Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Natural products, with their various sources from plants, marine organisms, and microorganisms, are considered a key source and inspiration for medicines and continue to be so. Indole alkaloids are a class of alkaloids and represent a large subunit of natural products. Indole alkaloids of biological importance are numerous and cover a wide range of pharmaceutical applications, including anticancer, antiviral, antimicrobial, anti-inflammatory, and antioxidant. Obtaining natural, biologically active indole compounds involves isolating them from their natural sources or preparing them synthetically. 3-Substituted indoles represent an emerging structural class of marine alkaloids based on their high degree of biological activity. 3-Acetyl indole is an important core used as a starting material for synthesizing many bioactive indole alkaloids. (5-Indole)oxazole alkaloids, β-carboline alkaloids, bis-indole alkaloids, chuangxinmycin, meridianine, and (±) indolemycin are the most important indole alkaloids that are prepared starting from 3-acety indole. The present review provides comprehensive information on the structures and the synthesis of bioactive indole alkaloids utilizing 3-acetyl indole and its derivatives as starting compounds. Additionally, it also spotlights the diverse biological activities of these compounds.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794325027240827043203
2024-10-01
2025-06-23
Loading full text...

Full text loading...

References

  1. GadS.C. Natural Products.Encyclopedia of Toxicology. WexlerP. OxfordAcademic Press202467167410.1016/B978‑0‑12‑824315‑2.00484‑X
    [Google Scholar]
  2. ChaachouayN. ZidaneL. Plant-derived natural products: A source for drug discovery and development.Drugs Drug Candid.20243118420710.3390/ddc3010011
    [Google Scholar]
  3. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b0128532162523
    [Google Scholar]
  4. HongJ. Natural product diversity and its role in chemical biology and drug discovery.Curr. Opin. Chem. Biol.20111535035410.1016/j.cbpa.2011.03.00421489856
    [Google Scholar]
  5. SinghM. SharmaP. SinghP.K. SinghT.G. SainiB. Medicinal potential of heterocyclic compounds from diverse natural sources for the management of cancer.Mini Rev. Med. Chem.2020201194295710.2174/138955752066620021210474232048967
    [Google Scholar]
  6. ChengY. HuangZ.T. WangM.X. Heterocyclic enamines: The versatile intermediates in the synthesis of heterocyclic compounds and natural products.Curr. Org. Chem.20048432535110.2174/1385272043485936
    [Google Scholar]
  7. HamidH.A. RamliA.N. YusoffM.M. Indole alkaloids from plants as potential leads for antidepressant drugs: A mini review.Front. Pharmacol.201789610.3389/fphar.2017.0009628293192
    [Google Scholar]
  8. QinR. YouF.M. ZhaoQ. XieX. PengC. ZhanG. HanB. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets.J. Hematol. Oncol.202215113310.1186/s13045‑022‑01350‑z36104717
    [Google Scholar]
