Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

Allelopathy related to a positive or negative impacts on one type of plant, by a chemical produced by another type of plant such as weeds, and different kinds of chemicals are hydroxamic acids, phenolics, and short-chain fatty acids. The potential allelopathic impacts of weeds is directly associated to the plan species used, as well as to the concentration of the aqueous extract available in the environment.

Methods

The present research manuscript attempts to find and identify the allelopathic interaction of aquatic extracts from dry shoots and seeds of mallow () on germination, seedling growth and development of three cultivars of maize. Maize seeds (.) were obtained as seed material: three maize seed cultivars were KSC 704 (Cultivar 1), KSC 500 (Cultivar 2), and KSC 302 (Cultivar 3). The aqueous extracts of mallow shoots and seed, in concentration of 1, 3, 5%, were made from the dried and crumbled above-ground plant parts. The influence of plant dosage was significant on seedling vigour index (SVI), coefficient of the rate of germination (CRG), total germination (T50), germination energy (GE), mean germination time (MGT), germination index (GI), inhibition percentage (IP), fresh mass, dry mass, relative water content (RWC), and total water content (TWC). Different plant parts had meaningful influence on SVI, GI, MGT, CRG, GE, and IP. The impacts of cultivar on T50, IP, RWC, fresh mass, dry mass and TWC were significant. Along with the increase in the concentration of allelopathic components, a decrease in the germination activity of all tested maize cultivars was observed.

Results

The highest SVI was related to control treatment followed by one and three percentage of plant dosages. KSC 704 obtained the maximum CRG and GE, and the minimum one was related to KSC 500. Three percentage of plant dosage has obtained the highest value of CRG and GE. The maximum and the minimum T50 was related to KSC 302 and KSC 704, respectively. The lowest values of GI and MGT was related to KSC 500, and the maximum values are related to KSC 704. While the maximum IP, RWC, fresh mass, dry mass and TWC was related to KSC 704, the lowest values were achieved in utilization of KSC 500. The RWC was the highest for seedlings grown on the 5% extract.

Conclusion

The information of this article can be useful in the conditions of the threat of maize seedlings wit the mass appearance of mallow.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794274892231229110318
2024-02-06
2025-05-02
Loading full text...

Full text loading...

References

  1. PathakH. IgathinathaneC. HowattK. ZhangZ. Machine learning and handcrafted image processing methods for classifying common weeds in corn field.Smart Agricult. Technol.2023510024910.1016/j.atech.2023.100249
    [Google Scholar]
  2. LuongX.T.H. ShenY.S. LiangC. ChenY.T. Evaluation of various natural weeds and reaction conditions for reductive degradation of 1,3-dinitrobenzene.J. Hazard. Mater.202345413146710.1016/j.jhazmat.2023.13146737104957
    [Google Scholar]
  3. UlrichA. MüllerC. GasparettoI.G. BonafinF. DieringN.L. CamargoA.F. Reichert JúniorF.W. PaudelS.R. TreichelH. MossiA.J. Bioherbicide effects of Trichoderma koningiopsis associated with commercial formulations of glyphosate in weeds and soybean plants.Crop Prot.202317210634610.1016/j.cropro.2023.106346
    [Google Scholar]
  4. WessnerR.N. FrozzaR. Duarte da Silva BagatiniD. MolzR.F. Recognition of weeds in corn crops: System with convolutional neural networks.J. Agricult. Food Res.20231410066910.1016/j.jafr.2023.100669
