Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Background

The ongoing 2019 novel coronavirus pneumonia pandemic continues to pose a serious threat to public health and safety. In response, numerous specific anti-SARS-CoV-2 drugs have been urgently approved for use. Azvudine has been recommended as a priority treatment for COVID-19 patients, but its efficacy and safety in elderly patients remain unexplored.

Methods

In this retrospective, single-center, observational study, we assessed the impact of Azvudine treatment on elderly hospitalized patients aged over 70 years. We analyzed parameters such as the time of SARS-CoV-2 negative conversion, clinical outcomes, length of hospital stay, and respiratory support requirements. Additionally, we compared changes in blood routine indicators, liver and kidney function indicators, and the incidence of adverse events before and after Azvudine administration to provide real-world data concerning elderly patients.

Results and Discussion

The study included 36 elderly patients aged 70 to 95 years. Following Azvudine administration, the average time for SARS-CoV-2 negative conversion was 5.15 days. Clinical outcomes revealed improvement and discharge in 74.3% of the patients, exacerbation in 5.7% of the patients, and mortality in 20% of the patients. Analysis of blood routine indicators and liver function indicators before and after medication showed no clinically significant changes. However, serum creatinine levels (Scr) demonstrated a statistically significant increase (71.12 ± 44.22 . 87.88 ± 57.39, < 0.05).

Conclusion

Although correlation analysis was not conducted, limited by the small sample size and retrospective nature of the study, these findings underscore the importance of monitoring Azvudine’s impact on renal function.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975276135240321054227
2024-03-25
2025-01-06
Loading full text...

Full text loading...

