Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Some new ()-2-[1-aryl-5-methyl-1-1,2,3-triazol-4-yl]-4-benzyl-4,5-dihydro-oxazoline were synthesized by the reaction of ()--(1-hydroxy-3-phenylpropan-2-yl)-1-aryl-5-methyl-1-1,2,3-triazole-4-carboxamides which were prepared from aromatic amine as starting materials, with -toluenesulfonyl chloride, triethylamine and DMAP. The structures were characterized by 1H NMR, 13C NMR, MS and IR. The synthesized chiral triazole-oxazoline was used as a ligand in the Diels-Alder asymmetric catalytic reaction between 3-allyl-1,3-oxazolidin-2-ketone and 2-methyl-1,3-butadiene, using PdCl as catalyst. ()-3-(4-methylcyclohexe-3-ene-1-formyl)-1,3-oxazolidin-2-one was obtained.

Background

The chiral triazole-oxazoline ligands are rarely reported.

Objective

The aim of the study was to synthsize some new chiral triazole-oxazoline ligands ()-4-benzyl-2-(1-aryl-5-methyl-1-1,2,3-triazole-4-yl)-4,5-dihydrooxazoline ().

Methods

The one-pot methods of oriented synthesis were adopted. This study provides a simple and effective method for the synthesis of new chiral triazole-oxazoline derivatives.

Results

The some new chiral the triazole-oxazoline ligands ()-4-benzyl-2-(1-aryl-5-methyl-1-1,2,3-triazole-4-yl)-4,5-dihydrooxazoline () were synthesized and the asymmetric Diels-Alder cyclization of 3-allyl-1,3-oxazolidin-2-ketone and 2-methyl-1,3-butadiene was catalyzed by PdCl using the synthesized ()-4-triazole-oxazoline ligands.

Conclusion

Some new ()-4-benzyl-2-(1-aryl-5-methyl-1-1,2,3-triazole-4-yl)-4,5-dihydro-oxazoline was synthesized by corresponding -[(S)-1-hydroxy-3-phenylpropan-2-yl]-1-aryl-5-methyl-1-1,2,3-triazole-4-formamide, through one-pot oriented synthesis method. After preliminary evaluation, the chiral triazoline-oxazoline ligands, in which 1,2,3-triazole rings, like pyridine-type rings, chiral materials were saved and replace one oxazoline ring in the dioxazoline ligands for asymmetric catalytic reactions.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794317332240610073030
2024-07-11
2025-05-09
Loading full text...

Full text loading...