    [Google Scholar]
  5. BlankL. RozenbergG. GafniR. Spatial and temporal aspects of weeds distribution within agricultural fields - A review.Crop Prot.202317210630010.1016/j.cropro.2023.106300
    [Google Scholar]
  6. GaribaldiL.A. GoldenbergM.G. BurianA. SantibañezF. SatorreE.H. MartiniG.D. SeppeltR. Smaller agricultural fields, more edges, and natural habitats reduce herbicide-resistant weeds.Agric. Ecosyst. Environ.202334210826010.1016/j.agee.2022.108260
    [Google Scholar]
  7. JannehL.L. ZhangY. CuiZ. YangY. Multi-level feature re-weighted fusion for the semantic segmentation of crops and weeds.J. King Saud Univ. - Comp. Inform. Sci.202335610154510.1016/j.jksuci.2023.03.023
    [Google Scholar]
  8. GentyL. KazakouE. MetayA. BastianelliD. BoppM.C. BarkaouiK. Promising weeds forage potential in perennial Mediterranean agroecosystems.Agric. Ecosyst. Environ.202334710838810.1016/j.agee.2023.108388
    [Google Scholar]
  9. BarrosL. CarvalhoA.M. FerreiraI.C.F.R. Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition.Food Chem. Toxicol.20104861466147210.1016/j.fct.2010.03.01220233600
    [Google Scholar]
  10. DohrmannA.B. TebbeC.C. Genetic profiling of bacterial communities from the rhizospheres of ozone damaged Malva sylvestris (Malvaceae).Eur. J. Soil Biol.200642419119910.1016/j.ejsobi.2006.02.001
    [Google Scholar]
  11. PrudenteA.S. SponchiadoG. MendesD.A.G.B. SoleyB.S. CabriniD.A. OtukiM.F. Pre-clinical efficacy assessment of Malva sylvestris on chronic skin inflammation.Biomed. Pharmacother.20179385286010.1016/j.biopha.2017.06.08328711022
    [Google Scholar]
  12. SunW. ShahrajabianM.H. HuangQ. Soybean seeds treated with single walled carbon nanotubes (SwCNTs) showed enhanced drought tolerance during germination.Int. J. Adv. Biol. Biomed. Res.20208191610.33945/SAMI/IJABBR.2020.1.2
    [Google Scholar]
  13. SunW. ShahrajabianM.H. ChengQ. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science.Mini Rev. Med. Chem.202121672473010.2174/18755607MTEx4OTAn533245271
    [Google Scholar]
  14. SunW. ShahrajabianM.H. ChengQ. Natural dietary and medicinal plants with anti-obesity therapeutic activities for treatment and prevention of obesity during lock down and in post-Covid-19 era.Appl. Sci.20211117788910.3390/app11177889
    [Google Scholar]
  15. SunW. ShahrajabianM.H. LinM. Research progress of fermented functional foods and protein factory-microbial fermentation technology.Fermentation202281268810.3390/fermentation8120688
    [Google Scholar]
  16. SunW. ShahrajabianM.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health.Molecules2023284184510.3390/molecules2804184536838831
    [Google Scholar]
  17. SunW. ShahrajabianM.H. PetropoulosS.A. ShahrajabianN. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants.Plants20231213246910.3390/plants1213246937447031
    [Google Scholar]
  18. ShahrajabianM.H. PetropoulosS.A. SunW. Survey of the influence of microbial biostimulants on horticultural crops: case studies and successful paradigms.Horticulturae20239219310.3390/horticulturae9020193
    [Google Scholar]
  19. BilenS. KenanogluO.N. TerziE. OzdemirR.C. SonmezA.Y. Effects of tetra (Cotinus coggygria) and common mallow (Malva sylvestris) plant extracts on growth performance and immune response in Gilthead Sea bream (Sparus aurata) and European Sea bass (Dicentrarchus labrax).Aquaculture201951273425110.1016/j.aquaculture.2019.734251
    [Google Scholar]
