Skip to content
2000
image of A Pharmacological Overview and Recent Patent of Triazine Scaffold in Drug Development: A Review

Abstract

The triazine moiety holds a special and very important position in the field of medicinal chemistry owing to its enormous biological and pharmacological potential. Over eras, triazine scaffolds have been investigated for synthesizing novel molecules that may be used for the treatment of different types of pathological conditions, such as infections, cancer, inflammation . A vast number of lead molecules have been established from the triazine moiety. The triazine fused with numerous heterocyclic rings, such as pyrrole, benzimidazole, indole, imidazole, carbazole, ., have formed various bicyclic with pharmacological actions. The triazines display a wide range of activities, and synthesizing various marketable medicines that hold triazine moiety has made the attention of chemists worldwide grow over the years in the moiety. In this review article, the commercially available compound containing triazine has been presented, and an attempt has been made to collect the works reported, mostly in the past decade, by numerous scientists, related to the structural differences amongst the triazine analogues giving antitumor, and antimicrobial and other activities.

The objective of this review article was to outline the current information on triazines and their derivatives with respect to their biological potential and various pharmacological activities.

The summary of this review article would be helpful and describe the function and activity of the moiety to bring up-to-date the scientists working in the direction of designing and synthesising novel lead molecules for the treatment of different types of disease with the current molecules that have been synthesized from the triazine scaffold.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794272212240307092318
2024-09-16
2024-10-16
Loading full text...

Full text loading...

References

  1. Schroeder H. Grundmann C. Triazines X.I.V. The extension of the pinner synthesis of monohydroxy-s-triazines to the aliphatic series. 2,4-dimethyl-s-triazine 1-3. J. Am. Chem. Soc. 1956 78 11 2447 2451 10.1021/ja01592a028
    [Google Scholar]
  2. Singh S. Mandal M.K. Masih A. Saha A. Ghosh S.K. Bhat H.R. Singh U.P. 1,3,5‐Triazine: A versatile pharmacophore with diverse biological activities. Arch. Pharm. 2021 354 6 2000363 10.1002/ardp.202000363 33760298
    [Google Scholar]
  3. Sharma A. Sheyi R. de la Torre B.G. El-Faham A. Albericio F. s-Triazine: A privileged structure for drug discovery and bioconjugation. Molecules 2021 26 4 864 10.3390/molecules26040864 33562072
    [Google Scholar]
  4. Wang Z. Pinner S-triazine synthesis. Comprehensive Organic Name Reactions and Reagents. John Wiley & Sons, Inc. 2010 2241 2243 10.1002/9780470638859.conrr505
    [Google Scholar]
  5. Baldaniya B.B. Patel P.K. Synthesis, antibacterial and antifungal activities of s derivatives. E-J. Chem. 2009 6 3 673 680 10.1155/2009/196309
    [Google Scholar]
