Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

The triazine moiety holds a special and very important position in the field of medicinal chemistry owing to its enormous biological and pharmacological potential. Over eras, triazine scaffolds have been investigated for synthesizing novel molecules that may be used for the treatment of different types of pathological conditions, such as infections, cancer, inflammation . A vast number of lead molecules have been established from the triazine moiety. The triazine fused with numerous heterocyclic rings, such as pyrrole, benzimidazole, indole, imidazole, carbazole, ., have formed various bicyclic with pharmacological actions. The triazines display a wide range of activities, and synthesizing various marketable medicines that hold triazine moiety has made the attention of chemists worldwide grow over the years in the moiety. In this review article, the commercially available compound containing triazine has been presented, and an attempt has been made to collect the works reported, mostly in the past decade, by numerous scientists, related to the structural differences amongst the triazine analogues giving antitumor, and antimicrobial and other activities.

The objective of this review article was to outline the current information on triazines and their derivatives with respect to their biological potential and various pharmacological activities.

The summary of this review article would be helpful and describe the function and activity of the moiety to bring up-to-date the scientists working in the direction of designing and synthesising novel lead molecules for the treatment of different types of disease with the current molecules that have been synthesized from the triazine scaffold.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794272212240307092318
2024-09-09
2025-05-01
Loading full text...

Full text loading...

References

  1. SchroederH. GrundmannC. Triazines. XIV. The extension of the pinner synthesis of monohydroxy-s-triazines to the aliphatic series. 2,4-dimethyl-s-triazine 1-3.J. Am. Chem. Soc.195678112447245110.1021/ja01592a028
    [Google Scholar]
  2. SinghS. MandalM.K. MasihA. SahaA. GhoshS.K. BhatH.R. SinghU.P. 1,3,5‐Triazine: A versatile pharmacophore with diverse biological activities.Arch. Pharm.20213546200036310.1002/ardp.20200036333760298
    [Google Scholar]
  3. SharmaA. SheyiR. de la TorreB.G. El-FahamA. AlbericioF. s-Triazine: A privileged structure for drug discovery and bioconjugation.Molecules202126486410.3390/molecules2604086433562072
    [Google Scholar]
  4. WangZ. Pinner S-triazine synthesis.Comprehensive Organic Name Reactions and ReagentsJohn Wiley & Sons, Inc.20102241224310.1002/9780470638859.conrr505
    [Google Scholar]
  5. BaldaniyaB.B. PatelP.K. Synthesis, antibacterial and antifungal activities of s derivatives.E-J. Chem.20096367368010.1155/2009/196309
    [Google Scholar]
  6. ChangT.H. KlassenW. Comparative effects of tretamine, tepa, apholate and their structural analogs on human chromosomes in vitro.Chromosoma196824331432310.1007/BF003361995708270
    [Google Scholar]
  7. LeeC.R. FauldsD. Altretamine.Drugs199549693295310.2165/00003495‑199549060‑000077641606
    [Google Scholar]
  8. IssaJ.P.J. KantarjianH.M. KirkpatrickP. Azacitidine.Nat. Rev. Drug Discov.20054427527610.1038/nrd169815861567
    [Google Scholar]
