Skip to content
2000
image of Cyanamide-Based Cyclization Reactions for Nitrogen-Containing

Abstract

Nitrogen-containing heterocycles, such as indoles and quinolines, serve as the key scaffolds in numerous pharmaceuticals, pesticides, and natural products. The synthetic methods of nitrogen-containing heterocycles show significant scientific and industrial values. As a chemical intermediate featuring dual functional groups, cyanamide plays a crucial role in organic synthesis, directly affecting the development of new drugs and the design of new materials. Particularly in the synthesis of nitrogen-containing heterocyclic compounds, the cyano group can introduce various groups through radical pathways to synthesize polycyclic N-heterocyclic frameworks, as well as yielding a variety of nitrogen-containing heterocycles through non-radical pathways. This diverse reaction pathway makes the application of cyanamide in chemical synthesis more extensive and flexible. The progress involving cyanamide in the synthesis of quinazoline and quinazolinone, -lactams, and other nitrogen-containing heterocyclic frameworks is summarized. The main mechanisms and reaction strategies are emphasized and explicated from the perspective of radical and non-radical synthetic pathways, revealing the potential application value of these compounds in different fields. This review paves the way for the synthesis of various nitrogen-containing heterocyclic compounds, particularly in achieving green chemistry and sustainable development goals. These new methods and ideas are expected to promote the development of more efficient and economical synthesis strategies in the future, thereby advancing the widespread application of nitrogen-containing heterocyclic compounds in pharmaceuticals, agricultural chemicals, and new materials.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794345484241217075932
2025-01-23
2025-06-23
Loading full text...

Full text loading...

References

  1. Borchers A. Pieler T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010 1 3 413 426 10.3390/genes1030413 24710095
    [Google Scholar]
  2. Chugh A. Kumar A. Verma A. Kumar S. Kumar P. A review of antimalarial activity of two or three nitrogen atoms containing heterocyclic compounds. Med. Chem. Res. 2020 29 10 1723 1750 10.1007/s00044‑020‑02604‑6
    [Google Scholar]
  3. Goel H. Kumar R. Tanwar P. Upadhyay T.K. Khan F. Pandey P. Kang S. Moon M. Choi J. Choi M. Park M.N. Kim B. Saeed M. Unraveling the therapeutic potential of natural products in the prevention and treatment of leukemia. Biomed. Pharmacother. 2023 160 114351 10.1016/j.biopha.2023.114351 36736284
    [Google Scholar]
  4. Kanupriya Mittal R.K. Sharma V. Biswas T. Mishra I. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents. Med. Chem. 2024 20 5 487 502 10.2174/0115734064280150231212113012 38279757
    [Google Scholar]
  5. Li Y. Jiang L. Qu J. Peng X. Wu K. Chen M. Peng Y. Cao X. Research progress and prospect of nitrogen-containing heterocycle in anti-gastric cancer drugs: A review. Curr. Med. Chem. 2024 31 1 36 10.2174/0109298673296147240405113328 38659263
