anacyclus Pyrethrum a review.Indian J Drugs Dis201215667
    [Google Scholar]
  15. BoonenJ. BronselaerA. NielandtJ. VeryserL. De TréG. De SpiegeleerB. Alkamid database: Chemistry, occurrence and functionality of plant N-alkylamides.J. Ethnopharmacol.2012142356359010.1016/j.jep.2012.05.038 22659196
    [Google Scholar]
  16. ElufioyeT.O. HabtemariamS. AdejareA. Chemistry and pharmacology of alkylamides from natural origin.Rev. Bras. Farmacogn.202030562264010.1007/s43450‑020‑00095‑5 33071385
    [Google Scholar]
  17. RajendranR. NarashimmanB.S. TrivediV. ChaturvediR. Isolation and quantification of antimalarial N -alkylamides from flower-head derived in vitro callus cultures of Spilanthes paniculata.J. Biosci. Bioeng.201712419910710.1016/j.jbiosc.2017.02.001 28373031
    [Google Scholar]
  18. AdeleyeA.T. LouisH. AkakuruO.U. JosephI. EnudiO.C. MichaelD.P. A review on the conversion of levulinic acid and its esters to various useful chemicals.AIMS Energy2019716518510.3934/energy.2019.2.165
    [Google Scholar]
  19. AggarwalN. MishraP. Synthesis and evaluation of 4-substituted semicarbazones of levulinic acid for anticonvulsant activity.J. Zhejiang Univ. Sci.20056B761762110.1631/jzus.2005.B0617 15973761
    [Google Scholar]
  20. LicursiD. AntonettiC. MattonaiM. Multi-valorisation of giant reed (Arundo Donax L.) to give levulinic acid and valuable phenolic antioxidants.Ind. Crops Prod.201811261710.1016/j.indcrop.2017.11.007
    [Google Scholar]
  21. RackemannD.W. DohertyW.O.S. The conversion of lignocellulosics to levulinic acid.Biofuels Bioprod. Biorefin.20115219821410.1002/bbb.267
    [Google Scholar]
  22. KatariyaD. AshidM. SharmaB.K. JoshiA. Synthesis, characterization and biological activity of some indole substituted propanoic acid.J Chem Chem Sci20199720621310.29055/jccs/714
    [Google Scholar]
  23. MollazadehH. HosseinzadehH. Cinnamon effects on metabolic syndrome: A review based on its mechanisms.Iran. J. Basic Med. Sci.201619121258127010.22038/ijbms.2016.7906 28096957
    [Google Scholar]
  24. RaoP.V. GanS.H. Cinnamon: A multifaceted medicinal plant.In: Evidence-based Complementary and Alternative Medicine.201410.1155/2014/642942
    [Google Scholar]
  25. SahibA. Anti-diabetic and antioxidant effect of cinnamon in poorly controlled type-2 diabetic Iraqi patients: A randomized, placebo-controlled clinical trial.J. Intercult. Ethnopharmacol.20165210811310.5455/jice.20160217044511 27104030
    [Google Scholar]
  26. EeG.C.L. LimC.M. RahmaniM. ShaariK. BongC.F.J. Pellitorine, a potential anti-cancer lead compound against HL6 and MCT-7 cell lines and microbial transformation of piperine from Piper Nigrum.Molecules20101542398240410.3390/molecules15042398 20428051
    [Google Scholar]
  27. KuS.K. LeeI.C. KimJ.A. BaeJ.S. Antithrombotic activities of pellitorine in vitro and in vivo.Fitoterapia2013911810.1016/j.fitote.2013.08.004 23973654
    [Google Scholar]
  28. LeeW. KuS.K. MinB.W. Vascular barrier protective effects of pellitorine in LPS-induced inflammation in vitro and in vivo.Fitoterapia20149217718710.1016/j.fitote.2013.11.006 24262867
    [Google Scholar]
  29. HaddouTB MalfaciniD CaloG Exploring pharmacological activities and signaling of morphinans substituted in position 6 as potent agonists interacting with the μ opioid receptor.Mol Pain 20141017448069-10-4810.1186/1744‑8069‑10‑4825059282
    [Google Scholar]