  9. KimE.S. Enasidenib: First global approval.Drugs201777151705171110.1007/s40265‑017‑0813‑228879540
    [Google Scholar]
  10. GoreS.D. JonesC. KirkpatrickP. Decitabine.Nat. Rev. Drug Discov.200651189189210.1038/nrd218017117522
    [Google Scholar]
  11. WainbergZ.A. AlsinaM. SoaresH.P. BrañaI. BrittenC.D. Del ConteG. EzehP. HoukB. KernK.A. LeongS. PathanN. PierceK.J. SiuL.L. VermetteJ. TaberneroJ. A multi-arm phase i study of the PI3K/mTOR inhibitors PF-04691502 and gedatolisib (PF-05212384) plus irinotecan or the MEK inhibitor PD-0325901 in advanced cancer.Target. Oncol.201712677578510.1007/s11523‑017‑0530‑529067643
    [Google Scholar]
  12. GoaK.L. RossS.R. ChrispP. Lamotrigine.Drugs199346115217610.2165/00003495‑199346010‑000097691504
    [Google Scholar]
  13. ReddyS.B. WilliamsonS.K. Tirapazamine: A novel agent targeting hypoxic tumor cells.Expert Opin. Investig. Drugs2009181778710.1517/1354378080256725019053884
    [Google Scholar]
  14. RichardsD.M. HeelR.C. BrogdenR.N. SpeightT.M. AveryG.S. Ceftriaxone. A review of its antibacterial activity, pharmacological properties and therapeutic use.Drugs198427646952710.2165/00003495‑198427060‑000016329638
    [Google Scholar]
  15. GraymoreM. StagnittiF. AllinsonG. Impacts of atrazine in aquatic ecosystems.Environ. Int.2001267-848349510.1016/S0160‑4120(01)00031‑911485216
    [Google Scholar]
  16. Karimi-MalehH. KarimiF. FuL. SanatiA.L. AlizadehM. KaramanC. OroojiY. Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor.J. Hazard. Mater.2022423Pt A12705810.1016/j.jhazmat.2021.12705834488091
    [Google Scholar]
  17. ZhangJ.J. WangY.K. ZhouJ.H. XieF. GuoQ.N. LuF.F. JinS.F. ZhuH.M. YangH. Reduced phytotoxicity of propazine on wheat, maize and rapeseed by salicylic acid.Ecotoxicol. Environ. Saf.2018162425010.1016/j.ecoenv.2018.06.06829960913
    [Google Scholar]
  18. CoxL. CecchiA. CelisR. HermosínM.C. KoskinenW.C. CornejoJ. Effect of exogenous carbon on movement of simazine and 2, 4‐D in soils.Soil Sci. Soc. Am. J.20016561688169510.2136/sssaj2001.1688
    [Google Scholar]
  19. SatoY. MorimotoA. KiueA. OkamuraK. HamanakaR. KohnoK. KuwanoM. SakataT. Irsogladine is a potent inhibitor of angiogenesis.FEBS Lett.1993322215515810.1016/0014‑5793(93)81558‑H7683279
    [Google Scholar]
  20. DavesG.Jr RobinsR. ChengC. Communications- the structure of fervenulin, a new antibiotic.J. Org. Chem.196126125256525710.1021/jo01070a600
    [Google Scholar]
  21. ShokoohianM. HazeriN. MaghsoodlouM.T. LashkariM. Design and synthesis, antimicrobial activities of 1,2,4-triazine derivatives as representation of a new hetrocyclic system.Polycycl. Aromat. Compd.202042111210.1080/10406638.2020.1712439
    [Google Scholar]
  22. JainS. SharmaA. AgrawalM. SharmaS. DwivediJ. KishoreD. Synthesis and antimicrobial evaluation of some novel trisubstituted s-triazine derivatives based on isatinimino, sulphonamido, and azacarbazole.J. Chem.201320131910.1155/2013/925439
    [Google Scholar]
  23. LakumH.P. DesaiD.V. ChikhaliaK.H. Synthesis, characterization, and antimicrobial screening of s -triazines linked with piperazine or aniline scaffolds.hc201319535135510.1515/hc‑2013‑0077
    [Google Scholar]
  24. MilataV. ReinprechtL. KizlinkJ. Synthesis and antifungal efficacy of 1,3,5-triazines.Acta Chim. Slov.2012519599
    [Google Scholar]