  20. WuY. QiuA. YangZ. WuJ. LiX. BaoK. WangM. WuB. Malva sylvestris extract alleviates the astrogliosis and inflammatory stress in LPS-induced depression mice.J. Neuroimmunol.201933657702910.1016/j.jneuroim.2019.57702931487612
    [Google Scholar]
  21. Naghi TehraniM.E.H. GhahremaniP. RamezanzadehM. BahlakehG. RamezanzadehB. Theoretical and experimental assessment of a green corrosion inhibitor extracted from Malva sylvestris. J. Environ. Chem. Eng.20219310525610.1016/j.jece.2021.105256
    [Google Scholar]
  22. SeddighfarM. MirghazanfariS.M. DadpayM. Analgesic and anti-inflammatory properties of hydroalcoholic extracts of Malva sylvestris, Carum carvi or Medicago sativa, and their combination in a rat model.J. Integr. Med.202018218118810.1016/j.joim.2020.02.00332113847
    [Google Scholar]
  23. ShahrajabianM.H. KhoshkharamM. SunW. ChengQ. Germination and seedlings growth of Corn (Zea mays L.) to allelopathic effects of rice (Oryza sativa L.).Trop. Plant Res.20196115215610.22271/tpr.2019.v6.i1.022
    [Google Scholar]
  24. ShahrajabianM.H. KhoshkharamM. ZandiP. SunW. ChengQ. The influence of temperatures on germination and seedling growth of pyrethrum (Tanacetum cineraiifolium) under drought stress.Int. J. Adv. Biol. Biomed. Res.202081293910.33945/SAMI/IJABBR.2020.1.4
    [Google Scholar]
  25. ShahrajabianM.H. SunW. SoleymaniA. ChengQ. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses.Phytother. Res.20202020111110.1002/ptr.688833350538
    [Google Scholar]
  26. ShahrajabianM.H. ChaskiC. PolyzosN. PetropoulosS.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables.Biomolecules202111569810.3390/biom1105069834067181
    [Google Scholar]
  27. ShahrajabianM.H. ChaskiC. PolyzosN. TzortzakisN. PetropoulosS.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants.Biomolecules202111681910.3390/biom1106081934072781
    [Google Scholar]
  28. ShahrajabianM.H. ChengQ. SunW. The importance of neglected and underutilized medicinal plants from South America in modern pharmaceutical sciences.Lett. Drug Des. Discov.202320111688170610.2174/1570180819666220512113812
    [Google Scholar]
  29. ShahrajabianM.H. MarmittD.J. ChengQ. SunW. Natural antioxidants of the underutilized and neglected plant species of Asia and South America.Lett. Drug Des. Discov.202320101512153710.2174/1570180819666220616145558
    [Google Scholar]
  30. GeJ. HuY. RenC. GuoL. WangC. SunW. ShahrajabianM.H. Effects of GA3 and ABA on the germination of dormant oat seeds.Cercet. Agron. Mold.2018513254110.2478/cerce‑2018‑0023
    [Google Scholar]
  31. MarmittD.J. ShahrajabianM.H. Plant species used in Brazil and Asia regions with toxic properties.Phytother. Res.20213594703472610.1002/ptr.710033793002
    [Google Scholar]
  32. OgbajiP.O. ShahrajabianM.H. XueX. Changes in germination and primarily growth of three cultivars of tomato under diatomite and soil materials in auto-irrigation system.Int. J. Biol.201353808410.5539/ijb.v5n3p80
    [Google Scholar]
  33. SaadA.B. RjeibiI. AlimiH. NcibS. SmidaA. ZouariN. ZourguiL. Lithium induced, oxidative stress and related damages in testes and heart in male rats: The protective effects of Malva sylvestris extract.Biomed. Pharmacother.20178612713510.1016/j.biopha.2016.12.00427951419
    [Google Scholar]
  34. MoeiniR. FarhanF. MofidB. RezaeizadehH. GorjiN. GhobadiA. JaladatA.M. KhanaviM. The effect of the combination of Malva sylvestris L. and Althaea digitata Boiss. on prevention of acute radiation proctitis in patients with prostate cancer.J. Herb. Med.201812162210.1016/j.hermed.2018.01.005