  30. EadieM.J. Could valerian have been the first anticonvulsant?Epilepsia200445111338134310.1111/j.0013‑9580.2004.27904.x 15509234
    [Google Scholar]
  31. VerpoorteR. Pharmacognosy in the new millennium: Leadfinding and biotechnology.J. Pharm. Pharmacol.201052325326210.1211/0022357001773931 10757412
    [Google Scholar]
  32. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257-6310.1093/nar/gky318 29718510
    [Google Scholar]
  33. HudzikB. NowakJ. Zubelewicz-SzkodzinskaB. Consideration of immunomodulatory actions of morphine in COVID-19 - Short report.Eur. Rev. Med. Pharmacol. Sci.20202424130621306410.26355/eurrev_202012_24213 33378059
    [Google Scholar]
  34. PushkaranA.C. NathE.N.P. MelgeA.R. PuthiyedathR. MohanC.G. A phytochemical-based medication search for the SARS-CoV-2 infection by molecular docking models towards spike glycoproteins and main proteases.RSC Advances20211120120031201410.1039/D0RA10458B 35423778
    [Google Scholar]
  35. XingJ. LiR. LiN. Anti-inflammatory effect of procyanidin B1 on LPS-treated THP1 cells via interaction with the TLR4–MD-2 heterodimer and p38 MAPK and NF-κB signaling.Mol. Cell. Biochem.20154071-2899510.1007/s11010‑015‑2457‑4 26037075
    [Google Scholar]
  36. ZhuangM. JiangH. SuzukiY. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection.Antiviral Res.2009821738110.1016/j.antiviral.2009.02.001 19428598
    [Google Scholar]
  37. LiS. KodamaE.N. InoueY. Procyanidin B1 purified from Cinnamomi cortex suppresses hepatitis C virus replication.Antivir. Chem. Chemother.201020623924810.3851/IMP1597 20710064
    [Google Scholar]
  38. BasuA. SarkarA. MaulikU. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2.Sci. Rep.20201011769910.1038/s41598‑020‑74715‑4 33077836
    [Google Scholar]
  39. ZargarB.A. MasoodiM.H. AhmedB. GanieS.A. Phytoconstituents and therapeutic uses of Rheum emodi wall. ex Meissn.Food Chem.2011128358558910.1016/j.foodchem.2011.03.083
    [Google Scholar]
  40. LiQ. GaoJ. PangX. ChenA. WangY. Molecular mechanisms of action of emodin: As an anti-cardiovascular disease drug.Front. Pharmacol.20201155960710.3389/fphar.2020.559607 32973538
    [Google Scholar]
  41. ChenX. RenS. ZhuG. WangZ. WenX. Emodin suppresses cadmium-induced osteoporosis by inhibiting osteoclast formation.Environ. Toxicol. Pharmacol.20175416216810.1016/j.etap.2017.07.007 28738286
    [Google Scholar]
  42. LiS.W. YangT.C. LaiC.C. Antiviral activity of aloe-emodin against influenza A virus via galectin-3 up-regulation.Eur. J. Pharmacol.201473812513210.1016/j.ejphar.2014.05.028 24877694
    [Google Scholar]
  43. LiuZ. MaN. ZhongY. YangZ. Antiviral effect of emodin from Rheum palmatum against coxsakievirus B5 and human respiratory syncytial virus in vitro.J. Huazhong Univ. Sci. Technolog. Med. Sci.201535691692210.1007/s11596‑015‑1528‑9 26670446
    [Google Scholar]
  44. TalleiT.E. TumilaarS.G. NiodeN.J. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study.Scientifica2020202011810.1155/2020/6307457 33425427
    [Google Scholar]
  45. ZhangM. ZhaoR. WangD. Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents.Phytother. Res.202135271174210.1002/ptr.6858 32954562
    [Google Scholar]
  46. FickerC. SmithM.L. AkpaganaK. Bioassay‐guided isolation and identification of antifungal compounds from ginger.Phytother. Res.200317889790210.1002/ptr.1335 13680820
    [Google Scholar]