  6. Chang T.H. Klassen W. Comparative effects of tretamine, tepa, apholate and their structural analogs on human chromosomes in vitro. Chromosoma 1968 24 3 314 323 10.1007/BF00336199 5708270
    [Google Scholar]
  7. Lee C.R. Faulds D. Altretamine. Drugs 1995 49 6 932 953 10.2165/00003495‑199549060‑00007 7641606
    [Google Scholar]
  8. Issa J.P.J. Kantarjian H.M. Kirkpatrick P. Azacitidine. Nat. Rev. Drug Discov. 2005 4 4 275 276 10.1038/nrd1698 15861567
    [Google Scholar]
  9. Kim E.S. Enasidenib: First global approval. Drugs 2017 77 15 1705 1711 10.1007/s40265‑017‑0813‑2 28879540
    [Google Scholar]
  10. Gore S.D. Jones C. Kirkpatrick P. Decitabine. Nat. Rev. Drug Discov. 2006 5 11 891 892 10.1038/nrd2180 17117522
    [Google Scholar]
  11. Wainberg Z.A. Alsina M. Soares H.P. Braña I. Britten C.D. Del Conte G. Ezeh P. Houk B. Kern K.A. Leong S. Pathan N. Pierce K.J. Siu L.L. Vermette J. Tabernero J. A multi-arm phase i study of the PI3K/mTOR inhibitors PF-04691502 and gedatolisib (PF-05212384) plus irinotecan or the MEK inhibitor PD-0325901 in advanced cancer. Target. Oncol. 2017 12 6 775 785 10.1007/s11523‑017‑0530‑5 29067643
    [Google Scholar]
  12. Goa K.L. Ross S.R. Chrisp P. Lamotrigine. Drugs 1993 46 1 152 176 10.2165/00003495‑199346010‑00009 7691504
    [Google Scholar]
  13. Reddy S.B. Williamson S.K. Tirapazamine: A novel agent targeting hypoxic tumor cells. Expert Opin. Investig. Drugs 2009 18 1 77 87 10.1517/13543780802567250 19053884
    [Google Scholar]
  14. Richards D.M. Heel R.C. Brogden R.N. Speight T.M. Avery G.S. Ceftriaxone. A review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs 1984 27 6 469 527 10.2165/00003495‑198427060‑00001 6329638
    [Google Scholar]
  15. Graymore M. Stagnitti F. Allinson G. Impacts of atrazine in aquatic ecosystems. Environ. Int. 2001 26 7-8 483 495 10.1016/S0160‑4120(01)00031‑9 11485216
    [Google Scholar]
  16. Karimi-Maleh H. Karimi F. Fu L. Sanati A.L. Alizadeh M. Karaman C. Orooji Y. Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. 2022
    [Google Scholar]
  17. Zhang J.J. Wang Y.K. Zhou J.H. Xie F. Guo Q.N. Lu F.F. Jin S.F. Zhu H.M. Yang H. Reduced phytotoxicity of propazine on wheat, maize and rapeseed by salicylic acid. Ecotoxicol. Environ. Saf. 2018 162 42 50 10.1016/j.ecoenv.2018.06.068 29960913
    [Google Scholar]
  18. Cox L. Cecchi A. Celis R. Hermosín M.C. Koskinen W.C. Cornejo J. Effect of exogenous carbon on movement of simazine and 2, 4‐D in soils. Soil Sci. Soc. Am. J. 2001 65 6 1688 1695 10.2136/sssaj2001.1688
    [Google Scholar]
  19. Sato Y. Morimoto A. Kiue A. Okamura K. Hamanaka R. Kohno K. Kuwano M. Sakata T. Irsogladine is a potent inhibitor of angiogenesis. FEBS Lett. 1993 322 2 155 158 7683279 10.1016/0014‑5793(93)81558‑H
    [Google Scholar]
  20. Daves G. Jr Robins R. Cheng C. Communications- the structure of fervenulin, a new antibiotic. J. Org. Chem. 1961 26 12 5256 5257 10.1021/jo01070a600
    [Google Scholar]
  21. Shokoohian M. Hazeri N. Maghsoodlou M.T. Lashkari M. Design and synthesis, antimicrobial activities of 1,2,4-triazine derivatives as representation of a new hetrocyclic system. Polycycl. Aromat. Compd. 2020 42 1 1 12 10.1080/10406638.2020.1712439