    [Google Scholar]
  6. Cimarelli C. Multicomponent reactions. Molecules 2019 24 13 2372 10.3390/molecules24132372 31252514
    [Google Scholar]
  7. Li S. Dong J. A visible-light-induced cyclization reaction. Curr. Org. Chem. 2023 27 12 1020 1035 10.2174/1385272827666230911115749
    [Google Scholar]
  8. Rogge T. Kaplaneris N. Chatani N. Kim J. Chang S. Punji B. Schafer L.L. Musaev D.G. Wencel-Delord J. Roberts C.A. Sarpong R. Wilson Z.E. Brimble M.A. Johansson M.J. Ackermann L. C–H activation. Nat. Rev. Methods Primers 2021 1 1 43 10.1038/s43586‑021‑00041‑2
    [Google Scholar]
  9. Sato T. Chida N. Nucleophilic addition to N-alkoxyamides. Org. Biomol. Chem. 2014 12 20 3147 3150 10.1039/c4ob00389f 24728383
    [Google Scholar]
  10. Cai Y. Hua Y. Lu Z. Lan Q. Lin Z. Fei J. Chen Z. Zhang H. Xia H. Electrophilic aromatic substitution reactions of compounds with Craig-Möbius aromaticity. Proc. Natl. Acad. Sci. USA 2021 118 39 e2102310118 10.1073/pnas.2102310118 34544859
    [Google Scholar]
  11. Feng J. Geng W.C. Jiang H. Wu B. Recent advances in biocatalysis of nitrogen-containing heterocycles. Biotechnol. Adv. 2022 54 107813 10.1016/j.biotechadv.2021.107813 34450199
    [Google Scholar]
  12. Campos J.F. Berteina-Raboin S. Tandem catalysis: Synthesis of nitrogen-containing heterocycles. Catalysts 2020 10 6 631 10.3390/catal10060631
    [Google Scholar]
  13. Guo J. Zhang P. Zhu L. Chen H. Shen H.X. Wang C.F. Chen S. Solvent-engineered synthesis of multicolor emissive carbon dots from citric acid and cyanamide. Ind. Eng. Chem. Res. 2024 63 20 9050 9057 10.1021/acs.iecr.4c00136
    [Google Scholar]
  14. Zhao X. Hui B. Chen X. Jia T. Yu X. Li L. Zhang X. Lu Z. Yang X. ORR properties of PtM (M = Fe and Ni) ordered alloys with the effect of small molecules of cyanamide. Appl. Surf. Sci. 2024 663 160183 10.1016/j.apsusc.2024.160183
    [Google Scholar]
  15. Tombé Bodian E.H. Faye C. Thiaré D.D. Diop N.A. Diaw P.A. Delattre F. Coly A. Giamarchi P. Cyclodextrin-enhanced photo-induced fluorescence of tau -fluvalinate, molecular modelling of inclusion complexes and determination in natural waters. Anal. Methods 2024 16 26 4347 4359 10.1039/D4AY00326H 38888682
    [Google Scholar]
  16. Khalaf M.M. Abd El-Lateef H.M. Moustafa A.H. Awad M.F. Gouda M. Ahmed D.H. Regiospecific synthesis of N,N′ -disubstituted-2-imino-hydantoins derived from cyanamides. Synth. Commun. 2024 54 13 1086 1095 10.1080/00397911.2024.2368765
    [Google Scholar]
  17. Li D. Li Q. Zhang Q. Yang R. Ye Q. Tian D. Jiang D. Integrating bimetallic borides with g-C3N4 containing cyanamide defects for efficient photocatalytic nitrogen fixation. J. Colloid Interface Sci. 2024 672 631 641 10.1016/j.jcis.2024.05.238 38865877
    [Google Scholar]
  18. Kumar V.H. Janardan S. Tamminana R. Iodine‐promoted synthesis of cyanamides in aqueous media and their synthetic application. ChemistrySelect 2023 8 42 e202302858 10.1002/slct.202302858
    [Google Scholar]
  19. Lygin A.V. de Meijere A. Isocyanides in the synthesis of nitrogen heterocycles. Angew. Chem. Int. Ed. 2010 49 48 9094 9124 10.1002/anie.201000723 21053220
