Skip to content
2000
image of Synthesis, Molecular Docking, Antimicrobial, and Antioxidant Evaluation of Novel Dithiazole and Thiazole Derivatives

Abstract

Introduction

An efficient procedure was reported for the synthesis of novel hybrid dithiazoles and thiazoles , in good yields, by applying hydrazonyl chlorides with thiocarbohydrazone derivatives and .

Methods

The thiazole derivatives were evaluated for their antimicrobial and antioxidant activities.

Results

According to the results, thiazoles revealed marked potency as antimicrobial and antioxidant agents. Thus, 's DPPH radical scavenging activity was excellent (38.19±0.33 and 14.37±0.4) at concentrations of 2.0 and 1.0 mg/mL, respectively. In addition, compound exhibited activity against all bacterial strains tested, as evidenced by inhibition zones measuring that ranged from 8.5±0.43 mm for to 16.5±0.43 mm for .

Conclusion

The MIC results showed that compound was effective against , , , , and at concentrations of 1.0, 1.0, 2.0, 1.0, and 1.0 mg/mL, respectively. Furthermore, molecular docking has shown lower binding energy with different types of interactions at the active sites of Dihydropteroate synthase, Sortase A, LasR, and penicillin-binding protein pockets, indicating that these compounds could inhibit the enzyme and cause promising antimicrobial effects.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794334314241212114056
2025-01-14
2025-07-10
Loading full text...

Full text loading...

