Skip to content
2000
Volume 6, Issue 2
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been shown to trigger autoimmunity, and the phenomenon leads to several chronic human diseases such as Type-1 diabetes, Crohn’s disease, vasculitis, Guillian-Barrė syndrome, . The mechanism underlying SARS-CoV-2-induced autoimmune response is unknown and is an active area of interest for the researchers.

Objective

The primary objective of this study is to identify the autoantigen markers for the classification of SARS-CoV-2 (COVID-19 positive and negative samples) that trigger an immune response leading to autoimmunity using a machine learning approach that provides information to obtain a more accurate diagnosis for COVID-induced diseases.

Materials and Methods

Our study reports the transcriptomic profile of the long COVID patient's whole blood samples that are collected from 0 to 35th day of acute infection as described in the GSE215865 dataset (1391 Samples after preprocessing: 1233-COVID positive and 158-COVID negative). The binary classification algorithm from the sci-kit learn python library, namely logistic regression and random forest with 10-fold cross-validation, was applied to the processed data, followed by a selection of the 20 best gene features with recursive feature elimination from a set of 10,719 gene features to obtain the classification accuracy of 87%.

Results

The fidgetin, microtubule severing factor (FIGN), SH3 and cysteine-rich domain (STAC), Cadherin-6 (CDH6), docking protein 6 (DOK6), nuclear RNA export factor 3 (NXF3) and maternally expressed 3 (MEG3) are the autoantigens markers identified for classification of COVID-positive and negative samples.

Conclusion

The identified autoantigen markers from transcriptomic datasets using machine learning techniques provide a deeper understanding of COVID-induced diseases and may play an important role as potential diagnostic and drug targets for COVID-19.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975296293240320041641
2024-03-25
2025-04-24
Loading full text...

Full text loading...