    [Google Scholar]
  20. Gao M. Xu B. Transition metal-participated synthesis and utilization of N-containing heterocycles: Exploring for nitrogen sources. Chem. Rec. 2016 16 3 1701 1714 10.1002/tcr.201600020 27230734
    [Google Scholar]
  21. Ríos M.C. Portilla J. Recent advances in synthesis and properties of pyrazoles. Chemistry 2022 4 3 940 968 10.3390/chemistry4030065
    [Google Scholar]
  22. Broderick K.E. Potluri P. Zhuang S. Scheffler I.E. Sharma V.S. Pilz R.B. Boss G.R. Cyanide detoxification by the cobalamin precursor cobinamide. Exp. Biol. Med. 2006 231 5 641 649 10.1177/153537020623100519 16636313
    [Google Scholar]
  23. Di Gioia F. Gonnella M. Buono V. Ayala O. Cacchiarelli J. Santamaria P. Calcium cyanamide effects on nitrogen use efficiency, yield, nitrates, and dry matter content of lettuce. Agron. J. 2017 109 1 354 362 10.2134/agronj2016.06.0366
    [Google Scholar]
  24. Shao M. Li M.X. Wang Z.X. He X. Zhang H.H. Structural diversity and vibrational spectra of nine Cu(I)-Cyanide metal–organic frameworks with in situ generated N-heterocyclic ligands. Cryst. Growth Des. 2017 17 12 6281 6290 10.1021/acs.cgd.7b00967
    [Google Scholar]
  25. Benhamou L. Chardon E. Lavigne G. Bellemin-Laponnaz S. César V. Synthetic routes to N-heterocyclic carbene precursors. Chem. Rev. 2011 111 4 2705 2733 10.1021/cr100328e 21235210
    [Google Scholar]
  26. Kouznetsov V.V. Galvis C.E.P. Strecker reaction and α-amino nitriles: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron 2018 74 8 773 810 10.1016/j.tet.2018.01.005
    [Google Scholar]
  27. Patel R.I. Sharma S. Sharma A. Cyanation: A photochemical approach and applications in organic synthesis. Org. Chem. Front. 2021 8 12 3166 3200 10.1039/D1QO00162K
    [Google Scholar]
  28. Kumar S. Battula V.R. Kailasam K. Single molecular precursors for CxNy materials- Blending of carbon and nitrogen beyond g-C3N4. Carbon 2021 183 332 354 10.1016/j.carbon.2021.07.025
    [Google Scholar]
  29. Zhuo X. Zheng L. Liu Y. Wang Y. Zou X. Zhong Y. Guo W. Visible light-enhanced [3 + 2] cycloaddition of N, N -disubstituted hydrazines with organo-cyanamides: Access to polysubstituted 1,2,4-triazol-3-amines. J. Org. Chem. 2024 89 2 994 1009 10.1021/acs.joc.3c02085 38166434
    [Google Scholar]
  30. Forrest S.J.K. Schluschaß B. Yuzik-Klimova E.Y. Schneider S. Nitrogen fixation via splitting into nitrido complexes. Chem. Rev. 2021 121 11 6522 6587 10.1021/acs.chemrev.0c00958 33973774
    [Google Scholar]
  31. Shi X. Wang Q. Qin C. Wu L.J. Chen Y. Wang G.X. Cai Y. Gao W. He T. Wei J. Guo J. Chen P. Xi Z. Synthesis of pyrimidines from dinitrogen and carbon. Natl. Sci. Rev. 2022 9 12 nwac168 10.1093/nsr/nwac168 36778107
    [Google Scholar]
  32. Preeti Singh K.N. Metal-free multicomponent reactions: A benign access to monocyclic six-membered N-heterocycles. Org. Biomol. Chem. 2021 19 12 2622 2657 10.1039/D1OB00145K
    [Google Scholar]
  33. Wang D. Désaubry L. Li G. Huang M. Zheng S. Recent advances in the synthesis of C2‐functionalized pyridines and quinolines using N ‐oxide chemistry. Adv. Synth. Catal. 2021 363 1 2 39 10.1002/adsc.202000910