  9. KherkhacheH. BenabdelazizI. SilvaA.M. LahrechM.B. BenaliaM. HabaH. A new indole alkaloid, antioxidant and antibacterial activities of crude extracts from Saccocalyx satureioides.Nat. Prod. Res.202034111528153410.1080/14786419.2018.151981730445859
    [Google Scholar]
  10. HegazyA. MahmoudS.H. ElshaierY.A. ShamaN.M. NasrN.F. AliM.A. El-ShazlyA.M. MostafaI. MostafaA. Antiviral activities of plant-derived indole and β-carboline alkaloids against human and avian influenza viruses.Sci. Rep.2023131161210.1038/s41598‑023‑27954‑036709362
    [Google Scholar]
  11. XuD. XuZ. Indole alkaloids with potential anticancer activity.Curr. Top. Med. Chem.202020211938194910.2174/156802662066620062215032532568021
    [Google Scholar]
  12. GulW. HamannM.T. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases.Life Sci.200578544245310.1016/j.lfs.2005.09.00716236327
    [Google Scholar]
  13. IbrahimS.M. AbdelkhalekA.S. Abdel-RaheemS.A. FreahN.E. HadyN.H. AidiaN.K. TawfeqN.A. GomaaN.I. FouadN.M. SalemH.A. IbrahimH.M. SebaiM.M. An overview on 2-indolinone derivatives as anticancer agents.Curr. Chem. Lett.202413124125410.5267/j.ccl.2023.6.005
    [Google Scholar]
  14. SunH. SunK. SunJ. Recent advances of marine natural indole products in chemical and biological aspects.Molecules2023285220410.3390/molecules2805220436903451
    [Google Scholar]
  15. KumariA. SinghR.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives.Bioorg. Chem.20198910302110.1016/j.bioorg.2019.10302131176854
    [Google Scholar]
  16. FrançaP.H. BarbosaD.P. da SilvaD.L. RibeiroÊ.A. SantanaA.E. SantosB.V. Barbosa-FilhoJ.M. QuintansJ.S. BarretoR.S. Quintans-JúniorL.J. Araújo-JúniorJ.X. Indole alkaloids from marine sources as potential leads against infectious diseases.BioMed Res. Int.2014201411210.1155/2014/37542324995289
    [Google Scholar]
  17. BradleyS.A. LehkaB.J. HanssonF.G. AdhikariK.B. RagoD. RubaszkaP. HaidarA.K. ChenL. HansenL.G. GudichO. GiannakouK. LenggerB. GillR.T. NakamuraY. de BernonvilleT.D. KoudounasK. Romero-SuarezD. DingL. QiaoY. FrimurerT.M. PetersenA.A. BesseauS. KumarS. GautronN. MelinC. MarcJ. JeanneauR. O’ConnorS.E. CourdavaultV. KeaslingJ.D. ZhangJ. JensenM.K. Biosynthesis of natural and halogenated plant monoterpene indole alkaloids in yeast.Nat. Chem. Biol.202319121551156010.1038/s41589‑023‑01430‑237932529
    [Google Scholar]
  18. NinomiyaI. Recent progress in the synthesis of indole alkaloids.J. Nat. Prod.199255554156410.1021/np50083a001
    [Google Scholar]
  19. ZhuC. LiuZ. ChenG. ZhangK. DingH. Total synthesis of indole alkaloid alsmaphorazine D. Angew. Chem. Int. Ed.201554387988210.1002/anie.20140982725418345
    [Google Scholar]
  20. BorschbergH.J. New strategies for the synthesis of monoterpene indole alkaloids.Curr. Org. Chem.20059151465149110.2174/138527205774370522
    [Google Scholar]
  21. KirschG. El-SawyE. AbdelwahabA. Utilization of 1H-indole-3-carboxaldehyde as a precursor for the synthesis of bioactive indole alkaloids.Synthesis201850234525453810.1055/s‑0037‑1610288
    [Google Scholar]
  22. FernándezS. ArnáizV. RufoD. ArroyoY. Current status of indole-derived marine natural products: Synthetic approaches and therapeutic applications.Mar. Drugs202422312610.3390/md2203012638535467