References

  1. AlsafiR.T. Lessons from SARS-CoV, MERS-CoV, and SARS-CoV-2 Infections: What we know so far.Can. J. Infect. Dis. Med. Microbiol.2022202211310.1155/2022/1156273 35992513
    [Google Scholar]
  2. AbdolrezaE. FereshtehE. ArminJ.M. AmirS.E.G. 5 (Eris) and BA. 2.86 (Pirola) two new subvariants of SARS-CoV-2: A new face of old COVID-19.Infection2024317
    [Google Scholar]
  3. BdeirN. LüddeckeT. MaaßH. SchmelzS. JacobsenH. MetzdorfK. Reverse mutational scanning of spike BA. 2.86 identifies the epitopes contributing to immune escape from polyclonal sera.medRxiv202410.1101/2024.01.03.23300575
    [Google Scholar]
  4. TrougakosI.P. StamatelopoulosK. TerposE. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications.J. Biomed. Sci.2021281910.1186/s12929‑020‑00703‑5 33435929
    [Google Scholar]
  5. ZhangQ. XiangR. HuoS. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy.Signal Transduct. Target. Ther.20216123310.1038/s41392‑021‑00653‑w 34117216
    [Google Scholar]
  6. PerrottaF. MateraM.G. CazzolaM. BiancoA. Severe respiratory SARS-CoV2 infection: Does ACE2 receptor matter?Respir. Med.202016810599610.1016/j.rmed.2020.105996 32364961
    [Google Scholar]
  7. Şimşek-YavuzS. COVID-19: An update on epidemiology, prevention and treatment.Infect Dis Clin Microbiol20235165187
    [Google Scholar]
  8. VojdaniA. KharrazianD. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases.Clin. Immunol.202021710848010.1016/j.clim.2020.108480 32461193
    [Google Scholar]
  9. DotanA. MullerS. KanducD. DavidP. HalpertG. ShoenfeldY. The SARS-CoV-2 as an instrumental trigger of autoimmunity.Autoimmun. Rev.202120410279210.1016/j.autrev.2021.102792 33610751
    [Google Scholar]
  10. KocivnikN. VelnarT. A review pertaining to SARS-CoV-2 and autoimmune diseases: What is the connection?Life (Basel)20221211191810.3390/life12111918 36431053
    [Google Scholar]
  11. HalpertG. ShoenfeldY. SARS-CoV-2, the autoimmune virus.Autoimmun. Rev.2020191210269510.1016/j.autrev.2020.102695 33130000
    [Google Scholar]
  12. MobasheriL. NasirpourM.H. MasoumiE. AzarnaminyA.F. JafariM. EsmaeiliS.A. SARS-CoV-2 triggering autoimmune diseases.Cytokine202215415587310.1016/j.cyto.2022.155873 35461172
    [Google Scholar]
  13. DarmarajanT. PaudelK.R. CandasamyM. Autoantibodies and autoimmune disorders in SARS-CoV-2 infection: Pathogenicity and immune regulation.Environ. Sci. Pollut. Res. Int.20222936540725408710.1007/s11356‑022‑20984‑7 35657545
    [Google Scholar]
  14. DesaiA.D. LavelleM. BoursiquotB.C. WanE.Y. Long-term complications of COVID-19.Am. J. Physiol. Cell Physiol.20223221C1C1110.1152/ajpcell.00375.2021 34817268
    [Google Scholar]
  15. DasguptaA. KalhanA. KalraS. Long term complications and rehabilitation of COVID-19 patients.J. Pak. Med. Assoc.202070110.5455/JPMA.32 32515393
    [Google Scholar]
  16. SrivastavaS. GargI. Post COVID-19 infection: Long-term effects on liver and kidneys.World J. Metaanal.20219322023310.13105/wjma.v9.i3.220
    [Google Scholar]
  17. JainU. Effect of COVID-19 on the organs.Cureus2020128e9540 32905500
    [Google Scholar]
  18. NuzzoD. CambulaG. BacileI. Long-term brain disorders in post COVID-19 neurological syndrome (PCNS) patient.Brain Sci.202111445410.3390/brainsci11040454 33918426
    [Google Scholar]
  19. von HerrathM.G. FujinamiR.S. WhittonJ.L. Microorganisms and autoimmunity: Making the barren field fertile?Nat. Rev. Microbiol.20031215115710.1038/nrmicro754 15035044
    [Google Scholar]
