Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

An efficient procedure was reported for the synthesis of novel hybrid dithiazoles and thiazoles , in good yields, by applying hydrazonyl chlorides with thiocarbohydrazone derivatives and .

Methods

The thiazole derivatives were evaluated for their antimicrobial and antioxidant activities.

Results

According to the results, thiazoles revealed marked potency as antimicrobial and antioxidant agents. Thus, 's DPPH radical scavenging activity was excellent (38.19±0.33 and 14.37±0.4) at concentrations of 2.0 and 1.0 mg/mL, respectively. In addition, compound exhibited activity against all bacterial strains tested, as evidenced by inhibition zones measuring that ranged from 8.5±0.43 mm for to 16.5±0.43 mm for .

Conclusion

The MIC results showed that compound was effective against , , , , and at concentrations of 1.0, 1.0, 2.0, 1.0, and 1.0 mg/mL, respectively. Furthermore, molecular docking has shown lower binding energy with different types of interactions at the active sites of Dihydropteroate synthase, Sortase A, LasR, and penicillin-binding protein pockets, indicating that these compounds could inhibit the enzyme and cause promising antimicrobial effects.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794334314241212114056
2025-01-14
2025-07-26
Loading full text...

Full text loading...

References

  1. TangK.W.K. MillarB.C. MooreJ.E. Antimicrobial resistance (AMR).Br. J. Biomed. Sci.2023801138710.3389/bjbs.2023.11387 37448857
    [Google Scholar]
  2. Levin-ReismanI. RoninI. GefenO. BranissI. ShoreshN. BalabanN.Q. Antibiotic tolerance facilitates the evolution of resistance.Science2017355632782683010.1126/science.aaj2191 28183996
    [Google Scholar]
  3. DohertyT.M. HausdorffW.P. KristinssonK.G. Effect of vaccination on the use of antimicrobial agents: A systematic literature review.Ann. Med.202052628329910.1080/07853890.2020.1782460 32597236
    [Google Scholar]
  4. ColeS.T. Who will develop new antibacterial agents?Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916452013043010.1098/rstb.2013.0430 24821916
    [Google Scholar]
  5. SahooJ. Kumar MekapS. Sudhir KumarP. Synthesis, spectral characterization of some new 3-heteroaryl azo 4-hydroxy coumarin derivatives and their antimicrobial evaluation.J. Taibah Univ. Sci.20159218719510.1016/j.jtusci.2014.08.001
    [Google Scholar]
  6. ConcilioS. SessaL. PetroneA. PortaA. DianaR. IannelliP. PiottoS. Structure modification of an active Azo-compound as a route to new antimicrobial compounds.Molecules201722687510.3390/molecules22060875 28587076
    [Google Scholar]
  7. PiottoS. ConcilioS. SessaL. PortaA. CalabreseE.C. ZanfardinoA. VarcamontiM. IannelliP. Small azobenzene derivatives active against bacteria and fungi.Eur. J. Med. Chem.20136817818410.1016/j.ejmech.2013.07.030 23974017
    [Google Scholar]
  8. Al-AnaziK.M. MahmoudA.H. AbulFarah, M.; Allam, A.A.; Fouda, M.M.G.; Gaffer, H.E. 2‐amino‐5‐arylazothiazole‐based derivatives: In vitro cytotoxicity, antioxidant properties, and bleomycin‐dependent DNA damage.ChemistrySelect20194195570557610.1002/slct.201901148
    [Google Scholar]
  9. AbdelriheemN. MohamedA. AbdelhamidA. Synthesis of some new 1,3,4-thiadiazole, thiazole and pyridine derivatives containing 1,2,3-triazole moiety.Molecules201722226810.3390/molecules22020268 28208643
    [Google Scholar]
  10. GomhaS. FarghalyT. MabkhotY. ZayedM. MohamedA. Microwave-assisted synthesis of some novel azoles and azolopyrimidines as antimicrobial agents.Molecules201722334610.3390/molecules22030346 28241500
    [Google Scholar]
  11. AbdelhamidA. GomhaS. AbdelriheemN. KandeelS. Synthesis of new 3-heteroarylindoles as potential anticancer agents.Molecules201621792910.3390/molecules21070929 27438822
    [Google Scholar]