    [Google Scholar]
  23. SundbergR.J. Indoles.Elsevier1996
    [Google Scholar]
  24. SarkarD. AminA. QadirT. SharmaP.K. Synthesis of medicinally important indole derivatives: A review.Open Med. Chem. J.202115111610.2174/1874104502015010001
    [Google Scholar]
  25. RossignolE. YoussefA. MoreauP. PrudhommeM. AnizonF. Synthesis of aminopyrimidylindoles structurally related to meridianins.Tetrahedron20076341101691017610.1016/j.tet.2007.07.095
    [Google Scholar]
  26. Klein-JuniorL. Santos PassosC. MoraesA. WakuiV. KonrathE. NurissoA. CarruptP.A. Alves de OliveiraC. KatoL. HenriquesA. Indole alkaloids and semisynthetic indole derivatives as multifunctional scaffolds aiming the inhibition of enzymes related to neurodegenerative diseases--a focus on Psychotria L. Genus. Curr. Top. Med. Chem.20141481056107510.2174/156802661466614032414240924660679
    [Google Scholar]
  27. GribbleG.W. Indole Ring Synthesis: From natural products to drug discovery.WileyChichester201610.1002/9781118695692
    [Google Scholar]
  28. BergmanJ. VenemalmL. Acylation of the zinc salt of indole.Tetrahedron199046176061606610.1016/S0040‑4020(01)87930‑8
    [Google Scholar]
  29. YangC. PatelH.H. KuY.Y. ShahR. SawickD. The use of lewis acid in the reaction of zinc salts of indoles and acyl chloride.Synth. Commun.199727122125213210.1080/00397919708006820
    [Google Scholar]
  30. OttoniO. NederA.V. DiasA.K. CruzR.P. AquinoL.B. Acylation of indole under Friedel-Crafts conditions-an improved method to obtain 3-acylindoles regioselectively.Org. Lett.2001371005100710.1021/ol007056i11277781
    [Google Scholar]
  31. GuchhaitS.K. KashyapM. KambleH. ZrCl4-mediated regio- and chemoselective Friedel-Crafts acylation of indole.J. Org. Chem.201176114753475810.1021/jo200561f21526849
    [Google Scholar]
  32. NagarajanR. PerumalP.T. InCl3 and In(OTf)3 catalyzed reactions: Synthesis of 3-acetyl indoles, bis-indolylmethane and indolylquinoline derivatives.Tetrahedron20025861229123210.1016/S0040‑4020(01)01227‑3
    [Google Scholar]
  33. NagarajanR. PerumalP.T. Electrophilic substitution of indoles catalyzed by triphenyl phosphonium perchlorate: Synthesis of 3-acetyl indoles and bis-indolylmethane derivatives.Synth. Commun.200232110510910.1081/SCC‑120001515
    [Google Scholar]
  34. OkauchiT. ItonagaM. MinamiT. OwaT. KitohK. YoshinoH. A general method for acylation of indoles at the 3-position with acyl chlorides in the presence of dialkylaluminum chloride.Org. Lett.20002101485148710.1021/ol005841p10814479
    [Google Scholar]
  35. BarrecaM.L. FerroS. RaoA. De LucaL. ZappalàM. MonforteA.M. DebyserZ. WitvrouwM. ChimirriA. Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors.J. Med. Chem.200548227084708810.1021/jm050549e16250669
    [Google Scholar]
  36. KoyamaY. YokoseK. DolbyL.J. Isolation, characterization and synthesis of pimprinine, pimprinethine and pimprinaphine, metabolites of Streptoverticillium olivoreticuli. Agric. Biol. Chem.19814551285128710.1271/bbb1961.45.1285
    [Google Scholar]