    [Google Scholar]
  22. Jain S. Sharma A. Agrawal M. Sharma S. Dwivedi J. Kishore D. Synthesis and antimicrobial evaluation of some novel trisubstituted s-triazine derivatives based on isatinimino, sulphonamido, and azacarbazole. J. Chem. 2013 2013 1 9 10.1155/2013/925439
    [Google Scholar]
  23. Lakum H.P. Desai D.V. Chikhalia K.H. Synthesis, characteriza-tion, and antimicrobial screening of s -triazines linked with pipera-zine or aniline scaffolds. hc, 2013 19 5 351 355 10.1515/hc‑2013‑0077
  24. Milata V. Reinprecht L. Kizlink J. Synthesis and antifungal efficacy of 1,3,5-triazines. Acta Chim. Slov. 2012 5 1 95 99
    [Google Scholar]
  25. Al-Zaydi K.M. Khalil H.H. El-Faham A. Khattab S.N. Synthesis, characterization and evaluation of 1,3,5-triazine aminobenzoic acid derivatives for their antimicrobial activity. Chem. Cent. J. 2017 11 1 39 10.1186/s13065‑017‑0267‑3 29086830
    [Google Scholar]
  26. Gunasekaran P. Amphiphilic triazine polymer Derivatives as Antibacterial and anti-atopic agents in Mice Model. Sci. Rep. 2019 9 1 1 17 30626917
    [Google Scholar]
  27. Swami G.A. Bothara K.G. Optimization of antimicrobial activity of synthesized s-triazine derivatives. Int. J. Res. Pharm. Chem. 2019 9 4 211 214 10.33289/IJRPC.9.4.2019.981
    [Google Scholar]
  28. Rathavi A. Thakor M.K. Design, synthesis and in vitro antimicrobial activity of trisubstituted s-triazine. Acta Chim. Pharm. Indica. 2015 5 2 60 67
    [Google Scholar]
  29. Desai N.C. Makwana A.H. Rajpara K.M. Synthesis and study of 1,3,5-triazine based thiazole derivatives as antimicrobial agents. J. Saudi Chem. Soc. 2016 20 S334 S341 10.1016/j.jscs.2012.12.004
    [Google Scholar]
  30. Bhat H.R. Masih A. Shakya A. Ghosh S.K. Singh U.P. Design, synthesis, anticancer, antibacterial, and antifungal evaluation of 4‐aminoquinoline‐1,3,5‐triazine derivatives. J. Heterocycl. Chem. 2020 57 1 390 399 10.1002/jhet.3791
    [Google Scholar]
  31. Singh U.P. Singh R.K. Bhat H.R. Subhashchandra Y.P. Kumar V. Kumawat M.K. Gahtori P. Synthesis and antibacterial evaluation of series of novel tri-substituted-s-triazine derivatives. Med. Chem. Res. 2011 20 9 1603 1610 10.1007/s00044‑010‑9446‑7
    [Google Scholar]
  32. Dongre R.P. Rathod S.P. Design, synthesis and pharmacological evaluation of new series of 2-pyrazoline containing s-triazine and their derivatives. Der Chemica Sinica 2016 7 4 36 41
    [Google Scholar]
  33. Raval J.P. Rai A.R. Patel N.H. Patel H.V. Patel P.S. Synthesis and in vitro antimicrobial activity of N′-(4-(arylamino)-6-(pyridin-2-ylamino)-1,3,5-triazin-2-yl)benzohydrazide. Int. J. Chemtech Res. 2009 1 3 616 620
    [Google Scholar]
  34. Kavitha N. Karthi A. Arun A. Shafi S. Synthesis, characterization and antimicrobial activity of some novel s-triazine derivatives incorporating quinoline moiety. Pharma Chem. 2015 7 10 453
    [Google Scholar]
  35. Khan F.G. Yadav M.V. Sagar A.D. Synthesis, characterization, and antimicrobial evaluation of novel trichalcones containing core s-triazine moiety. Med. Chem. Res. 2014 23 5 2633 2638 10.1007/s00044‑013‑0837‑4