  25. Al-ZaydiK.M. KhalilH.H. El-FahamA. KhattabS.N. Synthesis, characterization and evaluation of 1,3,5-triazine aminobenzoic acid derivatives for their antimicrobial activity.Chem. Cent. J.20171113910.1186/s13065‑017‑0267‑329086830
    [Google Scholar]
  26. GunasekaranP. Amphiphilic triazine polymer Derivatives as Antibacterial and anti-atopic agents in Mice Model.Sci. Rep.20199111730626917
    [Google Scholar]
  27. SwamiG.A. BotharaK.G. Optimization of antimicrobial activity of synthesized s-triazine derivatives.Int. J. Res. Pharm. Chem.20199421121410.33289/IJRPC.9.4.2019.981
    [Google Scholar]
  28. RathaviA. ThakorM.K. Design, synthesis and in vitro antimicrobial activity of trisubstituted s-triazine.Acta Chim. Pharm. Indica.2015526067
    [Google Scholar]
  29. DesaiN.C. MakwanaA.H. RajparaK.M. Synthesis and study of 1,3,5-triazine based thiazole derivatives as antimicrobial agents.J. Saudi Chem. Soc.201620S334S34110.1016/j.jscs.2012.12.004
    [Google Scholar]
  30. BhatH.R. MasihA. ShakyaA. GhoshS.K. SinghU.P. Design, synthesis, anticancer, antibacterial, and antifungal evaluation of 4‐aminoquinoline‐1,3,5‐triazine derivatives.J. Heterocycl. Chem.202057139039910.1002/jhet.3791
    [Google Scholar]
  31. SinghU.P. SinghR.K. BhatH.R. SubhashchandraY.P. KumarV. KumawatM.K. GahtoriP. Synthesis and antibacterial evaluation of series of novel tri-substituted-s-triazine derivatives.Med. Chem. Res.20112091603161010.1007/s00044‑010‑9446‑7
    [Google Scholar]
  32. DongreR.P. RathodS.P. Design, synthesis and pharmacological evaluation of new series of 2-pyrazoline containing s-triazine and their derivatives.Der Chemica Sinica2016743641
    [Google Scholar]
  33. RavalJ.P. RaiA.R. PatelN.H. PatelH.V. PatelP.S. Synthesis and in vitro antimicrobial activity of N′-(4-(arylamino)-6-(pyridin-2-ylamino)-1,3,5-triazin-2-yl)benzohydrazide.Int. J. Chemtech Res.200913616620
    [Google Scholar]
  34. KavithaN. KarthiA. ArunA. ShafiS. Synthesis, characterization and antimicrobial activity of some novel s-triazine derivatives incorporating quinoline moiety.Pharma Chem.2015710453
    [Google Scholar]
  35. KhanF.G. YadavM.V. SagarA.D. Synthesis, characterization, and antimicrobial evaluation of novel trichalcones containing core s-triazine moiety.Med. Chem. Res.20142352633263810.1007/s00044‑013‑0837‑4
    [Google Scholar]
  36. DesaiN.C. MakwanaA.H. SentaR.D. Synthesis, characterization and antimicrobial activity of some novel 4-(4-(arylamino)-6-(piperidin-1-yl)-1,3,5-triazine-2-ylamino)-N-(pyrimidin-2-yl)benzenesulfonamides.J. Saudi Chem. Soc.201620668669410.1016/j.jscs.2015.01.004
    [Google Scholar]
  37. CirrincioneG. AlmericoA.M. BarrajaP. DianaP. LauriaA. PassannantiA. MusiuC. PaniA. MurtasP. MinneiC. MarongiuM.E. La CollaP. Derivatives of the new ring system indolo[1,2-c]benzo[1,2,3]triazine with potent antitumor and antimicrobial activity.J. Med. Chem.199942142561256810.1021/jm980608710411476
    [Google Scholar]
  38. PomarnackaE. BednarskiP. GrunertR. ReszkaP. Synthesis and anticancer activity of novel 2-amino-4-(4-phenylpiperazino)- 1,3,5-triazine derivatives.Acta Pol. Pharm.200461646146615794339
    [Google Scholar]
  39. SaidM. ElshihawyH. Synthesis, anticancer activity and structure-activity relationship of some anticancer agents based on cyclopenta (b) thiophene scaffold.Pak. J. Pharm. Sci.201427488589225015456
    [Google Scholar]
  40. SączewskiF. BułakowskaA. BednarskiP. GrunertR. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives.Eur. J. Med. Chem.200641221922510.1016/j.ejmech.2005.10.01316377034