  12. ParekhN.M. JuddhawalaK.V. RawalB.M. Antimicrobial activity of thiazolyl benzenesulfonamide-condensed 2,4-thiazolidinediones derivatives.Med. Chem. Res.20132262737274510.1007/s00044‑012‑0273‑x
    [Google Scholar]
  13. BanothuJ. VaarlaK. BavantulaR. CrooksP.A. Sodium fluoride as an efficient catalyst for the synthesis of 2,4-disubstituted-1,3-thiazoles and selenazoles at ambient temperature.Chin. Chem. Lett.201425117217510.1016/j.cclet.2013.10.001
    [Google Scholar]
  14. ZablotskayaA. SegalI. GeronikakiA. EremkinaT. BelyakovS. PetrovaM. ShestakovaI. ZvejnieceL. NikolajevaV. Synthesis, physicochemical characterization, cytotoxicity, antimicrobial, anti-inflammatory and psychotropic activity of new N-[1,3-(benzo)thiazol-2-yl]-ω-[3,4-dihydroisoquinolin-2(1H)-yl]alkanamides.Eur. J. Med. Chem.20137084685610.1016/j.ejmech.2013.10.008 24262377
    [Google Scholar]
  15. GoudaM.A. BerghotM.A. Abd El-GhaniG.E. KhalilA.M. Synthesis and antimicrobial activities of some new thiazole and pyrazole derivatives based on 4,5,6,7-tetrahydrobenzothiophene moiety.Eur. J. Med. Chem.20104541338134510.1016/j.ejmech.2009.12.020 20064677
    [Google Scholar]
  16. SanadS.M.H. AhmedA.A.M. MekkyA.E.M. Synthesis, in‐vitro and in‐silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors.Arch. Pharm. (Weinheim)20203534190030910.1002/ardp.201900309 31967349
    [Google Scholar]
  17. FarghalyT.A. AbdallahM.A. MasaretG.S. MuhammadZ.A. New and efficient approach for synthesis of novel bioactive [1,3,4]thiadiazoles incorporated with 1,3-thiazole moiety.Eur. J. Med. Chem.20159732033310.1016/j.ejmech.2015.05.009 26055810
    [Google Scholar]
  18. GomhaS.M. RiyadhS.M. AbbasI.M. BauomiM.A. synthetic utility of ethylidenethiosemicarbazide: synthesis and anticancer activity of 1,3-thiazines and thiazoles with imidazole moiety.Heterocycles20138734135610.3987/COM‑12‑12625
    [Google Scholar]
  19. Al-HumaidiJ.Y. GomhaS.M. RiyadhS.M. IbrahimM.S. ZakiM.E.A. AbolibdaT.Z. JefriO.A. AbouziedA.S. Synthesis, biological evaluation, and molecular docking of novel azolylhydrazonothiazoles as potential anticancer agents.ACS Omega2023837340443405810.1021/acsomega.3c05038 37744790
    [Google Scholar]
  20. RudolphJ. TheisH. HankeR. EndermannR. JohannsenL. GeschkeF.U. seco-Cyclothialidines: new concise synthesis, inhibitory activity toward bacterial and human DNA topoisomerases, and antibacterial properties.J. Med. Chem.200144461962610.1021/jm0010623 11170652
    [Google Scholar]
  21. HarounM. TratratC. KositziK. TsolakiE. PetrouA. AldhubiabB. AttimaradM. HarshaS. GeronikakiA. VenugopalaK.N. ElsewedyH.S. SokovicM. GlamoclijaJ. CiricA. New benzothiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation.curr. top. med. chem.2018181758710.2174/1568026618666180206101814 29412109
    [Google Scholar]
  22. AhmedS. ZayedM. El-MesseryS. Al-AgamyM. Abdel-RahmanH. Design, synthesis, antimicrobial evaluation and molecular modeling study of 1,2,4-triazole-based 4-thiazolidinones.Molecules201621556810.3390/molecules21050568 27144547
    [Google Scholar]
  23. AndresC.J. BronsonJ.J. D’AndreaS.V. DeshpandeM.S. FalkP.J. Grant-YoungK.A. HarteW.E. HoH.T. MiscoP.F. RobertsonJ.G. StockD. SunY. WalshA.W. 4-Thiazolidinones: Novel inhibitors of the bacterial enzyme murB.Bioorg. Med. Chem. Lett.200010871571710.1016/S0960‑894X(00)00073‑1 10782671
    [Google Scholar]
  24. RostomS.A.F. El-AshmawyI.M. Abd El RazikH.A. BadrM.H. AshourH.M.A. Design and synthesis of some thiazolyl and thiadiazolyl derivatives of antipyrine as potential non-acidic anti-inflammatory, analgesic and antimicrobial agents.Bioorg. Med. Chem.200917288289510.1016/j.bmc.2008.11.035 19084415
    [Google Scholar]
  25. KumarA. RajputC.S. BhatiS.K. Synthesis of 3-[4′-(p-chlorophenyl)-thiazol-2′-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent.Bioorg. Med. Chem.20071583089309610.1016/j.bmc.2007.01.042 17317192