    [Google Scholar]
  36. Desai N.C. Makwana A.H. Senta R.D. Synthesis, characterization and antimicrobial activity of some novel 4-(4-(arylamino)-6-(piperidin-1-yl)-1,3,5-triazine-2-ylamino)-N-(pyrimidin-2-yl)benzenesulfonamides. J. Saudi Chem. Soc. 2016 20 6 686 694 10.1016/j.jscs.2015.01.004
    [Google Scholar]
  37. Cirrincione G. Almerico A.M. Barraja P. Diana P. Lauria A. Passannanti A. Musiu C. Pani A. Murtas P. Minnei C. Marongiu M.E. La Colla P. Derivatives of the new ring system indolo[1,2-c]benzo[1,2,3]triazine with potent antitumor and antimicrobial activity. J. Med. Chem. 1999 42 14 2561 2568 10.1021/jm9806087 10411476
    [Google Scholar]
  38. Pomarnacka E. Bednarski P. Grunert R. Reszka P. Synthesis and anticancer activity of novel 2-amino-4-(4-phenylpiperazino)- 1,3,5-triazine derivatives. Acta Pol. Pharm. 2004 61 6 461 466 15794339
    [Google Scholar]
  39. Said M. Elshihawy H. Synthesis, anticancer activity and structure-activity relationship of some anticancer agents based on cyclopenta (b) thiophene scaffold. Pak. J. Pharm. Sci. 2014 27 4 885 892 25015456
    [Google Scholar]
  40. Sączewski F. Bułakowska A. Bednarski P. Grunert R. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur. J. Med. Chem. 2006 41 2 219 225 10.1016/j.ejmech.2005.10.013 16377034
    [Google Scholar]
  41. Dubey P. Pathak D.P. Ali F. Chauhan G. Kalaiselvan V. In vitro evaluation of triazine scaffold for anticancer drug development: A review. Curr. Drug Discov. Technol. 2023 ••• 20 10.2174/1570163820666230717161610 37461340
    [Google Scholar]
  42. Kothayer H. Spencer S.M. Tripathi K. Westwell A.D. Palle K. Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors. Bioorg. Med. Chem. Lett. 2016 26 8 2030 2034 10.1016/j.bmcl.2016.02.085 26965855
    [Google Scholar]
  43. Balaha M.F. El-Hamamsy M.H. Sharaf El-Din N.A. El-Mahdy N.A. Synthesis, evaluation and docking study of 1, 3, 5-triazine derivatives as cytotoxic agents against lung cancer. J. Appl. Pharm. Sci. 2016 6 4 28 45 10.7324/JAPS.2016.60405
    [Google Scholar]
  44. Huang Q. Fu Q. Liu Y. Bai J. Wang Q. Liao H. Gong P. Design, synthesis and anticancer activity of novel 6-(aminophenyl)-2,4-bismorpholino-1,3,5-triazine derivatives bearing arylmethylene hydrazine moiety. Chem. Res. Chin. Univ. 2014 30 2 257 265 10.1007/s40242‑014‑3253‑5
    [Google Scholar]
  45. Sączewski F. Bułakowska A. Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives. Eur. J. Med. Chem. 2006 41 5 611 615 10.1016/j.ejmech.2005.12.012 16540207
    [Google Scholar]
  46. Moreno L. Quiroga J. Abonia R. Ramírez-Prada J. Insuasty B. Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents. Molecules 2018 23 8 1956 10.3390/molecules23081956 30082588
    [Google Scholar]
  47. Yan W. Zhao Y. He J. Anti-breast cancer activity of selected 1,3,5-triazines via modulation of EGFR-TK. Mol. Med. Rep. 2018 18 5 4175 4184 10.3892/mmr.2018.9426 30152850
    [Google Scholar]
  48. Srivastava J.K. Pillai G.G. Bhat H.R. Verma A. Singh U.P. Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase. Sci. Rep. 2017 7 1 5851 10.1038/s41598‑017‑05934‑5 28724908
