Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

Lipid droplets (LDs) serve as primary storage sites for neutral lipids within cells and are crucial for lipid metabolism. Disorders affecting LDs can contribute to the pathogenesis of common metabolic diseases such as obesity and cancer, highlighting the importance of comprehending LD biology in health and disease contexts.

Methods

Fluorescence assays are commonly used for the detection and quantification of lipids in biological samples or lipid-rich environments. In this study, BODIPYs were synthesized and analyzed for structural confirmation. These compounds were subsequently evaluated for photophysical, electrochemical (cyclic voltammetry) and theoretical analysis, followed by live-cell imaging studies to confirm their affinity for intracellular lipid droplets.

Results

BODIPYs have been identified as fluorogenic probes for live-cell imaging studies and found to serve as efficient and selective fluorescent substances for intracellular lipid droplets.

Conclusion

These BODIPYs, especially 2b, are valuable addition to the expanding toolkit for intracellular diagnostics, offering versatility and reliability across various cellular imaging applications.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794294862240322040633
2024-04-09
2025-06-18
Loading full text...

Full text loading...

References

  1. JohnsonA.D. ZammitR. VellaJ. ValentinoM. BuhagiarJ.A. MagriD.C. Aminonaphthalimide hybrids of mitoxantrone and amonafide as anticancer and fluorescent cellular imaging agents.Bioorg. Chem.20199310328710.1016/j.bioorg.2019.103287 31561011
    [Google Scholar]
  2. ItohK. IsobeK. WatanabeW. Functional Imaging by Controlled Nonlinear Optical Phenomena.Hoboken, NJJohn Wiley & Sons, Inc.2014
    [Google Scholar]
  3. ChenX. WangF. HyunJ.Y. WeiT. QiangJ. RenX. ShinI. YoonJ. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species.Chem. Soc. Rev.201645102976301610.1039/C6CS00192K 27092436
    [Google Scholar]
  4. WuD. SedgwickA.C. GunnlaugssonT. AkkayaE.U. YoonJ. JamesT.D. Fluorescent chemosensors: The past, present and future.Chem. Soc. Rev.201746237105712310.1039/C7CS00240H 29019488
    [Google Scholar]
  5. XuH. ZhangH. LiuG. KongL. ZhuX. TianX. ZhangZ. ZhangR. WuZ. TianY. ZhouH. Coumarin-based fluorescent probes for super-resolution and dynamic tracking of lipid droplets.Anal. Chem.201991197798210.1021/acs.analchem.8b04079 30507133
    [Google Scholar]
  6. TaberoA. GarridoF.G. CastañedaA.P. PalaoE. AgarrabeitiaA.R. MorenoI.G. VillanuevaA. de la MoyaS. OrtizM.J. BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis.Chem. Commun.202056940943
    [Google Scholar]
  7. LiG. LiJ. OtsukaY. ZhangS. TakahashiM. YamadaK. A BODIPY-based fluorogenic probe for specific imaging of lipid droplets.Materials 202013367710.3390/ma13030677 32028677
    [Google Scholar]
  8. WelteM.A. Expanding roles for lipid droplets.Curr. Biol.20152511R470R48110.1016/j.cub.2015.04.004 26035793
    [Google Scholar]
  9. SołtysikK. OhsakiY. TatematsuT. ChengJ. FujimotoT. Nuclear lipid droplets derive from a lipoprotein precursor and regulate phosphatidylcholine synthesis.Nat. Commun.201910147310.1038/s41467‑019‑08411‑x
    [Google Scholar]
  10. LatheR. SapronovaA. KotelevtsevY. Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature.BMC Geriatr.20141413610.1186/1471‑2318‑14‑36 24656052
    [Google Scholar]
  11. MolinaE. ChewG.S. MyersS.A. ClarenceE.M. EalesJ.M. TomaszewskiM. CharcharF.J. A novel Y-specific long non-coding RNA associated with cellular lipid accumulation in HepG2 cells and atherosclerosis-related genes.Sci. Rep.2017711671010.1038/s41598‑017‑17165‑9 29196750