    [Google Scholar]
  26. KalkhambkarR.G. KulkarniG.M. ShivkumarH. RaoR.N. Synthesis of novel triheterocyclic thiazoles as anti-inflammatory and analgesic agents.Eur. J. Med. Chem.200742101272127610.1016/j.ejmech.2007.01.023 17337096
    [Google Scholar]
  27. PopsavinM. SpaićS. SvirčevM. KojićV. BogdanovićG. PopsavinV. Synthesis and antitumour activity of new tiazofurin analogues bearing a 2,3-anhydro functionality in the furanose ring.Bioorg. Med. Chem. Lett.200717154123412710.1016/j.bmcl.2007.05.050 17543526
    [Google Scholar]
  28. RamlaM.M. OmarM.A. El-KhamryA.M.M. El-DiwaniH.I. Synthesis and antitumor activity of 1-substituted-2-methyl-5-nitrobenzimidazoles.Bioorg. Med. Chem.200614217324733210.1016/j.bmc.2006.06.033 16860558
    [Google Scholar]
  29. AyatiA. EmamiS. AsadipourA. ShafieeA. ForoumadiA. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery.Eur. J. Med. Chem.20159769971810.1016/j.ejmech.2015.04.015 25934508
    [Google Scholar]
  30. BekheitM.S. SabryE. MohamedH.A. EwiesE.F. KariukiB.M. FouadM.A. VulloD. SupuranC.T. Novel sulfonamide‐phosphonate conjugates as carbonic anhydrase isozymes inhibitors.Drug Dev. Res.2024851e2213510.1002/ddr.22135 37997034
    [Google Scholar]
  31. SabryE. MohamedH.A. EwiesE.F. KariukiB.M. DarweshO.M. BekheitM.S. Microwave-assisted synthesis of novel sulfonamide-based compounds bearing α-aminophosphonate and their antimicrobial properties.J. Mol. Struct.2022126613355310.1016/j.molstruc.2022.133553
    [Google Scholar]
  32. KhidreR.E. SabryE. El-SayedA.F. SediekA.A. Design, one pot synthesis, in silico ADMET prediction and molecular docking of novel triazolyl thiadiazine and thiazole derivatives with evaluation of antimicrobial, antioxidant and antibiofilm inhibition activityDesign, one pot synthesis, in silico ADMET prediction and molecular docking of novel triazolyl thiadiazine and thiazole derivatives with evaluation of antimicrobial, antioxidant and antibiofilm inhibition activityDesign, one pot synthesis, in silico ADMET prediction and molecular docking of novel triazolyl thiadiazine and thiazole derivatives with evaluation of antimicrobial, antioxidant and antibiofilm inhibition activity.J. Iranian Chem. Soc.202320102923294710.1007/s13738‑023‑02889‑5
    [Google Scholar]
  33. JawhariA. H. MukhrishY. E. El-SayedA. F. Design, synthesis, in silico ADMET prediction, molecular docking, antimicrobial and antioxidant evaluation of novel diethyl pyridinyl phosphonate derivatives.Curr. Org. Chem20232786087510.2174/1385272827666230809094204
    [Google Scholar]
  34. El-SayedA.F. AboulthanaW.M. SheriefM.A. El-BassyouniG.T. MousaS.M. Synthesis, structural, molecular docking, and in vitro biological activities of Cu-doped ZnO nanomaterials.Sci. Rep.2024141902710.1038/s41598‑024‑59088‑2
    [Google Scholar]
  35. KhidreR.E. RadiniI.A.M. Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents.Sci. Rep.2021111784610.1038/s41598‑021‑86424‑7 33846389
    [Google Scholar]
  36. MansoorS. ShahidS. JavedM. SaadM. IqbalS. AlsaabH.O. AwwadN.S. IbrahiumH.A. ZamanS. SarwarM.N. FatimaA. Green synthesis of a MnO-GO-Ag nanocomposite using leaf extract of Fagonia arabica and its antioxidant and anti-inflammatory performance.Nano-Structures & Nano-Objects20222910083510.1016/j.nanoso.2021.100835
    [Google Scholar]
  37. MagaldiS. Mata-EssayagS. Hartung de CaprilesC. PerezC. ColellaM.T. OlaizolaC. OntiverosY. Well diffusion for antifungal susceptibility testing.Int. J. Infect. Dis.200481394510.1016/j.ijid.2003.03.002 14690779
    [Google Scholar]
  38. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  39. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  40. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  41. TurcotteS. ChanD.A. SutphinP.D. GiacciaA.J. HayM.P. DennyW.A. BonnetM.M. Heteroaryl compounds, compositions, and methods of use in cancer treatment.Patent WO 2009/114552,2009