    [Google Scholar]
  41. DubeyP. PathakD.P. AliF. ChauhanG. KalaiselvanV. In vitro evaluation of triazine scaffold for anticancer drug development: A review.Curr. Drug Discov. Technol.20232010.2174/157016382066623071716161037461340
    [Google Scholar]
  42. KothayerH. SpencerS.M. TripathiK. WestwellA.D. PalleK. Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors.Bioorg. Med. Chem. Lett.20162682030203410.1016/j.bmcl.2016.02.08526965855
    [Google Scholar]
  43. BalahaM.F. El-HamamsyM.H. Sharaf El-DinN.A. El-MahdyN.A. Synthesis, evaluation and docking study of 1, 3, 5-triazine derivatives as cytotoxic agents against lung cancer.J. Appl. Pharm. Sci.201664284510.7324/JAPS.2016.60405
    [Google Scholar]
  44. HuangQ. FuQ. LiuY. BaiJ. WangQ. LiaoH. GongP. Design, synthesis and anticancer activity of novel 6-(aminophenyl)-2,4-bismorpholino-1,3,5-triazine derivatives bearing arylmethylene hydrazine moiety.Chem. Res. Chin. Univ.201430225726510.1007/s40242‑014‑3253‑5
    [Google Scholar]
  45. SączewskiF. BułakowskaA. Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives.Eur. J. Med. Chem.200641561161510.1016/j.ejmech.2005.12.01216540207
    [Google Scholar]
  46. MorenoL. QuirogaJ. AboniaR. Ramírez-PradaJ. InsuastyB. Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents.Molecules2018238195610.3390/molecules2308195630082588
    [Google Scholar]
  47. YanW. ZhaoY. HeJ. Anti‑breast cancer activity of selected 1,3,5‑triazines via modulation of EGFR‑TK.Mol. Med. Rep.20181854175418410.3892/mmr.2018.942630152850
    [Google Scholar]
  48. SrivastavaJ.K. PillaiG.G. BhatH.R. VermaA. SinghU.P. Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase.Sci. Rep.201771585110.1038/s41598‑017‑05934‑528724908
    [Google Scholar]
  49. WróbelA. KolesińskaB. FrączykJ. KamińskiZ.J. Tankiewicz-KwedloA. HermanowiczJ. CzarnomysyR. MaliszewskiD. DrozdowskaD. Synthesis and cellular effects of novel 1,3,5-triazine derivatives in DLD and Ht-29 human colon cancer cell lines.Invest. New Drugs201911331520321
    [Google Scholar]
  50. MarwaI.S. RaniaM.G. MohamedA.M. HassanM.E. Design, synthesis and molecular modeling of new 1,3,5-triazine derivatives as anticancer agents.Pharma Chem.2019115714
    [Google Scholar]
  51. ShuttleworthS.J. SilvaF.A. CecilA.R. TomassiC.D. HillT.J. RaynaudF.I. ClarkeP.A. WorkmanP. Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors.Curr. Med. Chem.201118182686271410.2174/09298671179601122921649578
    [Google Scholar]
  52. MeadowsS.A. VegaF. KashishianA. JohnsonD. DiehlV. MillerL.L. YounesA. LannuttiB.J. PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma.Blood201211981897190010.1182/blood‑2011‑10‑38676322210877
    [Google Scholar]
  53. LannuttiB.J. MeadowsS.A. HermanS.E.M. KashishianA. SteinerB. JohnsonA.J. ByrdJ.C. TynerJ.W. LoriauxM.M. DeiningerM. DrukerB.J. PuriK.D. UlrichR.G. GieseN.A. CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability.Blood2011117259159410.1182/blood‑2010‑03‑27530520959606
    [Google Scholar]
  54. VerheijenJ.C. RichardD.J. CurranK. KaplanJ. YuK. ZaskA. 2-Arylureidophenyl-4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)triazines as highly potent and selective ATP competitive mTOR inhibitors: Optimization of human microsomal stability.Bioorg. Med. Chem. Lett.20102082648265310.1016/j.bmcl.2010.02.03120223663
    [Google Scholar]