  37. YuZ. JiangH. WangL. YangF.X. HuangJ.P. LiuC. GuoX. XiangW. HuangS.X. Dimeric pimprinine alkaloids from soil-derived Streptomyces sp. NEAU-C99.Front Chem.202089510.3389/fchem.2020.0009532133345
    [Google Scholar]
  38. JoshiB.S. TaylorW.I. BhateD.S. KarmarkarS.S. The structure and synthesis of pimprinine.Tetrahedron19631991437143910.1016/S0040‑4020(01)98569‑2
    [Google Scholar]
  39. WatanabeH. AmanoS. YoshidaJ. TakaseY. MiyadohS. SasakiT. HatsuM. TakeuchiY. KodamaY. A new antibiotic sf2583a, 4-chloro-5-(3′-indolyl)oxazole, produced by streptomyces.Meiji Seika Kenkyu Nenpo1988275562
    [Google Scholar]
  40. WeiY. FangW. WanZ. WangK. YangQ. CaiX. ShiL. YangZ. Antiviral effects against EV71 of pimprinine and its derivatives isolated from Streptomyces sp.Virol. J.201411119510.1186/s12985‑014‑0195‑y25410379
    [Google Scholar]
  41. MiaoY.P. WenR. AoshimaH. ZhouP.G. Synthesis and antioxidative activity of 2-substituted phenyl-5-(3′-indolyl)-oxazole derivatives.Yao Xue Xue Bao2004391374015127579
    [Google Scholar]
  42. NaikS.R. HarindranJ. VardeA.B. Pimprinine, an extracellular alkaloid produced by Streptomyces CDRIL-312: fermentation, isolation and pharmacological activity.J. Biotechnol.200188111010.1016/S0168‑1656(01)00244‑911377760
    [Google Scholar]
  43. UmeharaK. YoshidaK. OkamotoM. IwamiM. TanakaH. KohsakaM. ImanakaH. Studies on new antiplatelet agents, WS-30581 A and B.J. Antibiot.198437101153116010.7164/antibiotics.37.11536501088
    [Google Scholar]
  44. PettitG.R. KnightJ.C. HeraldD.L. DavenportR. PettitR.K. TuckerB.E. SchmidtJ.M. Isolation of Labradorins 1 and 2 from Pseudomonas syringae pv. coronafaciens.J. Nat. Prod.200265121793179710.1021/np020173x12502316
    [Google Scholar]
  45. LiuB. LiR. LiY. LiS. YuJ. ZhaoB. LiaoA. WangY. WangZ. LuA. LiuY. WangQ. Discovery of pimprinine alkaloids as novel agents against a plant virus.J. Agric. Food Chem.20196771795180610.1021/acs.jafc.8b0617530681853
    [Google Scholar]
  46. ZhangM.Z. ChenQ. MulhollandN. BeattieD. IrwinD. GuY.C. YangG.F. CloughJ. Synthesis and fungicidal activity of novel pimprinine analogues.Eur. J. Med. Chem.20125328329110.1016/j.ejmech.2012.04.01222560632
    [Google Scholar]
  47. ZhangM.Z. MulhollandN. BeattieD. IrwinD. GuY.C. ChenQ. YangG.F. CloughJ. Synthesis and antifungal activity of 3-(1,3,4-oxadiazol-5-yl)-indoles and 3-(1,3,4-oxadiazol-5-yl)methyl-indoles.Eur. J. Med. Chem.201363223210.1016/j.ejmech.2013.01.03823454531
    [Google Scholar]
  48. LiuJ.R. GaoY. JinB. GuoD. DengF. BianQ. ZhangH.F. HanX.Y. AliA.S. ZhangM.Z. ZhangW.H. GuY.C. Design, synthesis, antifungal activity, and molecular docking of streptochlorin derivatives containing the nitrile group.Mar. Drugs202321210310.3390/md2102010336827144
    [Google Scholar]
  49. TakeuchiT. OgawaK. IinumaH. SudaH. UkitaK. NagatsuT. KatoM. UmezawaH. TanabeO. Monoamine oxidase inhibitors isolated from fermented broths.J. Antibiot.197326316216710.7164/antibiotics.26.1624798774
    [Google Scholar]
  50. BrobergA. BjerketorpJ. AnderssonP. SahlbergC. LevenforsJ. Labradorins with antibacterial activity produced by pseudomonas sp.Molecules2017227107210.3390/molecules2207107228654009