References

  1. Tang K.W.K. Millar B.C. Moore J.E. Antimicrobial resistance (AMR). Br. J. Biomed. Sci. 2023 80 11387 10.3389/bjbs.2023.11387 37448857
    [Google Scholar]
  2. Levin-Reisman I. Ronin I. Gefen O. Braniss I. Shoresh N. Balaban N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science 2017 355 6327 826 830 10.1126/science.aaj2191 28183996
    [Google Scholar]
  3. Doherty T.M. Hausdorff W.P. Kristinsson K.G. Effect of vaccination on the use of antimicrobial agents: A systematic literature review. Ann. Med. 2020 52 6 283 299 10.1080/07853890.2020.1782460 32597236
    [Google Scholar]
  4. Cole S.T. Who will develop new antibacterial agents? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014 369 1645 20130430 10.1098/rstb.2013.0430 24821916
    [Google Scholar]
  5. Sahoo J. Kumar Mekap S. Sudhir Kumar P. Synthesis, spectral characterization of some new 3-heteroaryl azo 4-hydroxy coumarin derivatives and their antimicrobial evaluation. J. Taibah Univ. Sci. 2015 9 2 187 195 10.1016/j.jtusci.2014.08.001
    [Google Scholar]
  6. Concilio S. Sessa L. Petrone A. Porta A. Diana R. Iannelli P. Piotto S. Structure modification of an active Azo-compound as a route to new antimicrobial compounds. Molecules 2017 22 6 875 10.3390/molecules22060875 28587076
    [Google Scholar]
  7. Piotto S. Concilio S. Sessa L. Porta A. Calabrese E.C. Zanfardino A. Varcamonti M. Iannelli P. Small azobenzene derivatives active against bacteria and fungi. Eur. J. Med. Chem. 2013 68 178 184 10.1016/j.ejmech.2013.07.030 23974017
    [Google Scholar]
  8. Al-Anazi K.M. Mahmoud A.H. AbulFarah M. Allam A.A. Fouda M.M.G. Gaffer H.E. 2‐amino‐5‐arylazothiazole‐based derivatives: In vitro cytotoxicity, antioxidant properties, and bleomycin‐dependent DNA damage. ChemistrySelect 2019 4 19 5570 5576 10.1002/slct.201901148
    [Google Scholar]
  9. Abdelriheem N. Mohamed A. Abdelhamid A. Synthesis of some new 1,3,4-thiadiazole, thiazole and pyridine derivatives containing 1,2,3-triazole moiety. Molecules 2017 22 2 268 10.3390/molecules22020268 28208643
    [Google Scholar]
  10. Gomha S. Farghaly T. Mabkhot Y. Zayed M. Mohamed A. Microwave-assisted synthesis of some novel azoles and azolopyrimidines as antimicrobial agents. Molecules 2017 22 3 346 10.3390/molecules22030346 28241500
    [Google Scholar]
  11. Abdelhamid A. Gomha S. Abdelriheem N. Kandeel S. Synthesis of new 3-heteroarylindoles as potential anticancer agents. Molecules 2016 21 7 929 10.3390/molecules21070929 27438822
    [Google Scholar]
  12. Parekh N.M. Juddhawala K.V. Rawal B.M. Antimicrobial activity of thiazolyl benzenesulfonamide-condensed 2,4-thiazolidinediones derivatives. Med. Chem. Res. 2013 22 6 2737 2745 10.1007/s00044‑012‑0273‑x
    [Google Scholar]
  13. Banothu J. Vaarla K. Bavantula R. Crooks P.A. Sodium fluoride as an efficient catalyst for the synthesis of 2,4-disubstituted-1,3-thiazoles and selenazoles at ambient temperature. Chin. Chem. Lett. 2014 25 1 172 175 10.1016/j.cclet.2013.10.001
    [Google Scholar]
  14. Zablotskaya A. Segal I. Geronikaki A. Eremkina T. Belyakov S. Petrova M. Shestakova I. Zvejniece L. Nikolajeva V. Synthesis, physicochemical characterization, cytotoxicity, antimicrobial, anti-inflammatory and psychotropic activity of new N-[1,3-(benzo)thiazol-2-yl]-ω-[3,4-dihydroisoquinolin-2(1H)-yl]alkanamides. Eur. J. Med. Chem. 2013 70 846 856 10.1016/j.ejmech.2013.10.008 24262377
    [Google Scholar]
  15. Gouda M.A. Berghot M.A. Abd El-Ghani G.E. Khalil A.M. Synthesis and antimicrobial activities of some new thiazole and pyrazole derivatives based on 4,5,6,7-tetrahydrobenzothiophene moiety. Eur. J. Med. Chem. 2010 45 4 1338 1345 10.1016/j.ejmech.2009.12.020 20064677