    [Google Scholar]
  34. Moloney M.G. Reactions of aldehydes and ketones and their derivatives. Organic Reaction Mechanisms Wiley 2024 1 45 10.1002/9781119716846.ch1
    [Google Scholar]
  35. Qiu M. Fu X. Fu P. Huang J. Construction of aziridine, azetidine, indole and quinoline-like heterocycles via Pd-mediated C–H activation/annulation strategies. Org. Biomol. Chem. 2022 20 7 1339 1359 10.1039/D1OB02146J 35044404
    [Google Scholar]
  36. Zhou R. Liu R. Li R. He Z. Progress in phosphine-promoted annulations between two electrophiles. Youji Huaxue 2014 34 12 2385 2405 10.6023/cjoc201406049
    [Google Scholar]
  37. Xiao H. Chai Z. Wang H.F. Wang X.W. Cao D.D. Liu W. Lu Y.P. Yang Y.Q. Zhao G. Bifunctional N-acyl-aminophosphine-catalyzed asymmetric [4+2] cycloadditions of allenoates and imines. Chemistry 2011 17 38 10562 10565 10.1002/chem.201100850 21853481
    [Google Scholar]
  38. Tan K.L. Vasudevan A. Bergman R.G. Ellman J.A. Souers A.J. Microwave-assisted C-H bond activation: A rapid entry into functionalized heterocycles. Org. Lett. 2003 5 12 2131 2134 10.1021/ol030050j 12790546
    [Google Scholar]
  39. Tan K.L. Bergman R.G. Ellman J.A. Annulation of alkenyl-substituted heterocycles via rhodium-catalyzed intramolecular C-H activated coupling reactions. J. Am. Chem. Soc. 2001 123 11 2685 2686 10.1021/ja0058738 11456947
    [Google Scholar]
  40. Wang Y.F. Zhu X. Chiba S. Copper-catalyzed aerobic [3+2]-annulation of N-alkenyl amidines. J. Am. Chem. Soc. 2012 134 8 3679 3682 10.1021/ja2120629 22296256
    [Google Scholar]
  41. Li Q.Y. Cheng S.Y. Tang H.T. Pan Y.M. Synthesis of rutaecarpine alkaloids via an electrochemical cross dehydrogenation coupling reaction. Green Chem. 2019 21 20 5517 5520 10.1039/C9GC03028J
    [Google Scholar]
  42. Aldabbagh F. Bowman W.R. Radical cyclisation onto imidazoles and benzimidazoles. Tetrahedron Lett. 1997 38 21 3793 3794 10.1016/S0040‑4039(97)00740‑5
    [Google Scholar]
  43. Molnár Á. Microwave-assisted CN formation reactions. Green Sustainable Process for Chemical and Environmental Engineering and Science, Inamuddin. Chapter 2 Boddula R. Asiri A.M. Elsevier 2021 51 203 10.1016/B978‑0‑12‑819848‑3.00002‑5
    [Google Scholar]
  44. Johnson C.D. Chapter 26 - Bicyclic compounds containing a pyridine ring; Quinoline and its derivatives. Supplements to the 2nd Edition of Rodd's Chemistry of Carbon Compounds Elsevier Amsterdam 1975 119 181 10.1016/B978‑044453346‑3.50164‑5
    [Google Scholar]
  45. Teja C. Khan F.R.N. Radical transformations towards the synthesis of quinoline: A review. Chem. Asian J. 2020 15 24 4153 4167 10.1002/asia.202001156 33135361
    [Google Scholar]
  46. Jiang S. Tian X.J. Feng S.Y. Li J.S. Li Z.W. Lu C.H. Li C.J. Liu W.D. Visible-light photoredox catalyzed double C–H functionalization: Radical cascade cyclization of ethers with benzimidazole-based cyanamides. Org. Lett. 2021 23 3 692 696 10.1021/acs.orglett.0c03853 33438394
    [Google Scholar]