    [Google Scholar]
  51. TakahashiS. MatsunagaT. HasegawaC. SaitoH. FujitaD. KiuchiF. TsudaY. A novel indole alkaloid isolated from red alga, inhibits lipid peroxidation.Chem. Pharm. Bull.199846101527152910.1248/cpb.46.15279810689
    [Google Scholar]
  52. NishidaA. FuwaM. FujikawaY. NakahataE. FurunoA. NakagawaM. First total synthesis of martefragin A, a potent inhibitor of lipid peroxidation isolated from sea alga.Tetrahedron Lett.199839335983598610.1016/S0040‑4039(98)01228‑3
    [Google Scholar]
  53. Cruz-MonserrateZ. VervoortH.C. BaiR. NewmanD.J. HowellS.B. LosG. MullaneyJ.T. WilliamsM.D. PettitG.R. FenicalW. HamelE. Diazonamide A and a synthetic structural analog: Disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin.Mol. Pharmacol.20036361273128010.1124/mol.63.6.127312761336
    [Google Scholar]
  54. WangG. ShangL. BurgettA.W. HarranP.G. WangX. Diazonamide toxins reveal an unexpected function for ornithine δ-amino transferase in mitotic cell division.Proc. Natl. Acad. Sci.200710472068207310.1073/pnas.061083210417287350
    [Google Scholar]
  55. MiyakeF. HashimotoM. TonsiengsomS. YakushijinK. HorneD.A. Synthesis of 5-(3-indolyl)oxazole natural products. Structure revision of Almazole D.Tetrahedron201066264888489310.1016/j.tet.2010.03.109
    [Google Scholar]
  56. KumarD. SundareeS. PatelG. RaoV.S. A facile synthesis of naturally occurring 5-(3-indolyl)oxazoles.Tetrahedron Lett.200849586786910.1016/j.tetlet.2007.11.173
    [Google Scholar]
  57. ZhangF. GreaneyM.F. Decarboxylative cross-coupling of azoyl carboxylic acids with aryl halides.Org. Lett.201012214745474710.1021/ol101959720866102
    [Google Scholar]
  58. HeW. LiC. ZhangL. An efficient [2 + 2 + 1] synthesis of 2,5-disubstituted oxazoles via gold-catalyzed intermolecular alkyne oxidation.J. Am. Chem. Soc.2011133228482848510.1021/ja202918821563762
    [Google Scholar]
  59. XiangJ. WangJ. WangM. MengX. WuA. One-pot total synthesis: the first total synthesis of chiral alkaloid pimprinol A and the facile construction of its natural congeners from amino acids.Tetrahedron201470417470747510.1016/j.tet.2014.08.022
    [Google Scholar]
  60. LiuJ.R. LiuJ.M. GaoY. ShiZ. NieK.R. GuoD. DengF. ZhangH.F. AliA.S. ZhangM.Z. ZhangW.H. GuY.C. Discovery of novel pimprinine and streptochlorin derivatives as potential antifungal agents.Mar. Drugs2022201274010.3390/md2012074036547887
    [Google Scholar]
  61. DaiJ.K. DanW.J. WanJ.B. Natural and synthetic β-carboline as a privileged antifungal scaffolds.Eur. J. Med. Chem.202222911405710.1016/j.ejmech.2021.11405734954591
    [Google Scholar]
  62. SzabóT. VolkB. MilenM. Recent advances in the synthesis of β-carboline alkaloids.Molecules202126366310.3390/molecules2603066333513936
    [Google Scholar]
  63. NagaoT. AdachiK. NishidaF. NishishimaM. MochidaK. 1999
  64. MayserP. SchäferU. KrämerH.J. IrlingerB. SteglichW. Pityriacitrin – an ultraviolet-absorbing indole alkaloid from the yeast Malassezia furfur.Arch. Dermatol. Res.2002294313113410.1007/s00403‑002‑0294‑212029500
    [Google Scholar]