    [Google Scholar]
  35. AlmasianA. NajafiF. EftekhariM. ArdekaniM.R.S. SharifzadehM. KhanaviM. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies.Mater. Sci. Eng. C202011411103910.1016/j.msec.2020.11103932994005
    [Google Scholar]
  36. RamavandiB. AsgariG. Comparative study of sun-dried and oven-dried Malva sylvestris biomass for high-rate Cu(II) removal from wastewater.Process Saf. Environ. Prot.2018116617310.1016/j.psep.2018.01.012
    [Google Scholar]
  37. MohammedD.M. ElsayedN. Abou BakerD.H. AhmedK.A. SabryB.A. Bioactivity and antidiabetic properties of Malva parviflora L. leaves extract and its nano-formulation in streptozotocin-induced diabetic rats.Heliyon2022812e1202710.1016/j.heliyon.2022.e1202736531617
    [Google Scholar]
  38. AbbasiA. SabahiS. BazzazS. TajaniA.G. LahoutyM. AslaniR. HosseiniH. An edible coating utilizing Malva sylvestris seed polysaccharide mucilage and postbiotic from Saccharomyces cerevisiae var. boulardii for the preservation of lamb meat.Int. J. Biol. Macromol.202324612566010.1016/j.ijbiomac.2023.12566037399877
    [Google Scholar]
  39. HussainM.I. AranitiF. SchulzM. BaersonS. Vieites-ÁlvarezY. RempelosL. BilsborrowP. ChinchillaN. MacíasF.A. WestonL.A. ReigosaM.J. Sánchez-MoreirasA.M. Benzoxazinoids in wheat allelopathy – From discovery to application for sustainable weed management.Environ. Exp. Bot.202220210499710.1016/j.envexpbot.2022.104997
    [Google Scholar]
  40. SoleymaniA. ShahrajabianM.H. KhoshkharamM. The impact of barley residue management and tillage on forage maize.Rom. Agric. Res.201633161167
    [Google Scholar]
  41. YuY. ZhongS. XuZ. XuZ. WangC. DuD. Does the salt stress intensify the independent allelopathy and the co-allelopathy of Solidago canadensis L. and Conyza canadensis (L.) Cronq.?S. Afr. J. Bot.2023153374510.1016/j.sajb.2022.12.015
    [Google Scholar]
  42. WangS. WeiM. WuB. ChengH. WangC. Combined nitrogen deposition and Cd stress antagonistically affect the allelopathy of invasive alien species Canada goldenrod on the cultivated crop lettuce.Sci. Hortic.202026110895510.1016/j.scienta.2019.108955
    [Google Scholar]
  43. ShangL. XuY. LeawC.P. LimP.T. WangJ. ChenJ. DengY. HuZ. TangY.Z. Potent allelopathy and non-PSTs, non-spirolides toxicity of the dinoflagellate Alexandrium leei to phytoplankton, finfish and zooplankton observed from laboratory bioassays.Sci. Total Environ.202178014648410.1016/j.scitotenv.2021.14648433774286
    [Google Scholar]
  44. ChaïbS. PistevosJ.C.A. BertrandC. BonnardI. Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research.Algal Res.20215410221310.1016/j.algal.2021.102213
    [Google Scholar]
  45. WangR. WuJ. ZhouS. CaoR. ChanL.L. A preliminary study on the allelopathy and toxicity of the dinoflagellate Karlodinium veneficum. Mar. Pollut. Bull.202015811140010.1016/j.marpolbul.2020.11140032753185
    [Google Scholar]
  46. KhoshkhramM. RezaeiA. SoleymniA. ShahrajabianM.H. Effects of tillage and residue management on yield components and yield of maize in second cropping after barley.Res. Crops2010113659666
    [Google Scholar]
  47. RenR. JiZ. GuoJ. YangX. Cryopreservation of herbaceous Asteraceae seeds: Effects of seed reserves on seed germination and seedling regrowth.Cryobiology202311210456210.1016/j.cryobiol.2023.10456237494976
    [Google Scholar]
  48. HuS. GaoH. OuyangL. LiX. ZhuS. WuY. YuanL. ZhouJ. Mechanistic insights into the improving effects of germination on physicochemical properties and antioxidant activity of protein isolate derived from black and white sesame.Food Chem.202342913683310.1016/j.foodchem.2023.13683337454620