    [Google Scholar]
  49. Wróbel A. Kolesińska B. Frączyk J. Kamiński Z.J. Tankiewicz-Kwedlo A. Hermanowicz J. Czarnomysy R. Maliszewski D. Drozdowska D. Synthesis and cellular effects of novel 1,3,5-triazine derivatives in DLD and Ht-29 human colon cancer cell lines. Invest. New Drugs 2019 ••• 1 13 31520321
    [Google Scholar]
  50. Marwa I.S. Rania M.G. Mohamed A.M. Hassan M.E. Design, synthesis and molecular modeling of new 1,3,5-triazine derivatives as anticancer agents. Pharma Chem. 2019 11 5 7 14
    [Google Scholar]
  51. Shuttleworth S.J. Silva F.A. Cecil A.R. Tomassi C.D. Hill T.J. Raynaud F.I. Clarke P.A. Workman P. Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Curr. Med. Chem. 2011 18 18 2686 2714 10.2174/092986711796011229 21649578
    [Google Scholar]
  52. Meadows S.A. Vega F. Kashishian A. Johnson D. Diehl V. Miller L.L. Younes A. Lannutti B.J. PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 2012 119 8 1897 1900 10.1182/blood‑2011‑10‑386763 22210877
    [Google Scholar]
  53. Lannutti B.J. Meadows S.A. Herman S.E.M. Kashishian A. Steiner B. Johnson A.J. Byrd J.C. Tyner J.W. Loriaux M.M. Deininger M. Druker B.J. Puri K.D. Ulrich R.G. Giese N.A. CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011 117 2 591 594 10.1182/blood‑2010‑03‑275305 20959606
    [Google Scholar]
  54. Verheijen J.C. Richard D.J. Curran K. Kaplan J. Yu K. Zask A. 2-Arylureidophenyl-4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)triazines as highly potent and selective ATP competitive mTOR inhibitors: Optimization of human microsomal stability. Bioorg. Med. Chem. Lett. 2010 20 8 2648 2653 10.1016/j.bmcl.2010.02.031 20223663
    [Google Scholar]
  55. Ma Z.Y. Zhang X.H. Li C. Zheng Y. Yang G. Design and synthesis of 3-substitued methylenethiochroman-4-ones-as anticancer agents. Chem. Res. Chin. Univ. 2011 27 5 787 791
    [Google Scholar]
  56. Bai F. Liu H. Tong L. Zhou W. Liu L. Zhao Z. Liu X. Jiang H. Wang X. Xie H. Li H. Discovery of novel selective inhibitors for EGFR-T790M/L858R. Bioorg. Med. Chem. Lett. 2012 22 3 1365 1370 10.1016/j.bmcl.2011.12.067 22227214
    [Google Scholar]
  57. Dao P. Jarray R. Le Coq J. Lietha D. Loukaci A. Lepelletier Y. Hadj-Slimane R. Garbay C. Raynaud F. Chen H. Synthesis of novel diarylamino-1,3,5-triazine derivatives as FAK inhibitors with anti-angiogenic activity. Bioorg. Med. Chem. Lett. 2013 23 16 4552 4556 10.1016/j.bmcl.2013.06.038 23845217
    [Google Scholar]
  58. Sielecki T.M. Boylan J.F. Benfield P.A. Trainor G.L. Cyclin-dependent kinase inhibitors: Useful targets in cell cycle regulation. J. Med. Chem. 2000 43 1 1 18 10.1021/jm990256j 10633033
    [Google Scholar]
  59. Maccioni R.B. Otth C. Concha I.I. Muñoz J.P. The protein kinase Cdk5. Eur. J. Biochem. 2001 268 6 1518 1527 10.1046/j.1432‑1327.2001.02024.x 11248668
    [Google Scholar]
  60. Barakar A. El-Senduny F.F. Almarhoon Z. Al-Rasheed H.H. Badria F.A. Al-Majid A.M. Ghabbour H.A. El-Faham A. Synthesis, X-ray crystal structures, and preliminary antiproliferative activities of new s-triazine-hydroxybenzylidene hydrazone derivatives. J. Chem. 2019 2019 9403908