References

  1. ConnonR. RocheB. GuiryP.J. RokadeB.V. GuiryP.J. Rational design of highly effective asymmetric Diels-Alder catalysts bearing 4,4′-sulfonamidomethyl groups.Chem. Rev.20211216373652110.1021/acs.chemrev.0c00844 34019404
    [Google Scholar]
  2. YangG. ZhangW. Renaissance of pyridine-oxazolines as chiral ligands for asymmetric catalysis.Chem. Soc. Rev.20184751783181010.1039/c7cs00615b 29469141
    [Google Scholar]
  3. DesimoniG. FaitaG. JoergensenK.A. Update 1 of: C2-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis.Chem. Rev.2011111PR284PR43710.1021/cr100339a
    [Google Scholar]
  4. YangF. XieJ.H. ZhouQ.L. Highly efficient asymmetric hydrogenation catalyzed by iridium complexes with tridentate chiral spiro aminophosphine ligands.Acc. Chem. Res.202356333234910.1021/acs.accounts.2c00764 36689780
    [Google Scholar]
  5. YanH. ShaoX. XuX. LiZ. YangW.L. Ir-catalyzed asymmetric cascade allylation/spiroketalization reaction for stereoselective synthesis of oxazoline-spiroketals.Org. Lett.202325232533010.1021/acs.orglett.2c03885 36607168
    [Google Scholar]
  6. NieY. YuanQ. ZhangW. Axis‐unfixed biphenylphosphine‐oxazoline ligands: design and applications in asymmetric catalytic reactions.Chem. Rec.20232310e20230013310.1002/tcr.202300133 37166412
    [Google Scholar]
  7. DaiL. XuD. YangM.J. Synthesis of 2-oxazoline ferrocenes: Towards high-efficient chiral ligands and catalysts.J. Organomet. Chem.202399912283110.1016/j.jorganchem.2023.122831
    [Google Scholar]
  8. DaiL. ZhaoL. XuD. YangC. ZhangX.K. Enhancing the efficacy of chiral ligands and catalysts: Siloxane-substituted oxazoline ferrocenes as next-generation candidates.Molecules202429596810.3390/molecules29050968 38474480
    [Google Scholar]
  9. RojoP. RieraA. VerdaguerX. Bulky P-stereogenic ligands. A success story in asymmetric catalysis.Coord. Chem. Rev.202348921519210.1016/j.ccr.2023.215192
    [Google Scholar]
  10. PereiraC.N. EschholzA.C.C. dos SantosM.S. A review of the synthesis of oxazoline derivatives.Curr. Org. Synth.10.2174/0115701794283180231228075225 38231062
    [Google Scholar]
  11. PatilM.D. GhoshK.K. RajanBabu, T.V. Cobalt-catalyzed enantioselective hydroboration of α-substituted acrylates.J. Am. Chem. Soc.2024146106604661710.1021/jacs.3c12020 38431968
    [Google Scholar]
  12. ShiQ. HuangY. LiuW.H. Simple and efficient aromatic C–H oxazolination.Precis. Chem.20231531632510.1021/prechem.3c00035
    [Google Scholar]
  13. LiT. ShiL. WangX. YangC. YangD. SongM.P. NiuJ.L. Cobalt-catalyzed atroposelective C−H activation/annulation to access N−N axially chiral frameworks.Nat. Commun.2023141527110.1038/s41467‑023‑40978‑4 37644016
    [Google Scholar]
  14. ItohK. SibiM.P. Dibenzofuran-4,6-bis(oxazoline) (DBFOX). A novel trans -chelating bis(oxazoline) ligand for asymmetric reactions.Org. Biomol. Chem.201816315551556510.1039/c8ob01010b 29947634
    [Google Scholar]
  15. OllevierT. Iron bis(oxazoline) complexes in asymmetric catalysis.Catal. Sci. Technol.201661414810.1039/c5cy01357g
    [Google Scholar]
  16. HouG. YuJ. YuC. WuG. MiaoZ. Enantio‐ and diastereoselective vinylogous mukaiyama aldol reactions of α‐keto phosphonates with 2‐(trimethylsilyloxy)‐ furan catalyzed by bis(oxazoline)‐copper complexes.Adv. Synth. Catal.20133552-358959310.1002/adsc.201200810
    [Google Scholar]
  17. SiX.G. FengS.X. WangZ.Y. ChenX. XuM.M. ZhangY.Z. HeJ.X. YangL. CaiQ. Enantioselective synthesis of cis ‐decalins by merging the birch reduction and inverse‐electron‐demand diels–alder reaction.Angew. Chem. Int. Ed.20236232e20230387610.1002/anie.202303876 37286494
    [Google Scholar]
  18. TenbergeM. WahlJ.M. Lewis acid catalysed asymmetric one-carbon ring-expansion of prochiral cyclobutanones.Synthesis202355689289810.1055/s‑0042‑1751386
    [Google Scholar]
  19. ZhangJ. WangX. WangP. FangJ. LiS. WuJ. SO2-Insertion induced enantioselective oxysulfonylation to access β-chiral sulfones with quaternary carbon stereocenters.Sci. China Chem.20236790891310.1007/s11426‑023‑1814‑2
    [Google Scholar]