    [Google Scholar]
  12. GengF. GuoD. Lipid droplets, potential biomarker and metabolic target in glioblastoma.Intern. Med. Rev.201735117 29034362
    [Google Scholar]
  13. GoldbergI.J. ReueK. AbumradN.A. BickelP.E. CohenS. FisherE.A. GalisZ.S. GrannemanJ.G. LewandowskiE.D. MurphyR. OliveM. SchafferJ.E. LongacreS.L. ShulmanG.I. WaltherT.C. ChenJ. Deciphering the role of lipid droplets in cardiovascular disease.Circulation2018138330531510.1161/CIRCULATIONAHA.118.033704 30012703
    [Google Scholar]
  14. XuS. ZhangX. LiuP. Lipid droplet proteins and metabolic diseases.Biochim. Biophys. Acta Mol. Basis Dis.2018186451968198310.1016/j.bbadis.2017.07.019 28739173
    [Google Scholar]
  15. MeyersA. WeiskittelT.M. DalhaimerP. Lipid droplets: Formation to breakdown.Lipids201752646547510.1007/s11745‑017‑4263‑0 28528432
    [Google Scholar]
  16. AhmedH.S. KharroubiW. ZarroukA. BrahmiF. NuryT. LizardG. HammamiM. Protective effects of bezafibrate against elaidic acid-induced accumulation of lipid droplets in monocytic cells.Curr. Res. Transl. Med.2017651203010.1016/j.retram.2016.08.001 28340693
    [Google Scholar]
  17. HomeyerA. SchenkA. ArltJ. DahmenU. DirschO. HahnH.K. Fast and accurate identification of fat droplets in histological images.Comput. Methods Programs Biomed.20151212596510.1016/j.cmpb.2015.05.009 26093386
    [Google Scholar]
  18. ZhaoY. ShiW. LiX. MaH. Recent advances in fluorescent probes for lipid droplets.Chem. Commun.202258101495150910.1039/D1CC05717K 35019910
    [Google Scholar]
  19. ZhaoN. MaC. YangW. YinW. WeiJ. LiN. Facile construction of boranil complexes with aggregation-induced emission characteristics and their specific lipid droplet imaging applications.Chem. Commun.201955588494849710.1039/C9CC04041B 31268095
    [Google Scholar]
  20. LiuX. LuX. ZhuT. WenliD. ZhenghuiY. CaoH. WangS. TianY. ZhangZ. ZhangR. De SouzaS.C. TianX. Revealing lipid droplets evolution at nanoscale under proteohormone stimulation by a BODIPY- hexylcarbazole derivative.Biosens. Bioelectron.202117511287110.1016/j.bios.2020.112871 33298339
    [Google Scholar]
  21. DiasG.G. RodriguesB.L. ResendeJ.M. CaladoH.D.R. de SimoneC.A. SilvaV.H.C. NetoB.A.D. GoulartM.O.F. FerreiraF.R. MeiraA.S. PessoaC. CorreaJ.R. da JúniorS.E.N. Selective endocytic trafficking in live cells with fluorescent naphthoxazoles and their boron complexes.Chem. Commun. 201551449141914410.1039/C5CC02383A 25943956
    [Google Scholar]
  22. DiasG.G. PinhoP.V.B. DuarteH.A. ResendeJ.M. RosaA.B.B. CorreaJ.R. NetoB.A.D. da Silva JúniorE.N. Fluorescent oxazoles from quinones for bioimaging applications.RSC Advances2016679760567606310.1039/C6RA14701A
    [Google Scholar]
  23. dos SantosF.S. DiasG.G. de FreitasR.P. SantosL.S. de LimaG.F. DuarteH.A. de SimoneC.A. RezendeL.M.S.L. ViannaM.J.X. CorreaJ.R. NetoB.A.D. da Silva JúniorE.N. Redox center modification of lapachones towards the synthesis of nitrogen heterocycles as selective fluorescent mitochondrial imaging probes.Eur. J. Org. Chem.20172017263763377310.1002/ejoc.201700227
    [Google Scholar]
  24. LoudetA. BurgessK. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties.Chem. Rev.2007107114891493210.1021/cr078381n 17924696
    [Google Scholar]
  25. ZiesselR. UlrichG. HarrimanA. The chemistry of bodipy: A new El Dorado for fluorescence tools.New J. Chem.200731449650110.1039/b617972j
    [Google Scholar]
  26. De BonfilsP. PéaultL. NunP. CoeffardV. State of the art of bodipy‐based photocatalysts in organic synthesis.Eur. J. Org. Chem.20212021121809182410.1002/ejoc.202001446