    [Google Scholar]
  49. KibarH. SoydemirH.E. YekenM.Z. ÇiftçiV. Kinetic approach to assess germination and growth parameters in ‘Azkan’ chickpea (Cicer arietinum L.) seeds during postharvest storage.J. Stored Prod. Res.202310310214910.1016/j.jspr.2023.102149
    [Google Scholar]
  50. LiuG. YanL. WangS. YuanH. ZhuY. XieC. WangP. YangR. A novel type of sprout food development: Effects of germination on phytic acid, glucosinolates, and lipid profiles in rapeseed.Food Biosci.20235510289310.1016/j.fbio.2023.102893
    [Google Scholar]
  51. XuP. HuJ. ChenH. CaiW. SMAX1 interacts with DELLA protein to inhibit seed germination under weak light conditions via gibberellin biosynthesis in Arabidopsis.Cell Rep.202342711274010.1016/j.celrep.2023.11274037405917
    [Google Scholar]
  52. SoleymaniA. SharajabianM.H. Survey of allelopathic effect of sesame (Sesamum indicum) on canola (Brassica napus) growth and germination.Int. J. Agric. Crop Sci.201244183186
    [Google Scholar]
  53. ChauhanA. AbuAmarahB.A. KumarA. VermaJ.S. GhramhH.A. KhanK.A. AnsariM.J. Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars.Saudi J. Biol. Sci.20192661298130410.1016/j.sjbs.2019.04.01431516361
    [Google Scholar]
  54. ZhangT. FanS. XiangY. ZhangS. WangJ. SunQ. Non-destructive analysis of germination percentage, germination energy and simple vigour index on wheat seeds during storage by Vis/NIR and SWIR hyperspectral imaging.Spectrochim. Acta A Mol. Biomol. Spectrosc.202023911848810.1016/j.saa.2020.11848832470809
    [Google Scholar]
  55. MangenaP. Analysis of correlation between seed vigour, germination and multiple shoot induction in soybean (Glycine max L. Merr.).Heliyon202179e0791310.1016/j.heliyon.2021.e0791334522809
    [Google Scholar]
  56. ZhangT. AyedC. FiskI.D. PanT. WangJ. YangN. SunQ. Evaluation of volatile metabolites as potential markers to predict naturally-aged seed vigour by coupling rapid analytical profiling techniques with chemometrics.Food Chem.202236713076010.1016/j.foodchem.2021.13076034390911
    [Google Scholar]
  57. SanghamitraP. NandaN. BarikS.R. SahooS. PanditE. BastiaR. BagchiT.B. PradhanS.K. Genetic structure and molecular markers-trait association for physiological traits related to seed vigour in rice.Plant Gene20212810033810.1016/j.plgene.2021.100338
    [Google Scholar]
  58. BrankovM. SimićM. DragičevićV. The influence of maize – winter wheat rotation and pre-emergence herbicides on weeds and maize productivity.Crop Prot.202114310555810.1016/j.cropro.2021.105558
    [Google Scholar]
  59. FarooqM. KhanI. NawazA. CheemaM.A. SiddiqueK.H.M. Using sorghum to suppress weeds in autumn planted maize.Crop Prot.202013310516210.1016/j.cropro.2020.105162
    [Google Scholar]
  60. MalikH. RutjesF.P.J.T. ZwanenburgB. A new efficient synthesis of GR24 and dimethyl A-ring analogues, germinating agents for seeds of the parasitic weeds Striga and Orobanche spp.Tetrahedron201066357198720310.1016/j.tet.2010.06.072
    [Google Scholar]
  61. MwakabokoA.S. ZwanenburgB. Single step synthesis of strigolactone analogues from cyclic keto enols, germination stimulants for seeds of parasitic weeds.Bioorg. Med. Chem.201119165006501110.1016/j.bmc.2011.06.05721757362
    [Google Scholar]
  62. JoshiR. Role of enzymes in seed germination.Int. J. Creat. Res. Thoughts20186214811485
    [Google Scholar]