  20. OlenC.L. ZahrtA.F. ReillyS.W. SchultzD. EmersonK. CanditoD. WangX. StrotmanN.A. DenmarkS.E. Chemoinformatic catalyst selection methods for the optimization of copper–bis(oxazoline)-mediated, asymmetric, vinylogous mukaiyama aldol reactions.ACS Catal.20241442642265510.1021/acscatal.3c05903
    [Google Scholar]
  21. AkhtarS.M.S. HajraS. Catalytic enantioselective synthesis of 4-amino-5-aryltetrahydro-1H-benzo[c]azepines by an aminoarylation reaction.Synlett202334664565010.1055/a‑1912‑3285
    [Google Scholar]
  22. YouX-Y. CaiQ. Catalytic enantioselective inverse-electron-demand diels–alder reaction of 2-pyrones and vinyl selenides.Synlett202334894895210.1055/a‑1990‑5276
    [Google Scholar]
  23. WiethanC. BragaI.B. Menezes da SilvaV.H. BatistaJ.M.Jr CorreiaC.R.D. Enantioselective synthesis of isoindolones via palladium catalyzed intramolecular heck‐mizoroki reactions of endocyclic enamides using N, N ‐ligands.ChemCatChem20231512e20230042210.1002/cctc.202300422
    [Google Scholar]
  24. AlleyK.A. ClarksonA.J. UeharaA. JohnsonJ.S. A site-specific synthetic route to substituted inda(box) ligands.Org. Lett.202325519108911310.1021/acs.orglett.3c03369 38096808
    [Google Scholar]
  25. GuanY. BuivydasT.A. LalisseR.F. LaybournK.B. SternC. RichinsM. BurnsS.M. ShelbyA. HadadC.M. MattsonA.E. Highly enantioselective catalytic alkynylation of quinolones: substrate scope, mechanistic studies, and applications in the syntheses of chiral N -heterocyclic alkaloids and diamines.ACS Catal.202313117661766810.1021/acscatal.3c01536 37288090
    [Google Scholar]
  26. GaoY. JiangB. FriedeN.C. HunterA.C. BoucherD.G. MinteerS.D. SigmanM.S. ReismanS.E. BaranP.S. Electrocatalytic asymmetric nozaki–hiyama–kishi decarboxylative coupling: Scope, applications, and mechanism.J. Am. Chem. Soc.202414674872488210.1021/jacs.3c13442 38324710
    [Google Scholar]
  27. ShenY.B. QianH.L. YangL. ZhouS. RaoH.W. WangZ.H. YouY. ZhangY.P. YinJ.Q. ZhaoJ.Q. ZhangW. YuanW.C. Cu-catalyzed direct asymmetric mannich reaction of 2-alkylazaarenes and isatin-derived ketimines.Org. Lett.20242681699170410.1021/acs.orglett.4c00227 38385527
    [Google Scholar]
  28. HallettA.J. O’BrienT.M. CarterE. KariukiB.M. MurphyD.M. WardB.D. Copper(II) complexes of pyridine-oxazoline (Pyox) ligands: Coordination chemistry, ligand stability, and catalysis.Inorg. Chim. Acta2016441869410.1016/j.ica.2015.10.032
    [Google Scholar]
  29. CinelluM.A. MaioreL. MinghettiG. CoccoF. StoccoroS. ZuccaA. ManasseroM. ManasseroC. Gold(III) adducts with chiral pyridinyl-oxazolines. synthesis, reactivity of the coordinated ligands, and structural characterizations.Organometallics200928247015702410.1021/om900841b
    [Google Scholar]
  30. DoddD.W. ToewsH.E. TrevailM.J. JenningsM.C. HudsonR.H.E. JonesN.D. Synthesis and evaluation of the in vitro DNA-binding properties of chiral cis -dichloro(pyridyloxazoline)platinum(II) complexes.Can. J. Chem.200987132132710.1139/v08‑131
    [Google Scholar]
  31. ZhangS. OuyangY. GaoY. LiP. Design and application of new pyridine-derived chiral ligands in asymmetric catalysis.Acc. Chem. Res.202457695797010.1021/acs.accounts.3c00808 38446135
    [Google Scholar]
  32. GanW.E. WuY.S. WuB. FangC.Y. CaoJ. XuZ. XuL.W. Copper‐catalyzed asymmetric synthesis of silicon‐stereogenic benzoxasiloles.Angew. Chem. Int. Ed.2024637e20231797310.1002/anie.202317973 38179840
    [Google Scholar]
  33. KocúrikM. BartáčekJ. DrabinaP. VáňaJ. SvobodaJ. HusákováL. FingerV. HympánováM. SedlákM. Immobilization of trifluoromethyl-substituted pyridine-oxazoline ligand and its application in asymmetric continuous flow synthesis of benzosultams.J. Org. Chem.20238821151891519710.1021/acs.joc.3c01671 37823216
    [Google Scholar]
  34. SuttonG. O’LearyP. Non-nucleophilic grignard synthesis of bridged pyridine–oxazoline ligands and evaluation in palladium-catalysed allylic alkylation.Synlett202334151834183810.1055/a‑2080‑4931
    [Google Scholar]
  35. HaoX. LiuJ.K. ZhuoW. ZhengJ. HaoX.Q. GongJ.F. JiangH. SongM.P. Synthesis, characterization, and catalytic behaviors in isoprene polymerization of pyridine–oxazoline-ligated cobalt complexes.Polymers 202416557810.3390/polym16050578 38475262
    [Google Scholar]