    [Google Scholar]
  16. Sanad S.M.H. Ahmed A.A.M. Mekky A.E.M. Synthesis, in‐vitro and in‐silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors. Arch. Pharm. (Weinheim) 2020 353 4 1900309 10.1002/ardp.201900309 31967349
    [Google Scholar]
  17. Farghaly T.A. Abdallah M.A. Masaret G.S. Muhammad Z.A. New and efficient approach for synthesis of novel bioactive [1,3,4]thiadiazoles incorporated with 1,3-thiazole moiety. Eur. J. Med. Chem. 2015 97 320 333 10.1016/j.ejmech.2015.05.009 26055810
    [Google Scholar]
  18. Gomha S.M. Riyadh S.M. Abbas I.M. Bauomi M.A. synthetic utility of ethylidenethiosemicarbazide: synthesis and anticancer activity of 1,3-thiazines and thiazoles with imidazole moiety. Heterocycles 2013 87 341 356 10.3987/COM‑12‑12625
    [Google Scholar]
  19. Al-Humaidi J.Y. Gomha S.M. Riyadh S.M. Ibrahim M.S. Zaki M.E.A. Abolibda T.Z. Jefri O.A. Abouzied A.S. Synthesis, biological evaluation, and molecular docking of novel azolylhydrazonothiazoles as potential anticancer agents. ACS Omega 2023 8 37 34044 34058 10.1021/acsomega.3c05038 37744790
    [Google Scholar]
  20. Rudolph J. Theis H. Hanke R. Endermann R. Johannsen L. Geschke F.U. seco-Cyclothialidines: new concise synthesis, inhibitory activity toward bacterial and human DNA topoisomerases, and antibacterial properties. J. Med. Chem. 2001 44 4 619 626 10.1021/jm0010623 11170652
    [Google Scholar]
  21. Haroun M. Tratrat C. Kositzi K. Tsolaki E. Petrou A. Aldhubiab B. Attimarad M. Harsha S. Geronikaki A. Venugopala K.N. Elsewedy H.S. Sokovic M. Glamoclija J. Ciric A. New benzothiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation. curr. top. med. chem. 2018 18 1 75 87 10.2174/1568026618666180206101814 29412109
    [Google Scholar]
  22. Ahmed S. Zayed M. El-Messery S. Al-Agamy M. Abdel-Rahman H. Design, synthesis, antimicrobial evaluation and molecular modeling study of 1,2,4-triazole-based 4-thiazolidinones. Molecules 2016 21 5 568 10.3390/molecules21050568 27144547
    [Google Scholar]
  23. Andres C.J. Bronson J.J. D’Andrea S.V. Deshpande M.S. Falk P.J. Grant-Young K.A. Harte W.E. Ho H.T. Misco P.F. Robertson J.G. Stock D. Sun Y. Walsh A.W. 4-Thiazolidinones: Novel inhibitors of the bacterial enzyme murB. Bioorg. Med. Chem. Lett. 2000 10 8 715 717 10.1016/S0960‑894X(00)00073‑1 10782671
    [Google Scholar]
  24. Rostom S.A.F. El-Ashmawy I.M. Abd El Razik H.A. Badr M.H. Ashour H.M.A. Design and synthesis of some thiazolyl and thiadiazolyl derivatives of antipyrine as potential non-acidic anti-inflammatory, analgesic and antimicrobial agents. Bioorg. Med. Chem. 2009 17 2 882 895 10.1016/j.bmc.2008.11.035 19084415
    [Google Scholar]
  25. Kumar A. Rajput C.S. Bhati S.K. Synthesis of 3-[4′-(p-chlorophenyl)-thiazol-2′-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent. Bioorg. Med. Chem. 2007 15 8 3089 3096 10.1016/j.bmc.2007.01.042 17317192
    [Google Scholar]
  26. Kalkhambkar R.G. Kulkarni G.M. Shivkumar H. Rao R.N. Synthesis of novel triheterocyclic thiazoles as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2007 42 10 1272 1276 10.1016/j.ejmech.2007.01.023 17337096
    [Google Scholar]
  27. Popsavin M. Spaić S. Svirčev M. Kojić V. Bogdanović G. Popsavin V. Synthesis and antitumour activity of new tiazofurin analogues bearing a 2,3-anhydro functionality in the furanose ring. Bioorg. Med. Chem. Lett. 2007 17 15 4123 4127 10.1016/j.bmcl.2007.05.050 17543526
    [Google Scholar]
  28. Ramla M.M. Omar M.A. El-Khamry A.M.M. El-Diwani H.I. Synthesis and antitumor activity of 1-substituted-2-methyl-5-nitrobenzimidazoles. Bioorg. Med. Chem. 2006 14 21 7324 7332 10.1016/j.bmc.2006.06.033 16860558