  65. ChenY.X. XuM.Y. LiH.J. ZengK.J. MaW.Z. TianG.B. XuJ. YangD.P. LanW.J. Diverse secondary metabolites from the marine-derived fungus dichotomomyces cejpii F31-1.Mar. Drugs2017151133910.3390/md1511033929104243
    [Google Scholar]
  66. LiS.F. ZhangY. LiY. LiX.R. KongL.M. TanC.J. LiS.L. DiY.T. HeH.P. HaoX.J. β-Carboline alkaloids from the leaves of Trigonostemon lii Y.T. Chang.Bioorg. Med. Chem. Lett.20122262296229910.1016/j.bmcl.2012.01.10622342628
    [Google Scholar]
  67. WangY. WangP. KongF.D. WangJ. ZuoW.J. WangH. DaiH.F. MeiW.L. Two new alkaloids from the twigs of Trigonostemon filipes.J. Asian Nat. Prod. Res.201820327027610.1080/10286020.2017.133204828648136
    [Google Scholar]
  68. SalmounM. DevijverC. DalozeD. BraekmanJ.C. van SoestR.W. 5-hydroxytryptamine-derived alkaloids from two marine sponges of the genus Hyrtios.J. Nat. Prod.20026581173117610.1021/np020009+12193025
    [Google Scholar]
  69. ZhuL. ChenC. WangH. YeW. ZhouG. Indole alkaloids from alocasia macrorrhiza. Chem. Pharm. Bull.201260567067310.1248/cpb.60.670
    [Google Scholar]
  70. AbdjulD.B. YamazakiH. UkaiK. NamikoshiM. Two new indole derivatives from a marine sponge Ircinia sp. collected at Iriomote Island.J. Nat. Med.201569341642010.1007/s11418‑015‑0891‑y25707318
    [Google Scholar]
  71. PereiraM. da SilvaT. AguiarA. OlivaG. GuidoR. Yokoyama-YasunakaJ. UlianaS. LopesL. Chemical composition, antiprotozoal and cytotoxic activities of indole alkaloids and benzofuran neolignan of aristolochia cordigera.Planta Med.2017831191292010.1055/s‑0043‑10477628264205
    [Google Scholar]
  72. XuT. ShiL. ZhangY. WangK. YangZ. KeS. Synthesis and biological evaluation of marine alkaloid-oriented β-carboline analogues.Eur. J. Med. Chem.201916829330010.1016/j.ejmech.2019.02.06030826506
    [Google Scholar]
  73. HuangD. ZhangZ. LiY. LiuF. HuangW. MinY. WangK. YangJ. CaoC. GongY. KeS. Carboline derivatives based on natural pityriacitrin as potential antifungal agents.Phytochem. Lett.20224810010510.1016/j.phytol.2022.02.010
    [Google Scholar]
  74. SauleauP. MartinM.T. DauM.E. YoussefD.T. Bourguet-KondrackiM.L. Hyrtiazepine, an azepino-indole-type alkaloid from the Red Sea marine sponge Hyrtios erectus.J. Nat. Prod.200669121676167910.1021/np060132r17190441
    [Google Scholar]
  75. LiewL.P.P. FlemingJ.M. LongeonA. MourayE. FlorentI. Bourguet-KondrackiM.L. CoppB.R. Synthesis of 1-indolyl substituted β-carboline natural products and discovery of antimalarial and cytotoxic activities.Tetrahedron201470334910492010.1016/j.tet.2014.05.068
    [Google Scholar]
  76. ZhuY.P. LiuM.C. CaiQ. JiaF.C. WuA.X. A cascade coupling strategy for one-pot total synthesis of β-carboline and isoquinoline-containing natural products and derivatives.Chemistry20131931101321013710.1002/chem.20130173423788489
    [Google Scholar]
  77. HwangJ. KimD. ParkJ.S. ParkH.J. ShinJ. LeeS.K. Photoprotective activity of topsentin, a bis(indole) alkaloid from the marine sponge spongosorites genitrix, by regulation of cox-2 and mir-4485 expression in uvb-irradiated human keratinocyte cells.Mar. Drugs20201828710.3390/md1802008732013063
    [Google Scholar]