  47. TjendraputraE. TranV.H. Liu-BrennanD. RoufogalisB.D. DukeC.C. Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells.Bioorg. Chem.200129315616310.1006/bioo.2001.1208 11437391
    [Google Scholar]
  48. WeiQ.Y. MaJ.P. CaiY.J. YangL. LiuZ.L. Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger.J. Ethnopharmacol.2005102217718410.1016/j.jep.2005.05.043 16024193
    [Google Scholar]
  49. Bischoff-KontI. FürstR. Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes.Pharmaceuticals202114657110.3390/ph14060571 34203813
    [Google Scholar]
  50. KimH.R. EomY.B. Antifungal and anti‐biofilm effects of 6‐shogaol against Candida auris.J. Appl. Microbiol.202113041142115310.1111/jam.14870 32981148
    [Google Scholar]
  51. TegenD. DessieK. DamtieD. Candidate anti-COVID-19 medicinal plants from ethiopia: A review of plants traditionally used to treat viral diseases.Evid. Based Complement. Alternat. Med.2021202112010.1155/2021/6622410 34221083
    [Google Scholar]
  52. SinghD.K. JaiswalD.P. KumarD.P. SinghD.V.K. <b>Biological effects of myristica fragrans</b>.Annu Rev Biomed Sci2009110212910.5016/1806‑8774.2009v11p21
    [Google Scholar]
  53. LeeJ.Y. ParkW. Anti-inflammatory effect of myristicin on RAW 264.7 macrophages stimulated with polyinosinic-polycytidylic acid.Molecules20111687132714210.3390/molecules16087132 21991618
    [Google Scholar]
  54. BaoH. MugeQ. Anticancer effect of myristicin on hepatic carcinoma and related molecular mechanism.Pharm. Biol.20215911124113010.1080/13880209.2021.1961825 34410900
    [Google Scholar]
  55. SailahI. TumilaarS.G. LombogiaL.T. CelikI. TalleiT.E. Molecular docking and dynamics simulations study of selected phytoconstituents of “pangi” (Pangium edule reinw) leaf as anti-SARS-COV-2.Philipp. J. Sci.2021150592593710.56899/150.05.06
    [Google Scholar]
  56. BabatundeO. GC-MS analysis of leaf, stem-bark and root extracts of Alstonia boonei.Afr. J. Pharm. Pharmacol.2017114657758110.5897/AJPP2017.4864
    [Google Scholar]
  57. ImamA. EzemaM. MuhammadI. In vivo antimalarial activity of solvents extracts of Alstonia boonei stem bark and partial characterization of most active extract(s).Annu. Res. Rev. Biol.201717511110.9734/ARRB/2017/36235
    [Google Scholar]
  58. SefrenG.T. FatimawaliF. NurdjannahJ.N. The potential of leaf extract of Pangium edule reinw as HIV-1 protease inhibitor: A computational biology approach.J. Appl. Pharm. Sci.20201110111010.7324/JAPS.2021.110112
    [Google Scholar]
  59. El-Saber BatihaG. AlkazmiL.M. WasefL.G. BeshbishyA.M. NadwaE.H. RashwanE.K. Syzygium aromaticum l. (myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities.Biomolecules202010220210.3390/biom10020202 32019140
    [Google Scholar]
  60. MarcheseA. BarbieriR. CoppoE. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.Crit. Rev. Microbiol.201743666868910.1080/1040841X.2017.1295225 28346030
    [Google Scholar]
  61. PramodK AnsariSH AliJ Eugenol: A natural compound with versatile pharmacological actions. Nat Prod Commun20105121934578X100050110.1177/1934578X1000501236 21299140
    [Google Scholar]
  62. UlanowskaM. OlasB. Biological properties and prospects for the application of eugenol—a review.Int. J. Mol. Sci.2021227367110.3390/ijms22073671 33916044
    [Google Scholar]
  63. PichikaM.R. MakK-K. KamalM.B. A comprehensive review on eugenol’s antimicrobial properties and industry applications: A transformation from ethnomedicine to industry.Pharmacogn. Rev.201913251910.4103/phrev.phrev_46_18