  47. Xiaojing T. Zhenzhen F. Si J. Zhiwei L. Jiangsheng L. Yuefei Z. Cuihong L. Weidong L. Metal-free synthesis of benzimidazo[1,2- c ]quinazolines from N -cyanobenzimidazoles via double C—H functionalizations. Youji Huaxue 2022 42 11 3684 3692 10.6023/cjoc202205030
    [Google Scholar]
  48. Hu Y. Liu C.-L. He W.-T. Liu L.-H. Li J.-S. Li Z.-W. Liu H.-W. Li W.-S. Visible-light-driven synthesis of 6-aroyl benzimidazo[1,2-c]quinazolines from N-cyanobenzimidazoles and α-keto acids by radical relay cyclization. European J. Org. Chem. 2024 27 34 e202400563 10.1002/ejoc.202400563
    [Google Scholar]
  49. Evano G. Baguia H. Deldaele C. Romero E. Michelet B. Copper-catalyzed photoinduced radical domino cyclization of ynamides and cyanamides: A unified entry to rosettacin, luotonin a, and deoxyvasicinone. Synthesis 2018 50 15 3022 3030 10.1055/s‑0037‑1610134
    [Google Scholar]
  50. Turner O.J. Hirst D.J. Murphy J.A. Hydrogen atom transfer‐mediated domino cyclisation reaction to access (spiro)quinazolinones. Chemistry 2020 26 14 3026 3029 10.1002/chem.201905712 31922300
    [Google Scholar]
  51. Singh S.K. Kumar S. Yadav M.S. Tiwari V.K. Pyridyl glycosyl triazole/cui-mediated domino/tandem synthesis of quinazolinones. J. Org. Chem. 2022 87 22 15389 15402 10.1021/acs.joc.2c01951 36305798
    [Google Scholar]
  52. Syamala L.V.R.B. Khopade T.M. Warghude P.K. Bhat R.G. An access to α, β-unsaturated ketones via dual cooperative catalysis. Tetrahedron Lett. 2019 60 1 88 91 10.1016/j.tetlet.2018.11.065
    [Google Scholar]
  53. Choudhury S.S. Mahapatra S. Sahu A.K. Hembram P.C.P.N. Jena S. Biswal H.S. Synthesis of α,β-unsaturated ketones in water: The claisen–schmidt condensation revisited. ACS Sustain. Chem.& Eng. 2022 10 43 14271 14279 10.1021/acssuschemeng.2c04388
    [Google Scholar]
  54. Chen D. Ji M. Zhu C. Intramolecular nitration–aminocarbonylation of unactivated olefins: Metal-free synthesis of γ-lactams. Chem. Commun. 2019 55 54 7796 7799 10.1039/C9CC03736E 31214673
    [Google Scholar]
  55. Liu J. Chen D. Ji M. Wu X. Zhu C. Synthesis of γ-lactams via trifluoromethylative aminocarbonylation of unactivated olefins. Tetrahedron Lett. 2020 61 7 151479 10.1016/j.tetlet.2019.151479
    [Google Scholar]
  56. Li Z. Wu Y.H. Xi J.M. Wei Z.L. Liao W.W. Copper-catalyzed difluoroalkylation of alkene/nitrile insertion/cyclization tandem sequences: Construction of difluorinated bicyclic amidines. Org. Lett. 2021 23 24 9591 9596 10.1021/acs.orglett.1c03802 34874172
    [Google Scholar]
  57. Xi J.M. Sun Y.H. Li W.C. Wu Y.H. Wei Z.L. Liao W.W. Radical alkene-trifluoromethylation-triggered nitrile insertion/remote functionalization relay processes: Diverse synthesis of trifluoromethylated azaheterocycles enabled by copper catalysis. Org. Lett. 2022 24 4 1110 1115 10.1021/acs.orglett.2c00083 35080394
    [Google Scholar]
  58. Cui J. Tong Y. Li Y. Synthesis of trifluoromethylated γ-lactams through radical cascades of N -cyano alkenes with CF 3 SO 2 Na. J. Org. Chem. 2022 87 23 16090 16098 10.1021/acs.joc.2c01775 36370090
    [Google Scholar]