    [Google Scholar]
  27. BoensN. VerbelenB. OrtizM.J. JiaoL. DehaenW. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core.Coord. Chem. Rev.201939921302410.1016/j.ccr.2019.213024
    [Google Scholar]
  28. KaurP. SinghK. Recent advances in the application of BODIPY in bioimaging and chemosensing.J. Mater. Chem. C Mater. Opt. Electron. Devices2019737113611140510.1039/C9TC03719E
    [Google Scholar]
  29. NguyenV.N. HaJ. ChoM. LiH. SwamyK.M.K. YoonJ. Recent developments of BODIPY-based colorimetric and fluorescent probes for the detection of reactive oxygen/nitrogen species and cancer diagnosis.Coord. Chem. Rev.202143921393610.1016/j.ccr.2021.213936
    [Google Scholar]
  30. KowadaT. MaedaH. KikuchiK. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells.Chem. Soc. Rev.201544144953497210.1039/C5CS00030K 25801415
    [Google Scholar]
  31. TiwariR. ShindeP.S. SreedharanS. DeyA.K. VallisK.A. MhaskeS.B. PramanikS.K. DasA. Photoactivatable prodrug for simultaneous release of mertansine and CO along with a BODIPY derivative as a luminescent marker in mitochondria: A proof of concept for NIR image-guided cancer therapy.Chem. Sci. 20211272667267310.1039/D0SC06270G 34164035
    [Google Scholar]
  32. BessetteA. HananG.S. Design, synthesis and photophysical studies of dipyrromethene-based materials: Insights into their applications in organic photovoltaic devices.Chem. Soc. Rev.201443103342340510.1039/C3CS60411J 24577078
    [Google Scholar]
  33. SouzaM.C. SantosC.I.M. MarizI. MarquesB.S. MachadoL.A. PedrosaL.F. CavaleiroJ.A.S. NevesM.G.P.M.S. MendesR.F. PazF.A.A. MartinhoJ.M.G. MaçôasE. New triazine bridged triads based on BODIPY-porphyrin systems: Extended absorption, efficient energy transfer and upconverted emission.Dyes Pigments202118710913710.1016/j.dyepig.2021.109137
    [Google Scholar]
  34. ReeseA.E. LochenieC. GeddisA. MachadoL.A. de SouzaM.C. MarquesF.F.C. de SimoneC.A. GouvêaM.M. PedrosaL.F. da JúniorS.E.N. VendrellM. Rational design and synthesis of large stokes shift 2,6-sulphur-disubstituted BODIPYs for cell imaging.Chemosensors20221011910.3390/chemosensors10010019
    [Google Scholar]
  35. GontijoT.B. de FreitasR.P. EmeryF.S. PedrosaL.F. NetoV.J.B. CavalcantiB.C. PessoaC. KingA. de MolinerF. VendrellM. da JúniorS.E.N. On the synthesis of quinone-based BODIPY hybrids: New insights on antitumor activity and mechanism of action in cancer cells.Bioorg. Med. Chem. Lett.201727184446445610.1016/j.bmcl.2017.08.007 28818447
    [Google Scholar]
  36. MachadoL.A. de SouzaM.C. da SilvaC.M. YonedaJ. de RezendeL.C.D. EmeryF.S. de SimoneC.A. da JúniorS.E.N. PedrosaL.F. On the synthesis, optical and computational studies of novel BODIPY-based phosphoramidate fluorescent dyes.J. Fluor. Chem.201922091510.1016/j.jfluchem.2019.01.008
    [Google Scholar]
  37. ZhuJ. TanN.K. KikuchiK. KaurA. NewE.J. BODIPY-based fluorescent indicators for lipid droplets.Anal. Sens.202341e202300049
    [Google Scholar]
  38. JamesonL.P. DzyubaS.V. Expeditious, mechanochemical synthesis of BODIPY dyes.Beilstein J. Org. Chem.2013978679010.3762/bjoc.9.89 23766791
    [Google Scholar]
  39. AlmeidaR.G. de CarvalhoR.L. NunesM.P. GomesR.S. PedrosaL.F. de SimoneC.A. GopiE. GeertsenV. GravelE. DorisE. da Silva JúniorE.N. Carbon nanotube–ruthenium hybrid towards mild oxidation of sulfides to sulfones: Efficient synthesis of diverse sulfonyl compounds.Catal. Sci. Technol.20199112742274810.1039/C9CY00384C
    [Google Scholar]
  40. HuW. LiuM. ZhangX.F. WangY. WangY. LanH. ZhaoH. Can BODIPY-electron acceptor conjugates act as heavy atom-free excited triplet state and singlet oxygen photosensitizers via photoinduced charge separation-charge recombination mechanism?J. Phys. Chem. C201912326159441595510.1021/acs.jpcc.9b02961