    [Google Scholar]
  29. Ayati A. Emami S. Asadipour A. Shafiee A. Foroumadi A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem. 2015 97 699 718 10.1016/j.ejmech.2015.04.015 25934508
    [Google Scholar]
  30. Bekheit M.S. Sabry E. Mohamed H.A. Ewies E.F. Kariuki B.M. Fouad M.A. Vullo D. Supuran C.T. Novel sulfonamide‐phosphonate conjugates as carbonic anhydrase isozymes inhibitors. Drug Dev. Res. 2024 85 1 e22135 10.1002/ddr.22135 37997034
    [Google Scholar]
  31. Sabry E. Mohamed H.A. Ewies E.F. Kariuki B.M. Darwesh O.M. Bekheit M.S. Microwave-assisted synthesis of novel sulfonamide-based compounds bearing α-aminophosphonate and their antimicrobial properties. J. Mol. Struct. 2022 1266 133553 10.1016/j.molstruc.2022.133553
    [Google Scholar]
  32. Khidre R. E. Sabry E. El-Sayed A. F. Sediek A. A. Design, one‑pot synthesis, in silico ADMET prediction and molecular docking of novel triazolyl thiadiazine and thiazole derivatives with evaluation of antimicrobial, antioxidant and antibiofilm inhibition activityDesign, one‑pot synthesis, in silico ADMET prediction and molecular docking of novel triazolyl thiadiazine and thiazole derivatives with evaluation of antimicrobial, antioxidant and antibiofilm inhibition activityDesign, one‑pot synthesis, in silico ADMET prediction and molecular docking of novel triazolyl thiadiazine and thiazole derivatives with evaluation of antimicrobial, antioxidant and antibiofilm inhibition activity. J. Iranian Chem. Soc. 2023 20 10 2923 2947 10.1007/s13738‑023‑02889‑5
    [Google Scholar]
  33. Jawhari A. H. Mukhrish Y. E. El-Sayed A. F. Design, synthesis, in silico ADMET prediction, molecular docking, antimicrobial and antioxidant evaluation of novel diethyl pyridinyl phosphonate derivatives. Curr. Org. Chem 2023 27 860 875 10.2174/1385272827666230809094204
    [Google Scholar]
  34. El-Sayed A. F. Aboulthana W. M. Sherief M. A. El-Bassyouni G. T. Mousa S. M. Synthesis, structural, molecular docking, and in vitro biological activities of Cu-doped ZnO nanomaterials. Sci Rep 2024 14 1 9027 10.1038/s41598‑024‑59088‑2
    [Google Scholar]
  35. Khidre R.E. Radini I.A.M. Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents. Sci. Rep. 2021 11 1 7846 10.1038/s41598‑021‑86424‑7 33846389
    [Google Scholar]
  36. Mansoor S. Shahid S. Javed M. Saad M. Iqbal S. Alsaab H.O. Awwad N.S. Ibrahium H.A. Zaman S. Sarwar M.N. Fatima A. Green synthesis of a MnO-GO-Ag nanocomposite using leaf extract of Fagonia arabica and its antioxidant and anti-inflammatory performance. Nano-Structures & Nano-Objects 2022 29 100835 10.1016/j.nanoso.2021.100835
    [Google Scholar]
  37. Magaldi S. Mata-Essayag S. Hartung de Capriles C. Perez C. Colella M.T. Olaizola C. Ontiveros Y. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 2004 8 1 39 45 10.1016/j.ijid.2003.03.002 14690779
    [Google Scholar]
  38. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  39. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  40. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  41. Turcotte S. Chan D.A. Sutphin P.D. Giaccia A.J. Hay M.P. Denny W.A. Bonnet M.M. Heteroaryl compounds, compositions, and methods of use in cancer treatment. Patent WO 2009/114552, 2009
  42. Dieckmann W. Platz L. On a new formation of osotetrazones. Ber. Dtsch. Chem. Ges. 1905 38 3 2986 2990 10.1002/cber.190503803103
    [Google Scholar]
  43. Abushamleh A.S. Al-Aqarbeh M.M. Day V. Transition metal complexes of derivatized chiral dihydro-1,2,4-triazin-6-ones. Template synthesis of nickel (II) tetraaza-(4N-M) complexes incorporating the triazinone moiety. Am. J. Appl. Sci. 2008 5 6 750 754 10.3844/ajassp.2008.750.754