  20. SmattiM.K. CyprianF.S. NasrallahG.K. Al ThaniA.A. AlmishalR.O. YassineH.M. Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms.Viruses201911876210.3390/v11080762 31430946
    [Google Scholar]
  21. KimB. Deshpande KaisthaS. RouseB.T. Viruses and autoimmunity.Autoimmunity200538855956510.1080/08916930500356583 16390809
    [Google Scholar]
  22. FujinamiR.S. OldstoneM.B.A. Molecular mimicry as a mechanism for virus-induced autoimmunity.Immunol. Res.19898131510.1007/BF02918552 2647867
    [Google Scholar]
  23. SundaresanB. ShirafkanF. RippergerK. RattayK. The role of viral infections in the onset of autoimmune diseases.Viruses202315378210.3390/v15030782 36992490
    [Google Scholar]
  24. VogelA. MannsM.P. StrassburgC.P. Autoimmunity and viruses.Clin. Liver Dis.20026373975310.1016/S1089‑3261(02)00024‑7 12362578
    [Google Scholar]
  25. HorwitzM.S. SarvetnickN. Viruses, host responses, and autoimmunity.Immunol. Rev.1999169124125310.1111/j.1600‑065X.1999.tb01319.x 10450521
    [Google Scholar]
  26. ParoliM. SchiaffellaE. Di RosaF. BarnabaV. Persisting viruses and autoimmunity.J. Neuroimmunol.2000107220120410.1016/S0165‑5728(00)00228‑9 10854657
    [Google Scholar]
  27. FavalliE.G. IngegnoliF. De LuciaO. CincinelliG. CimazR. CaporaliR. COVID-19 infection and rheumatoid arthritis: Faraway, so close!Autoimmun. Rev.202019510252310.1016/j.autrev.2020.102523 32205186
    [Google Scholar]
  28. BarzegarM. MirmosayyebO. GajarzadehM. Afshari-SafaviA. NehzatN. VahebS. COVID-19 among patients with multiple sclerosis: A systematic review.Neurol. Neuroimmunol. Neuroinflamm.202184e1001
    [Google Scholar]
  29. GiuseppeA.R. LucaM. EmanuelD.T. Systemic lupus erythematosus and COVID-19: What we know so far.Ann. Rheum. Dis.2020 32859611
    [Google Scholar]
  30. TursiA. NennaR. COVID-19 as a trigger for de novo Crohn’s disease.Inflamm. Bowel Dis.2022286e76e7710.1093/ibd/izab298 35657373
    [Google Scholar]
  31. DeninaM. TradaM. TintiD. Increase in newly diagnosed type 1 diabetes and serological evidence of recent SARS-CoV-2 infection: Is there a connection?Front. Med. (Lausanne)2022992709910.3389/fmed.2022.927099 35966867
    [Google Scholar]
  32. RosenbaumJ.T. HamiltonH. ChoiD. WeismanM.H. ReveilleJ.D. WinthropK.L. Biologics, spondylitis and COVID-19.Ann. Rheum. Dis.202079121663166510.1136/annrheumdis‑2020‑217941 32522741
    [Google Scholar]
  33. HuangP.J. ChenY.W. YenT.H. LiuY.T. LinS.P. ChenH.H. Investigation of changes in ankylosing spondylitis disease activity through 2021 COVID-19 wave in Taiwan by using electronic medical record management system.Sci. Rep.202313134910.1038/s41598‑023‑27657‑6 36611127
    [Google Scholar]
  34. Diaz-MenindezM. SullivanM.M. WangB. Dermatomyositis in association with SARS-CoV-2 infection or COVID-19 vaccine.Arthritis Care Res. (Hoboken)202376198104
    [Google Scholar]
  35. AlmashatS.A. Vasculitis in COVID-19: A literature review.J Vasc20206115
    [Google Scholar]
  36. CavagnaL. FerroF. ZanframundoG. La RoccaG. PuxedduI. Idiopathic inflammatory myopathies and COVID-19: An intriguing liaison?Clin. Exp. Rheumatol.202341221722010.55563/clinexprheumatol/njaff0 36826807
    [Google Scholar]
  37. Amezcua-GuerraL.M. Rojas-VelascoG. Brianza-PadillaM. Presence of antiphospholipid antibodies in COVID-19: A case series study.Ann. Rheum. Dis.2021805e7310.1136/annrheumdis‑2020‑218100 32753426
    [Google Scholar]
  38. TanaC. CinettoF. MantiniC. Sarcoidosis and COVID-19: At the cross-road between immunopathology and clinical manifestation.Biomedicines20221010252510.3390/biomedicines10102525 36289785
    [Google Scholar]