    [Google Scholar]
  41. AlgiM.P. TirkesS. ErtanS. ErgunE.G.C. CihanerA. AlgiF. Design and synthesis of new 4,4′-difluoro-4-bora-3a,4a-diaza-s-indacene based electrochromic polymers.Electrochim. Acta201310976677410.1016/j.electacta.2013.07.179
    [Google Scholar]
  42. BeckeA.D. Density-functional thermochemistry. III. The role of exact exchange.J. Chem. Phys.19939875648565210.1063/1.464913
    [Google Scholar]
  43. LeeC. YangW. ParrR.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys. Rev. B Condens. Matter198837278578910.1103/PhysRevB.37.785 9944570
    [Google Scholar]
  44. KöksoyB. KayaE.N. HacıvelioğluF. YeşilotS. DurmuşM. Effect of iodine substitution pattern on the singlet oxygen generation and solvent depended keto-enol tautomerization behavior of BODIPY photosensitizers.Dyes Pigments201714038439110.1016/j.dyepig.2017.01.067
    [Google Scholar]
  45. HayP.J. WadtW.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg.J. Chem. Phys.198582127028310.1063/1.448799
    [Google Scholar]
  46. WadtW.R. HayP.J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi.J. Chem. Phys.198582128429810.1063/1.448800
    [Google Scholar]
  47. HayP.J. WadtW.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals.J. Chem. Phys.198582129931010.1063/1.448975
    [Google Scholar]
  48. FrischM.J. TrucksG.W. SchlegelH.B. RobbM.A. CheesemanJ.R. ScalmaniG. BaroneV. MennucciB. PeterssonG.A. NakatsujiH. CaricatoM. LiX. HratchianH.P. IzmaylovA.F. BloinoJ. ZhengG. SonnenbergJ.L. HadaM. EharaM. ToyotaK. FukudaR. HasegawaJ. IshidaM. NakajimaT. HondaY. KitaoO. NakaiH. VrevenT. MontgomeryJ.A. PeraltaJ.E. OgliaroF. BearparkM. HeydJ.J. BrothersE. KudinK.N. StaroverovV.N. KobayashiR. NormandJ. RaghavachariK. RendellN. BurantJ.C. IyengarS.S. TomasiJ. CossiM. RegaN. MillamJ.M. KleneN. KnoxJ.E. CrossJ.B. BakkenV. AdamoC. JaramilloJ. GompertsR. StratmannR.E. YazyevO. AustinA.J. CammiR. PomelliC. OchterskiJ.W. MartinR.L. MorokumaK. ZakrzewskiV.G. VothG.A. SalvadorP. DannenbergJ.J. DapprichS. DanielsA.D. FarkasO. ForesmanJ.B. OrtizJ.B. CioslowskiJ. FoxD.J.J. Gaussian, Inc.: Wallingford CT,2009
    [Google Scholar]
  49. PassosS.T.A. SouzaG.C. BrandãoD.C. MachadoD.F.S. GrisoliaC.K. CorreaJ.R. da SilvaW.A. NetoB.A.D. Plasma membrane staining with fluorescent hybrid benzothiadiazole and coumarin derivatives: Tuning the cellular selection by molecular design.Dyes Pigments202118610900510.1016/j.dyepig.2020.109005
    [Google Scholar]
  50. LuH. MackJ. YangY. ShenZ. Structural modification strategies for the rational design of red/NIR region BODIPYs.Chem. Soc. Rev.201443134778482310.1039/C4CS00030G 24733589
    [Google Scholar]
  51. de RezendeC.D.L. VaidergornM.M. MoraesB.J.C. da EmeryS.F. Synthesis, photophysical properties and solvatochromism of meso-substituted tetramethyl BODIPY dyes.J. Fluoresc.201424125726610.1007/s10895‑013‑1293‑8 24008989
    [Google Scholar]
  52. CarusoE. GariboldiM. SangionA. GramaticaP. BanfiS. Synthesis, photodynamic activity, and quantitative structure-activity relationship modelling of a series of BODIPYs.J. Photochem. Photobiol. B201716726928110.1016/j.jphotobiol.2017.01.012 28104574
    [Google Scholar]
  53. ZouJ. YinZ. DingK. TangQ. LiJ. SiW. ShaoJ. ZhangQ. HuangW. DongX. BODIPY derivatives for photodynamic therapy: Influence of configuration versus heavy atom effect.ACS Appl. Mater. Interfaces2017938324753248110.1021/acsami.7b07569 28875695
    [Google Scholar]