    [Google Scholar]
  44. Eweiss N.F. Osman A. Synthesis of heterocycles. Part II. New routes to acetylthiadiazolines and alkylazothiazoles. J. Heterocycl. Chem. 1980 17 8 1713 1717 10.1002/jhet.5570170814
    [Google Scholar]
  45. Shawali A.S. Eweiss N.F. Hassaneen H.M. Sami M. Synthesis and rearrangement of ethyl aryloxyglyoxalate arylhydrazones. Bull. Chem. Soc. Jpn. 1975 48 1 365 366 10.1246/bcsj.48.365
    [Google Scholar]
  46. Shawali A.S.A.S. Osman A. Synthesis and reactions of phenylcarbamoylarylhydrazidic chlorides. Tetrahedron 1971 27 12 2517 2528 10.1016/S0040‑4020(01)90753‑7
    [Google Scholar]
  47. Metwally N.H. Abdelrazek F.M. Eldaly S.M. Metz P. 3‐(3,5‐Dimethyl‐1 H ‐pyrazol‐1‐yl)‐3‐oxopropanenitrile as precursor for some new mono‐heterocyclic and bis‐heterocyclic compounds. J. Heterocycl. Chem. 2017 54 1 289 294 10.1002/jhet.2578
    [Google Scholar]
  48. El-Debaiky S. A. El-Sayed A. F. Morphological and molecular identification of endophytic fungi from roots of tomato and evaluation of their antioxidant and cytotoxic activities. Egypt. J. Bot 2023 63 3 981 1003 10.21608/ejbo.2023.201958.2291
    [Google Scholar]
  49. Sroor F. M. El‐Sayed A. F. Abdelraof M. Design, synthesis, structure elucidation, antimicrobial, molecular docking, and SAR studies of novel urea derivatives bearing tricyclic aromatic hydrocarbon rings. Arch Pharm (Weinheim) 2024 357 6 e2300738 10.1002/ardp.202300738
    [Google Scholar]
  50. Ekram B. Tolba E. El-Sayed A. F. Müller W. E. Schröder H. C. Wang X. Abdel-Hady B. M. Cell migration, DNA fragmentation and antibacterial properties of novel silver doped calcium polyphosphate nanoparticles. Sci Rep 2024 14 1 565 10.1038/s41598‑023‑50849‑z
    [Google Scholar]
  51. Abdelrazik M. Elkotaby H. H. Yousef A. El-Sayed A. F. Khedr M. Green synthesis of silver nanoparticles derived from lemon and pomegranate peel extracts to combat multidrug-resistant bacterial isolates. J Genet Eng Biotechnol 2023 21 1 97 10.1186/s43141‑023‑00547‑0
    [Google Scholar]
  52. Malik S. Lodhi M. A. Ayaz S. Ullah Z. Unlocking potential diabetes therapeutics: Insights into alpha-glucosidase inhibition. J. Mol. Liq. 2024 400 15 April 2024 124572 10.1016/j.molliq.2024.124572
    [Google Scholar]
  53. Hafez H.N. Abbas H.A.S. El-Sayed A.F. Design, synthesis, antiproliferative, antituberculosis and in-silico analysis of new Schiff base derivatives of cyclohepta[b]thiophene. J. Mol. Struct. 2024 1310 138349 10.1016/j.molstruc.2024.138349
    [Google Scholar]
  54. Melk M.M. Melek F.R. El-Sayed A.F. Enzymes inhibitory capabilities of phenolics from Plumbago indica L. and Plumbago auriculata Lam.: In-vitro studies and molecular docking. Process Biochem. 2024 136 1 13 10.1016/j.procbio.2023.11.011
    [Google Scholar]
  55. Ullah Z. Sattar F. Kim H. J. Jang S. Mary Y. S. Zhan X. Kwon H. W. Computational study of toxic gas removal. J. Mol. Liq. 2022 365 1 November 2022 120213 10.1016/j.molliq.2022.120213
    [Google Scholar]
  56. Zhan X. Kim D. Ullah Z. Churchill D. G. Corrole–chelated phosphorus complex: Enabling dual C–H chlorination and H₂O₂ generation. J. Mol. Liq. 2024 125938 10.1016/j.molliq.2024.125938
    [Google Scholar]
/content/journals/cos/10.2174/0115701794334314241212114056
Loading
/content/journals/cos/10.2174/0115701794334314241212114056
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: hydrazonyl chlorides ; ADME ; thiazole ; antioxidant activity ; docking ; Synthesis ; antimicrobial activity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test