    [Google Scholar]
  64. van de SandL. BormannM. AltM. Glycyrrhizin effectively inhibits sars-cov-2 replication by inhibiting the viral main protease.Viruses202113460910.3390/v13040609 33918301
    [Google Scholar]
  65. BaillyC. VergotenG. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?Pharmacol. Ther.202021410761810.1016/j.pharmthera.2020.107618 32592716
    [Google Scholar]
  66. CinatlJ. MorgensternB. BauerG. ChandraP. RabenauH. DoerrH.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus.Lancet200336193742045204610.1016/S0140‑6736(03)13615‑X 12814717
    [Google Scholar]
  67. MathewS.M. BenslimaneF. AlthaniA.A. YassineH.M. Identification of potential natural inhibitors of the receptor-binding domain of the SARS-CoV-2 spike protein using a computational docking approach.Qatar Med. J.2021202111210.5339/qmj.2021.12 34604010
    [Google Scholar]
  68. BartosikovaL. NecasJ. Epigallocatechin gallate: A review.Vet Med2018631044346710.17221/31/2018‑VETMED
    [Google Scholar]
  69. AllamL. GhrifiF. MohammedH. Targeting the grp78-dependant sars-cov-2 cell entry by peptides and small molecules.Bioinform. Biol. Insights20201410.1177/1177932220965505 33149560
    [Google Scholar]
  70. VenusovaE. KolesarovaA. HorkyP. SlamaP. Physiological and immune functions of punicalagin.Nutrients2021137215010.3390/nu13072150 34201484
    [Google Scholar]
  71. SuručićR. TubićB. StojiljkovićM.P. Computational study of pomegranate peel extract polyphenols as potential inhibitors of SARS-CoV-2 virus internalization.Mol. Cell. Biochem.202147621179119310.1007/s11010‑020‑03981‑7 33200379
    [Google Scholar]
  72. CaoY. ChenJ. RenG. ZhangY. TanX. YangL. Punicalagin prevents inflammation in lps-induced raw264.7 macrophages by inhibiting foxo3a/autophagy signaling pathway.Nutrients20191111279410.3390/nu11112794 31731808
    [Google Scholar]
  73. BenSaadL.A. KimK.H. QuahC.C. KimW.R. ShahimiM. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum.BMC Complement. Altern. Med.20171714710.1186/s12906‑017‑1555‑0 28088220
    [Google Scholar]
  74. MaitiS. BanerjeeA. Epigallocatechin gallate and theaflavin gallate interaction in SARS‐CoV ‐2 spike‐protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study.Drug Dev. Res.2021821869610.1002/ddr.21730 32770567
    [Google Scholar]
  75. SameriS. MohammadiC. MehrabaniM. NajafiR. Targeting the hallmarks of cancer: The effects of silibinin on proliferation, cell death, angiogenesis, and migration in colorectal cancer.BMC Complementary Medicine and Therapies202121116010.1186/s12906‑021‑03330‑1 34059044
    [Google Scholar]
  76. SpecialeA. MuscaràC. MoloniaM.S. CiminoF. SaijaA. GiofrèS.V. Silibinin as potential tool against SARS‐Cov ‐2: In silico spike receptor‐binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects.Phytother. Res.20213584616462510.1002/ptr.7107 33822421
    [Google Scholar]
  77. SinghS. SemwalB.C. SharmaH. SharmaD. Impact of phytomolecules with nanotechnology on the treatment of inflammation.Curr. Bioact. Compd.20231910e07082321947110.2174/1573407219666230807150030
    [Google Scholar]
/content/journals/covid/10.2174/0126667975280881240102111455
Loading
/content/journals/covid/10.2174/0126667975280881240102111455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test