  59. Fensterbank L. Lacôte E. Larraufie M-H. Maestri G. Malacria M. Ollivier C. The cyanamide moiety, synthesis and reactivity. Synthesis 2012 44 9 1279 1292 10.1055/s‑0031‑1289749
    [Google Scholar]
  60. Chernyshov V.V. Popadyuk I.I. Yarovaya O.I. Salakhutdinov N.F. Nitrogen-containing heterocyclic compounds obtained from monoterpenes or their derivatives: Synthesis and properties. Top. Curr. Chem. 2022 380 5 42 10.1007/s41061‑022‑00399‑1 35951263
    [Google Scholar]
  61. Alberola A. Andrés C. Ortega A.G. Pedrosa R. Vicente M. The reaction of β-aminoenones with cyanamide. A high efficient synthesis of 2-aminopyrimidines. Synth. Commun. 1987 17 11 1309 1314 10.1080/00397918708057752
    [Google Scholar]
  62. Dubovtsev A.Y. Zvereva V.V. Shcherbakov N.V. Dar’in D.V. Novikov A.S. Kukushkin V.Y. Acid-catalyzed [2 + 2 + 2] cycloaddition of two cyanamides and one ynamide: Highly regioselective synthesis of 2,4,6-triaminopyrimidines. Org. Biomol. Chem. 2021 19 20 4577 4584 10.1039/D1OB00513H 33954321
    [Google Scholar]
  63. Sugiyama Y. Amo M. Ibe K. Okamoto S. Synthesis of 2‐aminopyridines via cobalt‐catalyzed cycloaddition of diynes with N ‐substituted and N ‐unsubstituted cyanamides. Adv. Synth. Catal. 2023 365 22 3897 3901 10.1002/adsc.202300818
    [Google Scholar]
  64. Spahn N.A. Nguyen M.H. Renner J. Lane T.K. Louie J. Regioselective iron-catalyzed [2 + 2 + 2] cycloaddition reaction forming 4,6-disubstituted 2-aminopyridines from terminal alkynes and cyanamides. J. Org. Chem. 2017 82 1 234 242 10.1021/acs.joc.6b02374 27957836
    [Google Scholar]
  65. Kumari S. Maddeboina K. Bachu R.D. Boddu S.H.S. Trippier P.C. Tiwari A.K. Pivotal role of nitrogen heterocycles in Alzheimer’s disease drug discovery. Drug Discov. Today 2022 27 10 103322 10.1016/j.drudis.2022.07.007 35868626
    [Google Scholar]
  66. Dua R. Shrivastava S. Sonwane S. Srivastava S. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv. Biol. Res. 2011 5 3 120 144
    [Google Scholar]
  67. Kerru N. Gummidi L. Maddila S. Gangu K.K. Jonnalagadda S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020 25 8 1909 10.3390/molecules25081909 32326131
    [Google Scholar]
  68. Wu Y.H. Li C.J. Wei Z.L. Liao W.W. Multicomponent cyclization with an inorganic sulfur dioxide surrogate: Straightforward construction of difluorinated benzosultams. Org. Lett. 2022 24 49 9112 9117 10.1021/acs.orglett.2c03771 36453929
    [Google Scholar]
  69. Sun Y.H. Li C.J. Xi J.M. Wei Z.L. Liao W.W. Electrochemical tandem cyclization to access sulfonylated fused sultams via SO 2 insertion with sodium metabisulfite. Org. Chem. Front. 2023 10 3 705 711 10.1039/D2QO01821G
    [Google Scholar]
  70. Zain-Alabdeen A.I. El-Moselhy T.F. Sharafeldin N. Angeli A. Supuran C.T. El-Hamamsy M.H. Synthesis and anticancer activity of new benzensulfonamides incorporating s-triazines as cyclic linkers for inhibition of carbonic anhydrase IX. Sci. Rep. 2022 12 1 16756 10.1038/s41598‑022‑21024‑7 36202955
    [Google Scholar]
  71. Seo Y.J. Kim E. Oh I.S. Hyun J.Y. Song J.H. Lim H.J. Park S.J. Intramolecular cyclization of N -cyano sulfoximines by N–CN bond activation. RSC Advances 2023 13 35 24445 24449 10.1039/D3RA04208A 37583669