References

  1. HabasK. NganwuchuC. ShahzadF. Resolution of coronavirus disease 2019 (COVID-19).Expert Rev. Anti Infect. Ther.202018121201121110.1080/14787210.2020.1797487 32749914
    [Google Scholar]
  2. HuB. GuoH. ZhouP. ShiZ.L. Characteristics of SARS-CoV-2 and COVID-19.Nat. Rev. Microbiol.202119314115410.1038/s41579‑020‑00459‑7 33024307
    [Google Scholar]
  3. PierceJ.D. ShenQ. CintronS.A. HiebertJ.B. Post-COVID-19 syndrome.Nurs. Res.202271216417410.1097/NNR.0000000000000565 34653099
    [Google Scholar]
  4. Martín-SánchezF.J. Martínez-SellésM. Molero GarcíaJ.M. Insights for COVID-19 in 2023.Rev. Esp. Quimioter.202336211412410.37201/req/122.2022 36510683
    [Google Scholar]
  5. AsgharA. ImranH.M. BanoN. SARS-COV-2/COVID-19: Scenario, epidemiology, adaptive mutations, and environmental factors.Environ. Sci. Pollut. Res. Int.20222946691176913610.1007/s11356‑022‑22333‑0 35947257
    [Google Scholar]
  6. KumarA. PrasoonP. KumariC. SARS-CoV-2-specific virulence factors in COVID-19.J. Med. Virol.20219331343135010.1002/jmv.26615 33085084
    [Google Scholar]
  7. ChenY. LiuQ. GuoD. Emerging coronaviruses: Genome structure, replication, and pathogenesis.J. Med. Virol.202092441842310.1002/jmv.25681 31967327
    [Google Scholar]
  8. ToralesJ. O’HigginsM. Castaldelli-MaiaJ.M. VentriglioA. The outbreak of COVID-19 coronavirus and its impact on global mental health.Int. J. Soc. Psychiatry202066431732010.1177/0020764020915212 32233719
    [Google Scholar]
  9. WHO COVID-19 dashboard.Available from: https://COVID-19.who.int[cited: 14th June 2023].
  10. CarabelliA.M. PeacockT.P. ThorneL.G. SARS-CoV-2 variant biology: Immune escape, transmission and fitness.Nat. Rev. Microbiol.202321316217710.1038/s41579‑022‑00841‑7 36653446
    [Google Scholar]
  11. MistryP. BarmaniaF. MelletJ. SARS-CoV-2 variants, vaccines, and host immunity.Front. Immunol.20221280924410.3389/fimmu.2021.809244 35046961
    [Google Scholar]
  12. DhamaK. NainuF. FrediansyahA. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies.J. Infect. Public Health202316141410.1016/j.jiph.2022.11.024 36446204
    [Google Scholar]
  13. SaxenaS.K. KumarS. AnsariS. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective.J. Med. Virol.20229441738174410.1002/jmv.27524 34905235
    [Google Scholar]
  14. YuanW. HouY. LinQ. ChenL. RenT. How China responds to Omicron.J. Infect.20228519012210.1016/j.jinf.2022.04.017 35405167
    [Google Scholar]
  15. CuiZ. LiuP. WangN. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron.Cell20221855860871.e1310.1016/j.cell.2022.01.019 35120603
    [Google Scholar]
  16. ShresthaL.B. FosterC. RawlinsonW. TedlaN. BullR.A. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission.Rev. Med. Virol.2022325e238110.1002/rmv.2381 35856385
    [Google Scholar]
  17. WuC. YinW. JiangY. XuH.E. Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19.Acta Pharmacol. Sin.202243123021303310.1038/s41401‑021‑00851‑w 35058587
    [Google Scholar]
  18. FanY. LiX. ZhangL. WanS. ZhangL. ZhouF. SARS-CoV-2 Omicron variant: Recent progress and future perspectives.Signal Transduct. Target. Ther.20227114110.1038/s41392‑022‑00997‑x 35484110
    [Google Scholar]
  19. ChiW.Y. LiY.D. HuangH.C. COVID-19 vaccine update: Vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection.J. Biomed. Sci.20222918210.1186/s12929‑022‑00853‑8 36243868
    [Google Scholar]
  20. FernandesQ. InchakalodyV.P. MerhiM. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines.Ann. Med.202254152454010.1080/07853890.2022.2031274 35132910
    [Google Scholar]
  21. GrañaC. GhosnL. EvrenoglouT. Efficacy and safety of COVID-19 vaccines.Cochrane Database Syst. Rev.20221212CD015477 36473651
    [Google Scholar]
  22. NgT.I. CorreiaI. SeagalJ. Antiviral drug discovery for the treatment of COVID-19 infections.Viruses202214596110.3390/v14050961 35632703
    [Google Scholar]
  23. KimS. COVID-19 drug development.J. Microbiol. Biotechnol.20223211510.4014/jmb.2110.10029 34866128
    [Google Scholar]