  55. MaZ.Y. ZhangX.H. LiC. ZhengY. YangG. Design and synthesis of 3-substitued methylenethiochroman-4-ones-as anticancer agents.Chem. Res. Chin. Univ.2011275787791
    [Google Scholar]
  56. BaiF. LiuH. TongL. ZhouW. LiuL. ZhaoZ. LiuX. JiangH. WangX. XieH. LiH. Discovery of novel selective inhibitors for EGFR-T790M/L858R.Bioorg. Med. Chem. Lett.20122231365137010.1016/j.bmcl.2011.12.06722227214
    [Google Scholar]
  57. DaoP. JarrayR. Le CoqJ. LiethaD. LoukaciA. LepelletierY. Hadj-SlimaneR. GarbayC. RaynaudF. ChenH. Synthesis of novel diarylamino-1,3,5-triazine derivatives as FAK inhibitors with anti-angiogenic activity.Bioorg. Med. Chem. Lett.201323164552455610.1016/j.bmcl.2013.06.03823845217
    [Google Scholar]
  58. SieleckiT.M. BoylanJ.F. BenfieldP.A. TrainorG.L. Cyclin-dependent kinase inhibitors: Useful targets in cell cycle regulation.J. Med. Chem.200043111810.1021/jm990256j10633033
    [Google Scholar]
  59. MaccioniR.B. OtthC. ConchaI.I. MuñozJ.P. The protein kinase Cdk5.Eur. J. Biochem.200126861518152710.1046/j.1432‑1327.2001.02024.x11248668
    [Google Scholar]
  60. BarakarA. El-SendunyF.F. AlmarhoonZ. Al-RasheedH.H. BadriaF.A. Al-MajidA.M. GhabbourH.A. El-FahamA. Synthesis, X-ray crystal structures, and preliminary antiproliferative activities of new s-triazine-hydroxybenzylidene hydrazone derivatives.J. Chem.201920199403908
    [Google Scholar]
  61. FiorotR.G. WestphalR. LemosB.C. RomagnaR.A. GonçalvesP.R. FernandesM.R.N. FerreiraC.V. TarantoA.G. GrecoS.J. Synthesis, molecular modeling and anticancer activities of new molecular hybrids containing 1,4-Naphthoquinone, 7-Chloroquinoline, 1,3,5-triazine and morpholine cores as PI3K and AMPK inhibitors in the metastatic melanoma cells.J. Braz. Chem. Soc.201930918601873
    [Google Scholar]
  62. GaoW-L. LiJ-X. Design, synthesis, and structure-activity relationship of imidazolidin-2-one-1,3,5-triazine conjugates as Enterovirus 71 and Coxsackievirus A16 Inhibitor.Biomed. Res.201782811816
    [Google Scholar]
  63. MibuN. YokomizoK. KogaA. HondaM. MizokamiK. FujiiH. OtaN. YuzurihaA. IshimaruK. ZhouJ. MiyataT. SumotoK. Synthesis and antiviral activities of some 2,4,6-trisubstituted 1,3,5-triazines.Chem. Pharm. Bull.201462101032104010.1248/cpb.c14‑0042125273062
    [Google Scholar]
  64. QiangZ. YuW. YuY. Design and development of novel 1,3,5-triazine-procaine derivatives as protective agent against myocardial ischemia/reperfusion injury via inhibitor of nuclear factor-κB.Pharmacology20191043-412613810.1159/00050070231212291
    [Google Scholar]
  65. SzacońE. RządkowskaM. KaczorA.A. KędzierskaE. MazurA. FideckaS. MatosiukD. Synthesis, central nervous system activity and structure–activity relationship of N-substituted derivatives of 1-arylimidazolidyn-2-ylideneurea and products of their cyclization.J. Enzyme Inhib. Med. Chem.201530574676010.3109/14756366.2014.96569925669349
    [Google Scholar]
  66. KlenkeB. BarrettM.P. BrunR. GilbertI.H. Antiplasmodial activity of a series of 1,3,5-triazine-substituted polyamines.J. Antimicrob. Chemother.200352229029310.1093/jac/dkg30712837742
    [Google Scholar]
  67. SunduruN. SharmaM. SrivastavaK. RajakumarS. PuriS.K. SaxenaJ.K. ChauhanP.M.S. Synthesis of oxalamide and triazine derivatives as a novel class of hybrid 4-aminoquinoline with potent antiplasmodial activity.Bioorg. Med. Chem.200917176451646210.1016/j.bmc.2009.05.07519665899