  63. KhoshkharamM. ShahrajabianM.H. SunW. ChengQ. Survey the allelopathic effects of tobacco (Nicotiana tabacum L.) on corn (Zea mays L.) growth and germination.Cercet. Agron. Mold.2019418033234010.2478/cerce‑2019‑0032
    [Google Scholar]
  64. KhoshkharamM. SunW. ChengQ. ShahrajabianM.H. Barley residues allelopathic effects on corn seed germination and seedlings growth.Cercet. Agron. Mold.2019521263310.2478/cerce‑2019‑0003
    [Google Scholar]
  65. MajchrzakL. Kielkowanie zbozw warunkach sasiedztwa ziarniakow Avena fatua L., Festuca rubra L. - aspekt allelopatyczny. Annales UMCS.Sectio E.200762185192
    [Google Scholar]
  66. Kwiecinska-PoppeE. KraskaP. PalysE. The influence of water extracts from Galium aparine L., and Matricaria matitima subsp. inodora (L.) Dostal on germination of winter rye and triticale.Acta Sci. Pol. Agric.20111027582
    [Google Scholar]
  67. PaduK. KhanduriV.P. SinghB. RawatD. RiyalM.K. KumarK.S. Phytotoxicity of common weeds on germination, seedling growth, NPK uptake and chlorophyll content of four hill crops of Garhwal Himalaya.J. Agricult. Food Res.20231210053910.1016/j.jafr.2023.100539
    [Google Scholar]
  68. SoleymaiA. KhoshkharamM. ShahrajabianM.H. Germination rate and initial growth of silage corn grown under various fertility systems.Res. Crops201213310351038
    [Google Scholar]
  69. SoleymaniA. ShahrajabianM.H. Changes in germination and seedlings growth of different cultivars of cumin to drought stress.Cercet. Agron. Mold.20185119110010.2478/cerce‑2018‑0008
    [Google Scholar]
  70. GuoX. HanT. TanL. ZhaoT. ZhuX. HuangW. LinK. ZhangN. WangJ. The allelopathy and underlying mechanism of Skeletonema costatum on Karenia mikimotoi integrating transcriptomics profiling.Aquat. Toxicol.202224210604210.1016/j.aquatox.2021.10604234861574
    [Google Scholar]
  71. HamptonJ.G. TekronyD.M. Handbook of Vigour Test Method; The International seed Testing Association.ZurichSwiterland1995
    [Google Scholar]
  72. IslamA.K.M.M. Nato-NoguchiH. Allelopathic potentiality of medicinal plant Leucas aspera. Int. J. Agric. Sustain.2012417
    [Google Scholar]
  73. IslamA.K.M.M. Kato-NoguchiH. Phytotoxic activity of Ocimum tenuiflorum extracts on germination and seedling growth of different plant species.ScientificWorldJournal201420141810.1155/2014/67624225032234
    [Google Scholar]
  74. MullanD. PietragallaJ. Leaf relative water content. Physiological breeding II: a field guide to wheat phenotyping.MexicoCIMMYT20122527
    [Google Scholar]
  75. ShahrajabianM.H. KuangY. CuiH. FuL. SunW. Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses.Curr. Org. Chem.202327978280610.2174/1385272827666230807150910
    [Google Scholar]
  76. ShahrajabianM.H. SunW. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid.Curr. Org. Synth.20232010.2174/157017942066623080310225337534487
    [Google Scholar]
  77. ShahrajabianM.H. SunW. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods.Mini Rev. Med. Chem.20232337587815
    [Google Scholar]
  78. ZandiP. MożdżeńK. Barabasz-KrasnyB. PułaJ. Stachurska-SwakońA. WangY. The influence of aqueous extract from Stellaria media L. on the growth of Zea mays L. cultivars.Not. Bot. Horti Agrobot. Cluj-Napoca201947392192810.15835/nbha47311597
    [Google Scholar]
  79. HajinasiriR. NoroziB. EbrahimzadehH. Biosynthesis of ZnO nanoparticles using corn silk of Zea mays L. extract.Chem. Lett.201645111238124010.1246/cl.160487
    [Google Scholar]
/content/journals/cos/10.2174/0115701794274892231229110318
Loading
/content/journals/cos/10.2174/0115701794274892231229110318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test