  24. RehmanS.U. RehmanS.U. YooH.H. COVID-19 challenges and its therapeutics.Biomed. Pharmacother.202114211201510.1016/j.biopha.2021.112015 34388532
    [Google Scholar]
  25. ChenZ. TianF. Evaluation of oral small molecule drugs for the treatment of COVID-19 patients: A systematic review and network meta-analysis.Ann. Med.2023552227451110.1080/07853890.2023.2274511 37967171
    [Google Scholar]
  26. TripathiA.K. RayA.K. MishraS.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: Evidence from clinical trials.Beni. Suef Univ. J. Basic Appl. Sci.20221111610.1186/s43088‑022‑00196‑1 35127957
    [Google Scholar]
  27. AmaniB. AmaniB. Efficacy and safety of nirmatrelvir/ritonavir (Paxlovid) for COVID-19: A rapid review and meta-analysis.J. Med. Virol.2023952e2844110.1002/jmv.28441 36576379
    [Google Scholar]
  28. SaravolatzL.D. DepcinskiS. SharmaM. Molnupiravir and nirmatrelvir-ritonavir: Oral coronavirus disease 2019 antiviral drugs.Clin. Infect. Dis.202376116517110.1093/cid/ciac180 35245942
    [Google Scholar]
  29. DaveB. ShahK.C. ChorawalaM.R. Molnupiravir: An antiviral drug against COVID-19.Arch. Virol.20231681025210.1007/s00705‑023‑05881‑9 37710056
    [Google Scholar]
  30. YangX.M. YangY. YaoB.F. A first-in-human phase 1 study of simnotrelvir, a 3CL-like protease inhibitor for treatment of COVID-19, in healthy adult subjects.Eur. J. Pharm. Sci.2023191106598
    [Google Scholar]
  31. ZhuK.W. Deuremidevir and Simnotrelvir-Ritonavir for the Treatment of COVID-19.ACS Pharmacol. Transl. Sci.20236913061309
    [Google Scholar]
  32. CaoZ. GaoW. BaoH. VV116 versus nirmatrelvir–ritonavir for oral treatment of Covid-19.N. Engl. J. Med.2023388540641710.1056/NEJMoa2208822 36577095
    [Google Scholar]
  33. LixiangC. The outcome of the health care negotiations: A 50% reduction in the price of Azvudine tablets and insurance coverage.Securities Times202310.38329/n.cnki.nzjsb.2023.000266
    [Google Scholar]
  34. SinghR.S. SinghA.K. ShuklaK.K. TripathiA.K. COVID-19 pandemic: Evidences from clinical studies.J Comm Pub Health Nursing202064251
    [Google Scholar]
  35. YuB. ChangJ. The first Chinese oral anti-COVID-19 drug Azvudine launched.Innovation20223610032110.1016/j.xinn.2022.100321 36106026
    [Google Scholar]
  36. YangL. WangZ. Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China.Eur. J. Med. Chem.202325711550310.1016/j.ejmech.2023.115503 37229831
    [Google Scholar]
  37. de SouzaS.B. CabralP.G.A. da SilvaR.M. Phase III, randomized, double-blind, placebo-controlled clinical study: A study on the safety and clinical efficacy of AZVUDINE in moderate COVID-19 patients.Front. Med.202310121591610.3389/fmed.2023.1215916 37928473
    [Google Scholar]
  38. YuB. ChangJ. Azvudine (FNC): A promising clinical candidate for COVID-19 treatment.Signal Transduct. Target. Ther.20205123610.1038/s41392‑020‑00351‑z 33040075
    [Google Scholar]
  39. LiG. WangY. De ClercqE. Approved HIV reverse transcriptase inhibitors in the past decade.Acta Pharm. Sin. B20221241567159010.1016/j.apsb.2021.11.009 35847492
    [Google Scholar]
  40. SunL. PengY. YuW. Mechanistic insight into antiretroviral potency of 2′-Deoxy-2′-β-fluoro-4′-azidocytidine (FNC) with a long-lasting effect on hiv-1 prevention.J. Med. Chem.202063158554856610.1021/acs.jmedchem.0c00940 32678592
    [Google Scholar]
  41. LiuY. LiuB. ZhangY. Intestinal absorption mechanisms of 2′-deoxy-2′-β-fluoro-4′-azidocytidine, a cytidine analog for AIDS treatment, and its interaction with P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein.Eur. J. Pharm. Sci.201710515015810.1016/j.ejps.2017.05.009 28487144
    [Google Scholar]
  42. XuN. YangJ. ZhengB. The pyrimidine analog FNC potently inhibits the replication of multiple enteroviruses.J. Virol.2020949e00204e0022010.1128/JVI.00204‑20 32075935
    [Google Scholar]
  43. SmithD.B. KalayanovG. SundC. The design, synthesis, and antiviral activity of monofluoro and difluoro analogues of 4′-azidocytidine against hepatitis C virus replication: the discovery of 4′-azido-2′-deoxy-2′-fluorocytidine and 4′-azido-2′-dideoxy-2′,2′-difluorocytidine.J. Med. Chem.20095292971297810.1021/jm801595c 19341305