    [Google Scholar]
  68. KumarA. SrivastavaK. Raja KumarS. PuriS.K. ChauhanP.M.S. Synthesis and bioevaluation of hybrid 4-aminoquinoline triazines as a new class of antimalarial agents.Bioorg. Med. Chem. Lett.200818246530653310.1016/j.bmcl.2008.10.04918951791
    [Google Scholar]
  69. KumarA. SrivastavaK. Raja KumarS. PuriS.K. ChauhanP.M.S. Synthesis of 9-anilinoacridine triazines as new class of hybrid antimalarial agents.Bioorg. Med. Chem. Lett.200919246996699910.1016/j.bmcl.2009.10.01019879137
    [Google Scholar]
  70. KerteszD.J. Brotherton-PleissC. YangM. WangZ. LinX. QiuZ. HirschfeldD.R. GleasonS. MirzadeganT. DuntenP.W. HarrisS.F. VillaseñorA.G. HangJ.Q. HeilekG.M. KlumppK. Discovery of piperidin-4-yl-aminopyrimidines as HIV-1 reverse transcriptase inhibitors. N-Benzyl derivatives with broad potency against resistant mutant viruses.Bioorg. Med. Chem. Lett.201020144215421810.1016/j.bmcl.2010.05.04020538456
    [Google Scholar]
  71. TangG. KerteszD.J. YangM. LinX. WangZ. LiW. QiuZ. ChenJ. MeiJ. ChenL. MirzadeganT. HarrisS.F. VillaseñorA.G. FretlandJ. FitchW.L. HangJ.Q. HeilekG. KlumppK. Exploration of piperidine-4-yl-aminopyrimidines as HIV-1 reverse transcriptase inhibitors. N-Phenyl derivatives with broad potency against resistant mutant viruses.Bioorg. Med. Chem. Lett.201020206020602310.1016/j.bmcl.2010.08.06820829038
    [Google Scholar]
  72. ChenX. ZhanP. LiuX. ChengZ. MengC. ShaoS. PannecouqueC. ClercqE.D. LiuX. Design, synthesis, anti-HIV evaluation and molecular modeling of piperidine-linked amino-triazine derivatives as potent non-nucleoside reverse transcriptase inhibitors.Bioorg. Med. Chem.201220123856386410.1016/j.bmc.2012.04.03022591854
    [Google Scholar]
  73. BolliniM. FreyK.M. CisnerosJ.A. SpasovK.A. DasK. BaumanJ.D. ArnoldE. AndersonK.S. JorgensenW.L. JorgensenW.L. Extension into the entrance channel of HIV-1 reverse transcriptase—Crystallography and enhanced solubility.Bioorg. Med. Chem. Lett.201323185209521210.1016/j.bmcl.2013.06.09323899617
    [Google Scholar]
  74. BolliniM. CisnerosJ.A. SpasovK.A. AndersonK.S. JorgensenW.L. Optimization of diarylazines as anti-HIV agents with dramatically enhanced solubility.Bioorg. Med. Chem. Lett.201323185213521610.1016/j.bmcl.2013.06.09123937980
    [Google Scholar]
  75. ZacharieB. AbbottS.D. BienvenuJ.F. CameronA.D. CloutierJ. DuceppeJ.S. EzzitouniA. FortinD. HoudeK. LauzonC. MoreauN. PerronV. WilbN. AsselinM. DoucetA. FafardM.È. GaudreauD. GrouixB. Sarra-BournetF. St-AmantN. GagnonL. PenneyC.L. 2,4,6-trisubstituted triazines as protein a mimetics for the treatment of autoimmune diseases.J. Med. Chem.20105331138114510.1021/jm901403r20047277
    [Google Scholar]
  76. GewaldR. GrunwaldC. EgerlandU. Discovery of triazines as potent, selective and orally active PDE4 inhibitors.Bioorg. Med. Chem. Lett.201323154308431410.1016/j.bmcl.2013.05.09923806553
    [Google Scholar]
  77. SunduruN. AgarwalA. KatiyarS.B. Nishi GoyalN. GuptaS. ChauhanP.M.S. Synthesis of 2,4,6-trisubstituted pyrimidine and triazine heterocycles as antileishmanial agents.Bioorg. Med. Chem.200614237706771510.1016/j.bmc.2006.08.00916945542
    [Google Scholar]
  78. WaniM.Y. BhatA.R. AzamA. ChoiI. AtharF. Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives.Eur. J. Med. Chem.20124831332010.1016/j.ejmech.2011.12.03322236470
    [Google Scholar]