  39. BamidisA.D. KoehlerP. di CristanzianoV. First manifestation of adult-onset Still’s disease after COVID-19.Lancet Rheumatol.202135e319e32110.1016/S2665‑9913(21)00072‑2 33817663
    [Google Scholar]
  40. FineschiS. Case Report: Systemic sclerosis after COVID-19 infection.Front. Immunol.20211268669910.3389/fimmu.2021.686699 34262566
    [Google Scholar]
  41. VlachoyiannopoulosP.G. MagiraE. AlexopoulosH. Autoantibodies related to systemic autoimmune rheumatic diseases in severely ill patients with COVID-19.Ann. Rheum. Dis.202079121661166310.1136/annrheumdis‑2020‑218009 32581086
    [Google Scholar]
  42. LevrautM. OttaviM. LechtmanS. MondainV. JeandelP.Y. Immune thrombocytopenic purpura after COVID-19 infection.Int. J. Lab. Hematol.2021431e28e3010.1111/ijlh.13346 32951347
    [Google Scholar]
  43. DhamneM. BennyR. SinghR. Guillian-Barre’ syndrome in patients with SARS-CoV-2: A multicentric study from Maharashtra, India.Ann. Indian Acad. Neurol.202124333934610.4103/aian.AIAN_1303_20 34446994
    [Google Scholar]
  44. SantacroceG. LentiM.V. AronicoN. MiceliE. LovatiE. LucottiP.C. Impact of COVID-19 in immunosuppressive drug-naïve autoimmune disorders: Autoimmune gastritis, celiac disease, type 1 diabetes, and autoimmune thyroid disease.Pediatr. Allergy Immunol.202233Suppl. 27105107
    [Google Scholar]
  45. TutalE. OzarasR. LeblebiciogluH. Systematic review of COVID-19 and autoimmune thyroiditis.Travel Med. Infect. Dis.20224710231410.1016/j.tmaid.2022.102314 35307540
    [Google Scholar]
  46. GokdenY. HotS. AdasM. Ogutmen KocD. AtakS. HotA.B. Celiac disease and COVID-19 pandemic: Should we worry?Acta Gastroenterol. Belg.2020834517525 33321006
    [Google Scholar]
  47. ChangR. Yen-Ting ChenT. WangS.I. HungY.M. ChenH.Y. WeiC.C.J. Risk of autoimmune diseases in patients with COVID-19: A retrospective cohort study.EClinicalMedicine20235610178310.1016/j.eclinm.2022.101783 36643619
    [Google Scholar]
  48. EspinosaG. AraujoO. AmaroS. COVID-19 and Behçet’s disease: Clinical case series.Ann. Rheum. Dis.2021803e4110.1136/annrheumdis‑2020‑217778 32719040
    [Google Scholar]
  49. YokoteA. FujiokaS. TakahashiN. MishimaT. TsuboiY. Polymyalgia rheumatica following COVID-19 vaccination.Intern. Med.202261111775177710.2169/internalmedicine.8934‑21 35342133
    [Google Scholar]
  50. ElmasÖ.F. DemirbaşA. KutluÖ. Psoriasis and COVID-19: A narrative review with treatment considerations.Dermatol. Ther.2020336e13858 32686245
    [Google Scholar]
  51. MonteleoneG. ArdizzoneS. Are patients with inflammatory bowel disease at increased risk for COVID-19 infection?J. Crohn’s Colitis20201491334133610.1093/ecco‑jcc/jjaa061 32215548
    [Google Scholar]
  52. Nunez-CastillaJ. StebliankinV. BaralP. Potential autoimmunity resulting from molecular mimicry between SARS-CoV-2 spike and human proteins.Viruses2022147141510.3390/v14071415 35891400
    [Google Scholar]
  53. ThompsonR.C. SimonsN.W. WilkinsL. Molecular states during acute COVID-19 reveal distinct etiologies of long-term sequelae.Nat. Med.202329123624610.1038/s41591‑022‑02107‑4 36482101
    [Google Scholar]
  54. WolfF.A. AngererP. TheisF.J. SCANPY: Large-scale single-cell gene expression data analysis.Genome Biol.20181911510.1186/s13059‑017‑1382‑0
    [Google Scholar]
  55. van DijkD. SharmaR. NainysJ. Recovering gene interactions from single-cell data using data diffusion.Cell20181743716729.e2710.1016/j.cell.2018.05.061 29961576
    [Google Scholar]
  56. WangD. YangL. ZhangP. AAgAtlas 1.0: A human autoantigen database.Nucleic Acids Res.201745D1D769D77610.1093/nar/gkw946 27924021
    [Google Scholar]