    [Google Scholar]
  44. ZhouY. ZhangY. YangX. Novel nucleoside analogue FNC is effective against both wild-type and lamivudine-resistant HBV clinical isolates.Antivir. Ther.20121781593159910.3851/IMP2292 22910281
    [Google Scholar]
  45. KlumppK. KalayanovG. MaH. 2′-deoxy-4′-azido nucleoside analogs are highly potent inhibitors of hepatitis C virus replication despite the lack of 2′-alpha-hydroxyl groups.J. Biol. Chem.200828342167217510.1074/jbc.M708929200 18003608
    [Google Scholar]
  46. ZhangY. WangC.P. DingX.X. FNC, a novel nucleoside analogue, blocks invasion of aggressive non-Hodgkin lymphoma cell lines via inhibition of the Wnt/β-catenin signaling pathway.Asian Pac. J. Cancer Prev.201415166829683510.7314/APJCP.2014.15.16.6829 25169533
    [Google Scholar]
  47. RenZ. LuoH. YuZ. A randomized, open-label, controlled clinical trial of azvudine tablets in the treatment of mild and common COVID-19, a pilot study.Adv. Sci.2020719200143510.1002/advs.202001435 35403380
    [Google Scholar]
  48. WangR.R. YangQ.H. LuoR.H. Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro.PLoS One201498e10561710.1371/journal.pone.0105617 25144636
    [Google Scholar]
  49. ZhangJ.L. LiY.H. WangL.L. Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients.Signal Transduct. Target. Ther.20216141410.1038/s41392‑021‑00835‑6 34873151
    [Google Scholar]
  50. YangR. ChengJ. SongX. Characteristics of COVID-19 (Delta Variant)/HIV Co-infection: A cross-sectional study in henan province, China.Intensive Care Research202223-49610710.1007/s44231‑022‑00018‑z 36407473
    [Google Scholar]
  51. JiangR. SunJ. ZhaoB. ZhangR. LiuL. ChenJ. Presence of the M184I mutation after short-term exposure to azvudine for COVID-19 in people living with HIV.AIDS20233781341134210.1097/QAD.0000000000003564 37930315
    [Google Scholar]
  52. National Medical Products Administration urgently and conditionally approved the application for adding COVID-19's treatment indications to Azvudine tablets.2022Available from: https://www.nmpa.gov.cn/yaowen/ypjgyw/ypyw/20220725165620176.html
  53. HaiboC. Azvudine tablet has been approved as an additional indication for the treatment of COVID-19 Guangming Dail20228726
    [Google Scholar]
  54. Notice on the issuance of Diagnosis and Treatment Protocol for novel coronavirus infection (trial version 9);2022Available from: http://www.gov.cn/zhengce/zhengceku/2022-03/15/content_5679257.htm
  55. Notice on the issuance of Diagnosis and Treatment Protocol for novel coronavirus infection (trial version 10);2023Available from: http://www.gov.cn/zhengce/zhengceku/2023-01/06/content_5735343.htm
  56. ZhengL. LiuS. LuF. Impact of national omicron outbreak at the end of 2022 on the future outlook of COVID-19 in China.Emerg. Microbes Infect.2023121219173810.1080/22221751.2023.2191738 36920784
    [Google Scholar]
  57. DuZ. WangY. BaiY. WangL. CowlingB.J. MeyersL.A. Estimate of COVID-19 Deaths, China, December 2022–February 2023.Emerg. Infect. Dis.202329102121212410.3201/eid2910.230585 37640373
    [Google Scholar]
  58. DianY. MengY. SunY. DengG. ZengF. Azvudine versus paxlovid for oral treatment of COVID-19 in Chinese patients with pre-existing comorbidities.J. Infect.2023872e24e2710.1016/j.jinf.2023.05.012 37207823
    [Google Scholar]
  59. YangH. WangZ. JiangC. Oral azvudine for mild-to-moderate COVID-19 in high risk, nonhospitalized adults: Results of a real-world study.J. Med. Virol.2023957e2894710.1002/jmv.28947 37470209
    [Google Scholar]
  60. SunY. JinL. DianY. Oral Azvudine for hospitalised patients with COVID-19 and pre-existing conditions: A retrospective cohort study.EClinicalMedicine20235910198110.1016/j.eclinm.2023.101981 37193346
    [Google Scholar]
  61. da SilvaR.M. Gebe Abreu CabralP. de SouzaS.B. Serial viral load analysis by DDPCR to evaluate FNC efficacy and safety in the treatment of mild cases of COVID-19.Front. Med.202310114348510.3389/fmed.2023.1143485 37007788