  79. AvupatiV.R. YejellaR.P. ParalaV.R. KillariK.N. PapasaniV.M.R. CheepurupalliP. GavalapuV.R. BoddedaB. Synthesis, characterization and in vitro biological evaluation of some novel 1,3,5-triazine–Schiff base conjugates as potential antimycobacterial agents.Bioorg. Med. Chem. Lett.201323215968597010.1016/j.bmcl.2013.08.06324044875
    [Google Scholar]
  80. HoK.K. BeasleyJ.R. BelangerL. BlackD. ChanJ.H. DunnD. HuB. KlonA. KultgenS.G. OhlmeyerM. ParlatoS.M. RayP.C. PhamQ. RongY. RoughtonA.L. WalkerT.L. WrightJ. XuK. XuY. ZhangL. WebbM. Triazine and pyrimidine based ROCK inhibitors with efficacy in spontaneous hypertensive rat model.Bioorg. Med. Chem. Lett.200919216027603110.1016/j.bmcl.2009.09.04619800787
    [Google Scholar]
  81. Yan Xia MirzaiB. ChackalamannilS. CzarnieckiM. WangS. ClemmonsA. AhnH.S. BoykowG.C. Substituted 1,3,5-triazines as cholesteryl ester transfer protein inhibitors.Bioorg. Med. Chem. Lett.19966791992210.1016/0960‑894X(96)00145‑X
    [Google Scholar]
  82. PastorinG. FedericoS. PaolettaS. CorradinoM. CateniF. CacciariB. KlotzK.N. GaoZ.G. JacobsonK.A. SpallutoG. MoroS. Synthesis and pharmacological characterization of a new series of 5,7-disubstituted-[1,2,4]triazolo[1,5-a][1,3,5]triazine derivatives as adenosine receptor antagonists: A preliminary inspection of ligand–receptor recognition process.Bioorg. Med. Chem.20101872524253610.1016/j.bmc.2010.02.03920304654
    [Google Scholar]
  83. HortalaL. ArnaudJ. RouxP. OustricD. BouluL. Oury-DonatF. AvenetP. RooneyT. AlagilleD. BarretO. TamagnanG. BarthF. Synthesis and preliminary evaluation of a new fluorine-18 labelled triazine derivative for PET imaging of cannabinoid CB2 receptor.Bioorg. Med. Chem. Lett.201424128328710.1016/j.bmcl.2013.11.02324291040
    [Google Scholar]
  84. ZhangZ. LiC. U.S. Patent Application No. 10/882,8502021
  85. BabichJ.W. ZimmermanC. JoyalJ.L. LuG. U.S. Patent No. 10,898,5982021
  86. LangguthT. BrachtS. Multi-layered transdermal system with triazine UV absorber.U.S. Patent No. 8,962,0132015
  87. PflummC. LeuS. KaiserJ. ParhamA.H. VogesF. KroeberJ.V. Organic electroluminescent device comprising triazine derivatives.U.S. Patent No. 8,679,6472014
  88. NishimuraN. KatoT. OzawaM. HidaM. KoideY. Triazine ring-containing polymer and film-forming composition comprising same.U.S. Patent No. 8,618,2432013
  89. TaoC. WangQ. NallanL. PolatT. KoroniakL. DesaiN. U.S. Patent Application No. 13/376,9642012
  90. ZacharieB. PenneyC. GagnonL. GrouixB. GeertsL. AbbottS.D. U.S. Patent No. 8,258,2952012
  91. TaoC. WangQ. KoroniakL. NallanL. DesaiN. U.S. Patent Application No. 13/376,8182012
  92. TaoC. WangQ. DesaiN.P. U.S. Patent No 7,858,7822010
  93. TimmerR.T. AlexanderC.W. PillarisettiS. SaxenaU. YeleswarapuK.R. PalM. U.S. Patent No. 7,169,7852007
  94. TimmerR.T. AlexanderC.W. PillarisettiS. SaxenaU. YeleswarapuK.R. PalM. U.S. Patent No. 7,112,5872006
  95. LoweC.R. SprouleK. LiR. StewartD.J. PearsonJ.C. BurtonS.J. Triazine based ligands and use thereof.U.S. Patent No. 6,117,9962000
  96. MaedaA. MorinagaF. OkamuraK. HigoK. IrikuraT. AbeY. Triazine derivatives.U.S. Patent No. 3,758,4711973
/content/journals/cos/10.2174/0115701794272212240307092318
Loading
/content/journals/cos/10.2174/0115701794272212240307092318
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Anti-cancer; anti-HIV; antimalarial; antimicrobial; antiviral; cell line; toxicity; triazine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test