  57. ChenE.Y. TanC.M. KouY. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool.BMC Bioinformatics201314112810.1186/1471‑2105‑14‑128 23586463
    [Google Scholar]
  58. KuleshovM.V. JonesM.R. RouillardA.D. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update.Nucleic Acids Res.201644W1W90-710.1093/nar/gkw377 27141961
    [Google Scholar]
  59. XieZ. BaileyA. KuleshovM.V. Gene set knowledge discovery with enrichr.Curr. Protoc.202113e9010.1002/cpz1.90 33780170
    [Google Scholar]
  60. WangJ. FigueroaJ.D. WallstromG. Plasma autoantibodies associated with basal-like breast cancers.Cancer Epidemiol. Biomarkers Prev.20152491332134010.1158/1055‑9965.EPI‑15‑0047 26070530
    [Google Scholar]
  61. NageleE.P. HanM. AcharyaN.K. DeMarshallC. KosciukM.C. NageleR.G. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease.PLoS One201384e6072610.1371/journal.pone.0060726 23589757
    [Google Scholar]
  62. RajalingamA. SekarK. GanjiwaleA. Identification of potential genes and critical pathways in postoperative recurrence of Crohn’s disease by machine learning And WGCNA network analysis.Curr. Genomics2023242849910.2174/1389202924666230601122334 37994325
    [Google Scholar]
  63. WangH. DemirkanG. BianX. Identification of antibody against SNRPB, Small nuclear ribonucleoprotein-associated proteins B and B′, as an autoantibody marker in Crohn’s disease using an immunoproteomics approach.J. Crohn’s Colitis201711784885610.1093/ecco‑jcc/jjx019 28204086
    [Google Scholar]
  64. LiL. WadiaP. ChenR. Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and “antibodyome” measures.Proc. Natl. Acad. Sci. USA2009106114148415310.1073/pnas.0900563106 19251643
    [Google Scholar]
  65. StelzerG. PlaschkesI. Oz-LeviD. VarElect: The phenotype-based variation prioritizer of the GeneCards Suite.BMC Genomics201617S2Suppl. 244410.1186/s12864‑016‑2722‑2 27357693
    [Google Scholar]
  66. StelzerG RosenN PlaschkesI The GeneCards suite: From gene data mining to disease genome sequence analyses.Curr Protoc Bioinformatics201654130.13310.1002/cpbi.5 27322403
    [Google Scholar]
  67. WangD. ChuM. WangF. ZhouA. RuanM. ChenY. A genetic variant in FIGN gene reduces the risk of congenital heart disease in han chinese populations.Pediatr. Cardiol.20173861169117410.1007/s00246‑017‑1636‑3 28534241
    [Google Scholar]
  68. ChungM.K. ZidarD.A. BristowM.R. COVID-19 and cardiovascular disease.Circ. Res.202112881214123610.1161/CIRCRESAHA.121.317997 33856918
    [Google Scholar]
  69. XingF. MarsiliL. TruongD.D. Parkinsonism in viral, paraneoplastic, and autoimmune diseases.J. Neurol. Sci.202243312001410.1016/j.jns.2021.120014 34629181
    [Google Scholar]
  70. NelsonP.N. HooleyP. RodenD. Human endogenous retroviruses: Transposable elements with potential?Clin. Exp. Immunol.200413811910.1111/j.1365‑2249.2004.02592.x 15373898
    [Google Scholar]
  71. TayalS. BhatnagarS. Role of molecular mimicry in the SARS-CoV-2-human interactome for pathogenesis of cardiovascular diseases: An update to ImitateDB.Comput. Biol. Chem.202310610791910.1016/j.compbiolchem.2023.107919 37463554
    [Google Scholar]
  72. SmykD.S. BogdanosD.P. KrieseS. BillinisC. BurroughsA.K. RigopoulouE.I. Urinary tract infection as a risk factor for autoimmune liver disease: From bench to bedside.Clin. Res. Hepatol. Gastroenterol.201236211012110.1016/j.clinre.2011.07.013 21907008
    [Google Scholar]
/content/journals/covid/10.2174/0126667975296293240320041641
Loading
/content/journals/covid/10.2174/0126667975296293240320041641
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test