  54. HouY. LiuQ. ZhaoJ. An exceptionally long-lived triplet state of red light-absorbing compact phenothiazine-styrylBodipy electron donor/acceptor dyads: A better alternative to the heavy atom-effect?Chem. Commun. 202056111721172410.1039/C9CC09058D 31942594
    [Google Scholar]
  55. KamkaewA. LimS.H. LeeH.B. KiewL.V. ChungL.Y. BurgessK. BODIPY dyes in photodynamic therapy.Chem. Soc. Rev.2013421778810.1039/C2CS35216H 23014776
    [Google Scholar]
  56. GorbeM. CosteroA.M. SancenónF. MáñezM.R. CilleroB.R. OchandoL.E. ChulviK. GotorR. GilS. Halogen-containing BODIPY derivatives for photodynamic therapy.Dyes Pigments201916019820710.1016/j.dyepig.2018.08.007
    [Google Scholar]
  57. BanerjeeM. BhosleA.A. ChatterjeeA. SahaS. Mechanochemical synthesis of organic dyes and fluorophores.J. Org. Chem.20218620139111392310.1021/acs.joc.1c01540 34398612
    [Google Scholar]
  58. GibbsJ.H. RobinsL.T. ZhouZ. ParvanovaB.P. CottamM. McCandlessG.T. FronczekF.R. VicenteM.G.H. Spectroscopic, computational modeling and cytotoxicity of a series of meso-phenyl and meso-thienyl-BODIPYs.Bioorg. Med. Chem.201321185770578110.1016/j.bmc.2013.07.017 23928070
    [Google Scholar]
  59. BennistonA.C. CopleyG. Lighting the way ahead with boron dipyrromethene (Bodipy) dyes.Phys. Chem. Chem. Phys.200911214124413110.1039/b901383k 19458813
    [Google Scholar]
  60. ThoratK.G. KambleP. MallahR. RayA.K. SekarN. Congeners of pyrromethene-567 dye: Perspectives from synthesis, photophysics, photostability, laser, and TD-DFT theory.J. Org. Chem.201580126152616410.1021/acs.joc.5b00654 26001098
    [Google Scholar]
  61. OrtizM.J. AgarrabeitiaA.R. SampedroD.G. PrietoB.J. LopezT.A. MassadW.A. MontejanoH.A. GarcíaN.A. ArbeloaL.I. Synthesis and functionalization of new polyhalogenated BODIPY dyes. Study of their photophysical properties and singlet oxygen generation.Tetrahedron20126841153116210.1016/j.tet.2011.11.070
    [Google Scholar]
  62. YogoT. UranoY. IshitsukaY. ManiwaF. NaganoT. Highly efficient and photostable photosensitizer based on BODIPY chromophore.J. Am. Chem. Soc.200512735121621216310.1021/ja0528533 16131160
    [Google Scholar]
  63. LimS.H. ThiviergeC. Nowak-SliwinskaP. HanJ. van den BerghH. WagnièresG. BurgessK. LeeH.B. In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy.J. Med. Chem.20105372865287410.1021/jm901823u 20199028
    [Google Scholar]
  64. ListenbergerL.L. StuderA.M. BrownD.A. WolinsN.E. Fluorescent detection of lipid droplets and associated proteins.Curr. Protoc. Cell Biol.2016714.31.14.31.1410.1002/cpcb.7
    [Google Scholar]
  65. WangJ. GuoX. LiL. QiuH. ZhangZ. WangY. SunG. Application of the fluorescent dye bodipy in the study of lipid dynamics of the rice blast fungus Magnaporthe oryzae.Molecules2018237159410.3390/molecules23071594 29966327
    [Google Scholar]
  66. MehlemA. HagbergC.E. MuhlL. ErikssonU. FalkevallA. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease.Nat. Protoc.2013861149115410.1038/nprot.2013.055 23702831
    [Google Scholar]
  67. GreenspanP. MayerE.P. FowlerS.D. Nile red: A selective fluorescent stain for intracellular lipid droplets.J. Cell Biol.1985100396597310.1083/jcb.100.3.965 3972906
    [Google Scholar]
  68. MukakaM.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research.Malawi Med. J.20122436971 23638278
    [Google Scholar]
/content/journals/cos/10.2174/0115701794294862240322040633
Loading
/content/journals/cos/10.2174/0115701794294862240322040633
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): BODIPY; cellular imaging; electrochemistry; fluorescence; lipid droplets; synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test