  42. DieckmannW. PlatzL. On a new formation of osotetrazones.Ber. Dtsch. Chem. Ges.19053832986299010.1002/cber.190503803103
    [Google Scholar]
  43. AbushamlehA.S. Al-AqarbehM.M. DayV. Transition metal complexes of derivatized chiral dihydro-1,2,4-triazin-6-ones. Template synthesis of nickel (II) tetraaza-(4N-M) complexes incorporating the triazinone moiety.Am. J. Appl. Sci.20085675075410.3844/ajassp.2008.750.754
    [Google Scholar]
  44. EweissN.F. OsmanA. Synthesis of heterocycles. Part II. New routes to acetylthiadiazolines and alkylazothiazoles.J. Heterocycl. Chem.19801781713171710.1002/jhet.5570170814
    [Google Scholar]
  45. ShawaliA.S. EweissN.F. HassaneenH.M. SamiM. Synthesis and rearrangement of ethyl aryloxyglyoxalate arylhydrazones.Bull. Chem. Soc. Jpn.197548136536610.1246/bcsj.48.365
    [Google Scholar]
  46. ShawaliA.S.A.S. OsmanA. Synthesis and reactions of phenylcarbamoylarylhydrazidic chlorides.Tetrahedron197127122517252810.1016/S0040‑4020(01)90753‑7
    [Google Scholar]
  47. MetwallyN.H. AbdelrazekF.M. EldalyS.M. MetzP. 3‐(3,5‐Dimethyl‐1 H ‐pyrazol‐1‐yl)‐3‐oxopropanenitrile as precursor for some new mono‐heterocyclic and bis‐heterocyclic compounds.J. Heterocycl. Chem.201754128929410.1002/jhet.2578
    [Google Scholar]
  48. El-DebaikyS.A. El-SayedA.F. Morphological and molecular identification of endophytic fungi from roots of tomato and evaluation of their antioxidant and cytotoxic activities.Egypt. J. Bot.2023633981100310.21608/ejbo.2023.201958.2291
    [Google Scholar]
  49. SroorF.M. El‐SayedA.F. AbdelraofM. Design, synthesis, structure elucidation, antimicrobial, molecular docking, and SAR studies of novel urea derivatives bearing tricyclic aromatic hydrocarbon rings.Arch. Pharm. (Weinheim)20243576e230073810.1002/ardp.202300738
    [Google Scholar]
  50. EkramB. TolbaE. El-SayedA.F. MüllerW.E. SchröderH. C. WangX. Abdel-HadyB. M. Cell migration, DNA fragmentation and antibacterial properties of novel silver doped calcium polyphosphate nanoparticles.Sci. Rep.202414156510.1038/s41598‑023‑50849‑z
    [Google Scholar]
  51. AbdelrazikM. ElkotabyH.H. YousefA. El-SayedA.F. KhedrM. Green synthesis of silver nanoparticles derived from lemon and pomegranate peel extracts to combat multidrug-resistant bacterial isolates.J. Genet. Eng. Biotechnol.20232119710.1186/s43141‑023‑00547‑0
    [Google Scholar]
  52. MalikS. LodhiM. A. AyazS. UllahZ. Unlocking potential diabetes therapeutics: Insights into alpha-glucosidase inhibition.J. Mol. Liq.202440015 April 202412457210.1016/j.molliq.2024.124572
    [Google Scholar]
  53. HafezH.N. AbbasH.A.S. El-SayedA.F. Design, synthesis, antiproliferative, antituberculosis and in-silico analysis of new Schiff base derivatives of cyclohepta[b]thiophene.J. Mol. Struct.2024131013834910.1016/j.molstruc.2024.138349
    [Google Scholar]
  54. MelkM.M. MelekF.R. El-SayedA.F. Enzymes inhibitory capabilities of phenolics from Plumbago indica L. and Plumbago auriculata Lam.: In vitro studies and molecular docking.Process Biochem.202413611310.1016/j.procbio.2023.11.011
    [Google Scholar]
  55. UllahZ. SattarF. KimH. J. JangS. MaryY. S. ZhanX. KwonH. W. Computational study of toxic gas removal.J. Mol. Liq.20223651 November 202212021310.1016/j.molliq.2022.120213
    [Google Scholar]
  56. ZhanX. KimD. UllahZ. ChurchillD.G. Corrole–chelated phosphorus complex: Enabling dual C–H chlorination and H2O2 generation.J. Mol. Liq.202412593810.1016/j.molliq.2024.125938
    [Google Scholar]
/content/journals/cos/10.2174/0115701794334314241212114056
Loading
/content/journals/cos/10.2174/0115701794334314241212114056
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test