    [Google Scholar]
  62. QiX. YangY. GongB. LiZ. LiangD. Real-world effectiveness of azvudine for patients infected with the SARS-CoV-2 omicron subvariant BA.5 in an intensive care unit.J. Thorac. Dis.20231594925493710.21037/jtd‑23‑1093 37868850
    [Google Scholar]
  63. ZongK. ZhouH. LiW. JiangE. LiuY. LiS. Azvudine reduces the in-hospital mortality of COVID-19 patients: A retrospective cohort study.Acta Pharm. Sin. B202313114655466010.1016/j.apsb.2023.07.007 37969737
    [Google Scholar]
  64. ShangS. FuB. GengY. Azvudine therapy of common COVID-19 in hemodialysis patients.J. Med. Virol.2023958e2900710.1002/jmv.29007 37522276
    [Google Scholar]
  65. LiD. LiuY. ShenM. DengG. Evaluate clinical effectiveness of Azvudine with data rather than speculation.J. Med. Virol.2023957e2892610.1002/jmv.28926 37403927
    [Google Scholar]
  66. DengG. LiD. SunY. Real-world effectiveness of Azvudine versus nirmatrelvir–ritonavir in hospitalized patients with COVID-19: A retrospective cohort study.J. Med. Virol.2023954e2875610.1002/jmv.28756 37185838
    [Google Scholar]
  67. ChenZ. TianF. Efficacy and safety of azvudine in patients with COVID-19: A systematic review and meta-analysis.Heliyon202399e2015310.1016/j.heliyon.2023.e20153 37809649
    [Google Scholar]
  68. AstinR. BanerjeeA. BakerM.R. Long COVID: Mechanisms, risk factors and recovery.Exp. Physiol.20231081122710.1113/EP090802 36412084
    [Google Scholar]
  69. LuuM.N. AlhadyS.T.M. Nguyen TranM.D. Evaluation of risk factors associated with SARS-CoV-2 transmission.Curr. Med. Res. Opin.202238122021202810.1080/03007995.2022.2125258 36106710
    [Google Scholar]
  70. von ElmE. AltmanD.G. EggerM. PocockS.J. GøtzscheP.C. VandenbrouckeJ.P. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies.Int. J. Surg.201412121495149910.1016/j.ijsu.2014.07.013 25046131
    [Google Scholar]
  71. TeliasI. BrochardL.J. GattarelloS. The physiological underpinnings of life-saving respiratory support.Intensive Care Med.202248101274128610.1007/s00134‑022‑06749‑3 35690953
    [Google Scholar]
  72. BrodieD. SlutskyA.S. CombesA. Extracorporeal life support for adults with respiratory failure and related indications.JAMA2019322655756810.1001/jama.2019.9302 31408142
    [Google Scholar]
  73. DainesL. ZhengB. PfefferP. HurstJ.R. SheikhA. A clinical review of long-COVID with a focus on the respiratory system.Curr. Opin. Pulm. Med.202228317417910.1097/MCP.0000000000000863 35131989
    [Google Scholar]
  74. RaudenskáJ. SteinerováV. JavůrkováA. Occupational burnout syndrome and post-traumatic stress among healthcare professionals during the novel coronavirus disease 2019 (COVID-19) pandemic.Baillieres. Best Pract. Res. Clin. Anaesthesiol.202034355356010.1016/j.bpa.2020.07.008 33004166
    [Google Scholar]
  75. WaltonM. MurrayE. ChristianM.D. Mental health care for medical staff and affiliated healthcare workers during the COVID-19 pandemic.Eur. Heart J. Acute Cardiovasc. Care20209324124710.1177/2048872620922795 32342698
    [Google Scholar]
  76. WangD.X. MaoQ. ZhouF.C. Expert consensus on the application of Azvudine tablets in the treatment of novel coronavirus infection.China Pharmaceuticals202332316
    [Google Scholar]
  77. ShanS. RuifangN. NingH. Expert opinion on application of small molecule drugs against respiratory RNA viruses.Chinese Journal of Rational Drug Use20232005114
    [Google Scholar]
  78. HuangH.P. ChenQ.X. YuT. ChenH.M. Safety analysis of azivudine tablets in the treatment of coronavirus disease 2019.J Adverse Drug React20232511720
    [Google Scholar]
  79. HeM. LiH. MuL.F. YangM. Effect of Azovudine on hepatic and renal function in patients with COVID-19: A case series study.Chin Gen Pract2023262024762487
    [Google Scholar]
/content/journals/covid/10.2174/0126667975276135240321054227
Loading
/content/journals/covid/10.2174/0126667975276135240321054227
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test