  78. BraekmanJ.C. DalozeD. StollerC. Synthesis of topsentin‐a, a bisindole alkaloid of the marine sponge topsentia genitrix.Bull. Soc. Chim. Belg.1987961080981210.1002/bscb.19870961014
    [Google Scholar]
  79. JiX. WangZ. DongJ. LiuY. LuA. WangQ. Discovery of topsentin alkaloids and their derivatives as novel antiviral and anti-phytopathogenic fungus agents.J. Agric. Food Chem.201664489143915110.1021/acs.jafc.6b0402027933985
    [Google Scholar]
  80. TsujiiS. RinehartK.L. GunasekeraS.P. KashmanY. CrossS.S. LuiM.S. PomponiS.A. DiazM.C. Topsentin, bromotopsentin, and dihydrodeoxybromotopsentin: antiviral and antitumor bis(indolyl)imidazoles from Caribbean deep-sea sponges of the family Halichondriidae. Structural and synthetic studies.J. Org. Chem.198853235446545310.1021/jo00258a009
    [Google Scholar]
  81. BurresN.S. BarberD.A. GunasekeraS.P. ShenL.L. ClementJ.J. Antitumor activity and biochemical effects of topsentin.Biochem. Pharmacol.199142474575110.1016/0006‑2952(91)90031‑Y1867631
    [Google Scholar]
  82. PokharkarO. LakshmananH. ZyryanovG. TsurkanM. In silico evaluation of antifungal compounds from marine sponges against COVID-19-associated mucormycosis.Mar. Drugs202220321510.3390/md2003021535323514
    [Google Scholar]
  83. Pon SathieshkumarP. NagarajanR. Total synthesis of metagenetriindole a and deoxytopsentin.ChemistrySelect2017241686168810.1002/slct.201602014
    [Google Scholar]
  84. ShiY. JiangZ. LiX. ZuoL. LeiX. YuL. WuL. JiangJ. HongB. Biosynthesis of antibiotic chuangxinmycin from Actinoplanes tsinanensis. Acta Pharm. Sin. B20188228329410.1016/j.apsb.2017.07.00529719789
    [Google Scholar]
  85. Studies on a new antibiotic--Chuangxinmycin.Sci. Sin.1977201106112327539
    [Google Scholar]
  86. SunL. ZhangS. HuX. JinJ. LiZ. Synthesis, resolution, derivatization and antibacterial activity of chuangxinmycin.Future Med. Chem.201911222877289010.4155/fmc‑2019‑020931533475
    [Google Scholar]
  87. FanS. LvG. FengX. WuG. JinY. YanM. YangZ. Structural insights into the specific interaction between Geobacillus stearothermophilus tryptophanyl-tRNA synthetase and antimicrobial Chuangxinmycin.J. Biol. Chem.2022298210158010.1016/j.jbc.2022.10158035031320
    [Google Scholar]
  88. KatoK. OnoM. AkitaH. New total synthesis of (±)-chuangxinmycin.Tetrahedron Lett.199738101805180810.1016/S0040‑4039(97)00174‑3
    [Google Scholar]
  89. KozikowskiA.P. GrecoM.N. SpringerJ.P. Synthetic studies in the indole series. Preparation of the unique antibiotic alkaloid chuangxinmycin by a nitro group displacement reaction.J. Am. Chem. Soc.1982104267622762610.1021/ja00390a037
    [Google Scholar]
  90. ChangC-P. HsuH-D. HuangL-C. LinY.C. LiH-S. ChaoC-L. Synthesis of Chuangxinmycin.Acta Chimi. Sin.197634133
    [Google Scholar]
  91. BrownM.J. CarterP.S. FenwickA.E. FosberryA.P. HamprechtD.W. HibbsM.J. JarvestR.L. MensahL. MilnerP.H. O’HanlonP.J. PopeA.J. RichardsonC.M. WestA. WittyD.R. The antimicrobial natural product chuangxinmycin and Some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase.Bioorg. Med. Chem. Lett.200212213171317410.1016/S0960‑894X(02)00604‑212372526