    [Google Scholar]
  72. Miyazaki Y. Ohta N. Semba K. Nakao Y. Intramolecular aminocyanation of alkenes by cooperative palladium/boron catalysis. J. Am. Chem. Soc. 2014 136 10 3732 3735 10.1021/ja4122632 24580141
    [Google Scholar]
  73. Bhat S.V. Robinson D. Moses J.E. Sharma P. Synthesis of oxadiazol-5-imines via the cyclizative capture of in situ generated cyanamide ions and nitrile oxides. Org. Lett. 2016 18 5 1100 1103 10.1021/acs.orglett.6b00203 26889784
    [Google Scholar]
  74. Wright K. Drouillat B. Menguy L. Marrot J. Couty F. 3‐Bromo N ‐alkyl cyanamides as versatile building blocks. Eur. J. Org. Chem. 2019 2019 1 112 117 10.1002/ejoc.201801439
    [Google Scholar]
  75. Jin J.K. Zhang F.L. Zhao Q. Lu J.A. Wang Y.F. Synthesis of diverse boron-handled n-heterocycles via radical borylative cyclization of N -allylcyanamides. Org. Lett. 2018 20 23 7558 7562 10.1021/acs.orglett.8b03303 30427202
    [Google Scholar]
  76. Wang C.C. Qu Y.L. Liu X.H. Ma Z.W. Yang B. Liu Z.J. Chen X.P. Chen Y.J. Synthesis of five-membered cyclic guanidines via cascade [3 + 2] cycloaddition of α-haloamides with organo-cyanamides. J. Org. Chem. 2021 86 4 3546 3554 10.1021/acs.joc.0c02932 33538590
    [Google Scholar]
  77. Shcherbakov N.V. Chikunova E.I. Dar’in D. Kukushkin V.Y. Dubovtsev A.Y. Redox-neutral and atom-economic route to β-carbolines via gold-catalyzed [4 + 2] cycloaddition of indolylynamides and cyanamides. J. Org. Chem. 2021 86 24 17804 17815 10.1021/acs.joc.1c02119 34812641
    [Google Scholar]
  78. Nasrollahzadeh M. Shafiei N. Orooji Y. Magnetic chitosan stabilized Cu(II)-tetrazole complex: An effective nanocatalyst for the synthesis of 3-imino-2-phenylisoindolin-1-one derivatives under ultrasound irradiation. Sci. Rep. 2022 12 1 6724 10.1038/s41598‑022‑10591‑4 35468913
    [Google Scholar]
  79. Avadhani A. Iniyavan P. Kumar Y. Ila H. Single-pot preparation of 4-amino-2-(het)aryl-5-substituted thiazoles employing functionalized dithioesters as thiocarbonyl precursors. J. Org. Chem. 2021 86 12 8508 8515 10.1021/acs.joc.1c00616 34107686
    [Google Scholar]
  80. Fu Z. Fu Y. Yin J. Hao G. Yi X. Zhong T. Guo S. Cai H. Electrochemical strategies for N -cyanation of secondary amines and α C -cyanation of tertiary amines under transition metal-free conditions. Green Chem. 2021 23 23 9422 9427 10.1039/D1GC02529E
    [Google Scholar]
  81. Yang M. Jiang R. Mu Y. Hong Y. Wan Y. Hou J. Tang D. Electrochemical cycloaddition of hydrazones with cyanamide for the synthesis of substituted 5-amine-1,2,4-triazoles. Chem. Commun. 2023 59 16 2303 2306 10.1039/D2CC06277A 36745484
    [Google Scholar]
  82. Yan Z.H. Yan Y. Wei Z.L. Liao W.W. Electrochemical trifluoromethylation/bicyclization of N -cyanamide alkenes: Synthesis of bicyclic amidine derivatives. J. Org. Chem. 2024 89 4 2718 2725 10.1021/acs.joc.3c02777 38306613
    [Google Scholar]
/content/journals/cos/10.2174/0115701794345484241217075932
Loading
/content/journals/cos/10.2174/0115701794345484241217075932
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test