    [Google Scholar]
  61. Fiorot R.G. Westphal R. Lemos B.C. Romagna R.A. Gonçalves P.R. Fernandes M.R.N. Ferreira C.V. Taranto A.G. Greco S.J. Synthesis, molecular modeling and anticancer activities of new molecular hybrids containing 1,4-Naphthoquinone, 7-Chloroquinoline, 1,3,5-triazine and morpholine cores as PI3K and AMPK inhibitors in the metastatic melanoma cells. J. Braz. Chem. Soc. 2019 30 9 1860 1873
    [Google Scholar]
  62. Gao W-L. Li J-X. Design, synthesis, and structure-activity relationship of imidazolidin-2-one-1,3,5-triazine conjugates as Enterovirus 71 and Coxsackievirus A16 Inhibitor. Biomed. Res. (Aligarh) 2017 8 2 811 816
    [Google Scholar]
  63. Mibu N. Yokomizo K. Koga A. Honda M. Mizokami K. Fujii H. Ota N. Yuzuriha A. Ishimaru K. Zhou J. Miyata T. Sumoto K. Synthesis and antiviral activities of some 2,4,6-trisubstituted 1,3,5-triazines. Chem. Pharm. Bull. (Tokyo) 2014 62 10 1032 1040 10.1248/cpb.c14‑00421 25273062
    [Google Scholar]
  64. Qiang Z. Yu W. Yu Y. Design and development of novel 1,3,5-triazine-procaine derivatives as protective agent against myocardial ischemia/reperfusion injury via inhibitor of nuclear factor-κB. Pharmacology 2019 104 3-4 126 138 10.1159/000500702 31212291
    [Google Scholar]
  65. Szacoń E. Rządkowska M. Kaczor A.A. Kędzierska E. Mazur A. Fidecka S. Matosiuk D. Synthesis, central nervous system activity and structure–activity relationship of N-substituted derivatives of 1-arylimidazolidyn-2-ylideneurea and products of their cyclization. J. Enzyme Inhib. Med. Chem. 2015 30 5 746 760 10.3109/14756366.2014.965699 25669349
    [Google Scholar]
  66. Klenke B. Barrett M.P. Brun R. Gilbert I.H. Antiplasmodial activity of a series of 1,3,5-triazine-substituted polyamines. J. Antimicrob. Chemother. 2003 52 2 290 293 10.1093/jac/dkg307 12837742
    [Google Scholar]
  67. Sunduru N. Sharma M. Srivastava K. Rajakumar S. Puri S.K. Saxena J.K. Chauhan P.M.S. Synthesis of oxalamide and triazine derivatives as a novel class of hybrid 4-aminoquinoline with potent antiplasmodial activity. Bioorg. Med. Chem. 2009 17 17 6451 6462 10.1016/j.bmc.2009.05.075 19665899
    [Google Scholar]
  68. Kumar A. Srivastava K. Raja Kumar S. Puri S.K. Chauhan P.M.S. Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents. Bioorg. Med. Chem. Lett. 2008 18 24 6530 6533 10.1016/j.bmcl.2008.10.049 18951791
    [Google Scholar]
  69. Kumar A. Srivastava K. Raja Kumar S. Puri S.K. Chauhan P.M.S. Synthesis of 9-anilinoacridine triazines as new class of hybrid antimalarial agents. Bioorg. Med. Chem. Lett. 2009 19 24 6996 6999 10.1016/j.bmcl.2009.10.010 19879137
    [Google Scholar]
  70. Kertesz D.J. Brotherton-Pleiss C. Yang M. Wang Z. Lin X. Qiu Z. Hirschfeld D.R. Gleason S. Mirzadegan T. Dunten P.W. Harris S.F. Villaseñor A.G. Hang J.Q. Heilek G.M. Klumpp K. Discovery of piperidin-4-yl-aminopyrimidines as HIV-1 reverse transcriptase inhibitors. N-Benzyl derivatives with broad potency against resistant mutant viruses. Bioorg. Med. Chem. Lett. 2010 20 14 4215 4218 10.1016/j.bmcl.2010.05.040 20538456