    [Google Scholar]
  92. MuraseM. KoikeT. MoriyaY. TobinagaS. Nitration of 3-acylindoles in the presence of metal MeCN solvates and synthesis of the antibiotic alkaloid chuangxinmycin.Chem. Pharm. Bull.19873572656266010.1248/cpb.35.26563677223
    [Google Scholar]
  93. FresnedaP.M. MolinaP. BledaJ.A. Synthesis of the indole alkaloids meridianins from the tunicate Aplidium meridianum. Tetrahedron200157122355236310.1016/S0040‑4020(01)00102‑8
    [Google Scholar]
  94. XiaoL. A review: Meridianins and meridianins derivatives.Molecules20222724871410.3390/molecules2724871436557848
    [Google Scholar]
  95. BharateS.B. YadavR.R. BattulaS. VishwakarmaR.A. Meridianins: marine-derived potent kinase inhibitors.Mini Rev. Med. Chem.201212761863110.2174/13895571280062672822512550
    [Google Scholar]
  96. ElsherbenyM.H. ElkamhawyA. NadaH. AbdellattifM.H. LeeK. RohE.J. Development of new meridianin/leucettine-derived hybrid small molecules as nanomolar multi-kinase inhibitors with antitumor activity.Biomedicines202199113110.3390/biomedicines909113134572319
    [Google Scholar]
  97. YadavR.R. SharmaS. JoshiP. WaniA. VishwakarmaR.A. KumarA. BharateS.B. Meridianin derivatives as potent Dyrk1A inhibitors and neuroprotective agents.Bioorg. Med. Chem. Lett.201525152948295210.1016/j.bmcl.2015.05.03426048785
    [Google Scholar]
  98. SunL. ZhangS. KouS. YiH. CuiA. LiZ. Design, synthesis, and antibacterial activity of derivatives of Tryptophanyl-tRNA synthetase inhibitor indolmycin.Eur. J. Med. Chem.202224111464710.1016/j.ejmech.2022.11464735963132
    [Google Scholar]
  99. DirlamJ.P. ClarkD.A. HeckerS.J. New total synthesis of (.+-.)-indolmycin.J. Org. Chem.198651254920492410.1021/jo00375a030
    [Google Scholar]
  100. Von WittenauM.S. ElsH. The structure of indolmycin.J. Am. Chem. Soc.196183224678468010.1021/ja01483a056
    [Google Scholar]
  101. ChanT.H. HillR.K. Absolute configuration of indolmycin.J. Org. Chem.197035103519352110.1021/jo00835a0725507097
    [Google Scholar]
  102. von WittenauM.S. ElsH. Chemistry of IndolmycinJ. Am. Chem. Soc.196385213425343110.1021/ja00904a028
    [Google Scholar]
  103. HurdleJ.G. O’NeillA.J. ChopraI. Anti-staphylococcal activity of indolmycin, a potential topical agent for control of staphylococcal infections.J. Antimicrob. Chemother.200454254955210.1093/jac/dkh35215243028
    [Google Scholar]
  104. KanamaruT. NakanoY. ToyodaY. MiyagawaK.I. TadaM. KaishoT. NakaoM. In vitro and in vivo antibacterial activities of TAK-083, an agent for treatment of Helicobacter pylori infection.Antimicrob. Agents Chemother.20014592455245910.1128/AAC.45.9.2455‑2459.200111502514
    [Google Scholar]
  105. WittyD.R. WalkerG. BatesonJ.H. O’HanlonP.J. CasselsR. Structure-activity dependency of new bacterial tryptophanyl tRNA synthetase inhibitors.Bioorg. Med. Chem. Lett.19966121375138010.1016/0960‑894X(96)00237‑5
    [Google Scholar]
/content/journals/cos/10.2174/0115701794325027240827043203
Loading
/content/journals/cos/10.2174/0115701794325027240827043203
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test