    [Google Scholar]
  71. Tang G. Kertesz D.J. Yang M. Lin X. Wang Z. Li W. Qiu Z. Chen J. Mei J. Chen L. Mirzadegan T. Harris S.F. Villaseñor A.G. Fretland J. Fitch W.L. Hang J.Q. Heilek G. Klumpp K. Exploration of piperidine-4-yl-aminopyrimidines as HIV-1 reverse transcriptase inhibitors. N-Phenyl derivatives with broad potency against resistant mutant viruses. Bioorg. Med. Chem. Lett. 2010 20 20 6020 6023 10.1016/j.bmcl.2010.08.068 20829038
    [Google Scholar]
  72. Chen X. Zhan P. Liu X. Cheng Z. Meng C. Shao S. Pannecouque C. Clercq E.D. Liu X. Design, synthesis, anti-HIV evaluation and molecular modeling of piperidine-linked amino-triazine derivatives as potent non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. 2012 20 12 3856 3864 10.1016/j.bmc.2012.04.030 22591854
    [Google Scholar]
  73. Bollini M. Frey K.M. Cisneros J.A. Spasov K.A. Das K. Bauman J.D. Arnold E. Anderson K.S. Jorgensen W.L. Jorgensen W.L. Extension into the entrance channel of HIV-1 reverse transcriptase—Crystallography and enhanced solubility. Bioorg. Med. Chem. Lett. 2013 23 18 5209 5212 10.1016/j.bmcl.2013.06.093 23899617
    [Google Scholar]
  74. Bollini M. Cisneros J.A. Spasov K.A. Anderson K.S. Jorgensen W.L. Optimization of diarylazines as anti-HIV agents with dramatically enhanced solubility. Bioorg. Med. Chem. Lett. 2013 23 18 5213 5216 10.1016/j.bmcl.2013.06.091 23937980
    [Google Scholar]
  75. Zacharie B. Abbott S.D. Bienvenu J.F. Cameron A.D. Cloutier J. Duceppe J.S. Ezzitouni A. Fortin D. Houde K. Lauzon C. Moreau N. Perron V. Wilb N. Asselin M. Doucet A. Fafard M.È. Gaudreau D. Grouix B. Sarra-Bournet F. St-Amant N. Gagnon L. Penney C.L. 2,4,6-trisubstituted triazines as protein a mimetics for the treatment of autoimmune diseases. J. Med. Chem. 2010 53 3 1138 1145 10.1021/jm901403r 20047277
    [Google Scholar]
  76. Gewald R. Grunwald C. Egerland U. Discovery of triazines as potent, selective and orally active PDE4 inhibitors. Bioorg. Med. Chem. Lett. 2013 23 15 4308 4314 10.1016/j.bmcl.2013.05.099 23806553
    [Google Scholar]
  77. Sunduru N. Agarwal A. Katiyar S.B. Nishi; Goyal, N.; Gupta, S.; Chauhan, P.M.S. Synthesis of 2,4,6-trisubstituted pyrimidine and triazine heterocycles as antileishmanial agents. Bioorg. Med. Chem. 2006 14 23 7706 7715 10.1016/j.bmc.2006.08.009 16945542
    [Google Scholar]
  78. Wani M.Y. Bhat A.R. Azam A. Choi I. Athar F. Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives. Eur. J. Med. Chem. 2012 48 313 320 22236470 10.1016/j.ejmech.2011.12.033
    [Google Scholar]
  79. Avupati V.R. Yejella R.P. Parala V.R. Killari K.N. Papasani V.M.R. Cheepurupalli P. Gavalapu V.R. Boddeda B. Synthesis, characterization and in vitro biological evaluation of some novel 1,3,5-triazine–Schiff base conjugates as potential antimycobacterial agents. Bioorg. Med. Chem. Lett. 2013 23 21 5968 5970 10.1016/j.bmcl.2013.08.063 24044875
    [Google Scholar]
  80. Ho K.K. Beasley J.R. Belanger L. Black D. Chan J.H. Dunn D. Hu B. Klon A. Kultgen S.G. Ohlmeyer M. Parlato S.M. Ray P.C. Pham Q. Rong Y. Roughton A.L. Walker T.L. Wright J. Xu K. Xu Y. Zhang L. Webb M. Triazine and pyrimidine based ROCK inhibitors with efficacy in spontaneous hypertensive rat model. Bioorg. Med. Chem. Lett. 2009 19 21 6027 6031 10.1016/j.bmcl.2009.09.046 19800787
    [Google Scholar]
  81. Xia Y. Mirzai, B.; Chackalamannil, S.; Czarniecki, M.; Wang, S.; Clemmons, A.; Ahn, H.S.; Boykow, G.C. Substituted 1,3,5-triazines as cholesteryl ester transfer protein inhibitors. Bioorg. Med. Chem. Lett. 1996 6 7 919 922 10.1016/0960‑894X(96)00145‑X
    [Google Scholar]
  82. Pastorin G. Federico S. Paoletta S. Corradino M. Cateni F. Cacciari B. Klotz K.N. Gao Z.G. Jacobson K.A. Spalluto G. Moro S. Synthesis and pharmacological characterization of a new series of 5,7-disubstituted-[1,2,4]triazolo[1,5-a][1,3,5]triazine derivatives as adenosine receptor antagonists: A preliminary inspection of ligand–receptor recognition process. Bioorg. Med. Chem. 2010 18 7 2524 2536 10.1016/j.bmc.2010.02.039 20304654
    [Google Scholar]
  83. Hortala L. Arnaud J. Roux P. Oustric D. Boulu L. Oury-Donat F. Avenet P. Rooney T. Alagille D. Barret O. Tamagnan G. Barth F. Synthesis and preliminary evaluation of a new fluorine-18 labelled triazine derivative for PET imaging of cannabinoid CB2 receptor. Bioorg. Med. Chem. Lett. 2014 24 1 283 287 10.1016/j.bmcl.2013.11.023 24291040
    [Google Scholar]
  84. Zhang Z. Li C.U.S. Patent Application No. 10/882,850, 2021
  85. Babich J.W. Zimmerman C. Joyal J.L. Lu G.U.S. Patent No. 10,898,598, 2021
  86. Langguth T. Bracht S. Multi-layered transdermal system with tri-azine UV absorber. U.S. Patent No. 8,962,013, 2015
  87. Pflumm C. Leu S. Kaiser J. Parham A.H. Voges F. Kroeber J.V. Organic electroluminescent device comprising triazine deriva-tives. U.S. Patent No. 8,679,647, 2014
  88. Nishimura N. Kato T. Ozawa M. Hida M. Koide Y. Triazine ring-containing polymer and film-forming composition comprising same. U.S. Patent No. 8,618,243, 2013
  89. Tao C. Wang Q. Nallan L. Polat T. Koroniak L. Desai N.U.S. Patent Application No. 13/376,964, 2012
  90. Zacharie B. Penney C. Gagnon L. Grouix B. Geerts L. Abbott S.D.U.S. Patent No. 8,258,295, 2012
  91. Tao C. Wang Q. Koroniak L. Nallan L. Desai N.U.S. Patent Application No. 13/376,818, 2012
  92. Tao C. Wang Q. Desai N.P.U.S. Patent No 7,858,782, 2010
  93. Timmer R.T. Alexander C.W. Pillarisetti S. Saxena U. Yeleswarapu K.R. Pal M.U.S. Patent No. 7,169,785, 2007
  94. Timmer R.T. Alexander C.W. Pillarisetti S. Saxena U. Yeleswarapu K.R. Pal M.U.S. Patent No. 7,112,587, 2006
  95. Lowe C.R. Sproule K. Li R. Stewart D.J. Pearson J.C. Burton S.J. Patent No. 6,117,996, 2000
  96. Maeda A. Morinaga F. Okamura K. Higo K. Irikura T. Abe Y. U.S. Patent No. 3,758,471, 1973
/content/journals/cos/10.2174/0115701794272212240307092318
Loading
/content/journals/cos/10.2174/0115701794272212240307092318
Loading

Data & Media loading...

  • Article Type: Review Article
Keywords: antimalarial ; antimicrobial ; Anti-cancer ; anti-HIV ; toxicity ; triazine ; antiviral ; cell line
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test