  36. BaiY.Q. WangX.W. WuB. WangX.Q. LiaoR.Z. LiM. ZhouY.G. Design and synthesis of planar-chiral oxazole–pyridine N, N -Ligands: application in palladium-catalyzed asymmetric acetoxylative cyclization.ACS Catal.202313149829983810.1021/acscatal.3c01163
    [Google Scholar]
  37. YamamotoY. TadanoR. YasuiT. Enantioselective desymmetrization of trifluoromethylated tertiary benzhydrols via hydrogen-acceptor-free Ir-Catalyzed Dehydrogenative C–H Silylation: Decisive role of the trifluoromethyl group.JACS Au20244280781510.1021/jacsau.3c00794 38425931
    [Google Scholar]
  38. HeY.P. TianD. LiX.Z. WuH. Recent advances in the asymmetric catalytic construction of oxa-quaternary carbon centers.Org. Chem. Front.202310123110312910.1039/d3qo00527e
    [Google Scholar]
  39. KumarS. LalB. TittalR.K. Green synthesis of 1,4-disubstituted 1,2,3-triazoles: a sustainable approach.Green Chem.20242641725176910.1039/d3gc04346k
    [Google Scholar]
  40. KumarA. KumarV. SinghP. TittalR.K. LalK. Ionic liquids for the green synthesis of 1,2,3-triazoles: A systematic review.Green Chem.20242673565359410.1039/d3gc04898e
    [Google Scholar]
  41. HazarikaP.K. HazarikaR. SarmaD. Recent advances in metal free synthesis of N-unsubstituted 1,2,3-Triazoles.Curr. Org. Synth.2024211101910.2174/1570179420666230322155524 36946489
    [Google Scholar]
  42. TashrifiZ. KhanaposhtaniM.M. BahadorikhaliliS. LarijaniB. MahdaviM. Intramolecular click cycloaddition reactions: Synthesis of 1,2,3-triazoles.Curr. Org. Synth.202421216619410.2174/1570179420666230407103320 37026493
    [Google Scholar]
  43. Escandón-MancillaF.M. González-RivasN. Basavanag UnnamatlaM.V. García-ElenoM.A. Corona-BecerrilD. Frontana-UribeB.A. Cuevas-YañezE. Beyond 1,2,3-triazoles: Formation and applications of ketemines derived from copper catalyzed azide alkyne cycloaddition.Curr. Org. Synth.202421435937910.2174/1570179420666220929152449 36177624
    [Google Scholar]
  44. RastogiS.K. CilibertoV.C. TrevinoM.Z. CampbellB.A. BrittainW.J. Green approach toward triazole forming reactions for developing anticancer drugs.Curr. Org. Synth.202421438042010.2174/1570179420666230508125144 37157212
    [Google Scholar]
  45. JaiswalM.K. GuptaA. AnsariF.J. PandeyV.K. TiwariV.K. Recent progress on synthesis of functionalized 1,5-disubstituted triazoles.Curr. Org. Synth.202421451355810.2174/1570179420666230418123350
    [Google Scholar]
  46. ScrivantiA. SoleR. BortoluzziM. BeghettoV. BardellaN. DolmellaA. Synthesis of new triazolyl-oxazoline chiral ligands and study of their coordination to Pd(II) metal centers.Inorg. Chim. Acta201949811912910.1016/j.ica.2019.119129
    [Google Scholar]
  47. DongH.R. DongW.J. LiR.S. HuY.M. DongH.S. XieZ.X. Synthesis of β-cyanopropan-1-one derivates by domino reaction.Green Chem.20141673454345710.1039/c4gc00386a
    [Google Scholar]
  48. DongH.R. ChenZ.B. LiR.S. DongH.S. XieZ.X. Convenient and efficient synthesis of disubstituted piperazine derivatives by catalyst-free, atom-economical and tricomponent domino reactions.RSC Advances2015514107681077210.1039/c4ra14811h
    [Google Scholar]
  49. DongH.R. WuJ.G. GaoZ.L. Design, synthesis, and anticancer activity evaluation of novel aziridine-1,2,3-triazole hybrid derivatives.Synth. Commun.201747191783179610.1080/00397911.2017.1353632
    [Google Scholar]
  50. DongH.R. WuJ.G. HuoG.Y. Design, synthesis and biological studies of some new imidazole-1,2,3-triazole hybrid derivatives.J. Mol. Struct.2022125613251610.1016/j.molstruc.2022.132516
    [Google Scholar]
  51. ShenG.L. ChenZ.B. WuZ.F. DongH.S. The Synthesis of Some New (S)-1-Aryl- N -(1-hydroxy-3-phenylpropan-2-yl)-5-methyl-1 H -1,2,3-triazole-4-carboxamide.J. Heterocycl. Chem.201350478178610.1002/jhet.1567
    [Google Scholar]
  52. JohnsonJ.S. EvansD.A. Chiral bis(oxazoline) copper(II) complexes: versatile catalysts for enantioselective cycloaddition, Aldol, Michael, and carbonyl ene reactions.Acc. Chem. Res.200033632533510.1021/ar960062n 10891050
    [Google Scholar]
  53. SakakuraA. KondoR. MatsumuraY. AkakuraM. IshiharaK. Rational design of highly effective asymmetric Diels-Alder catalysts bearing 4,4′-sulfonamidomethyl groups.J. Am. Chem. Soc.200913149177621776410.1021/ja906098b 19924906
    [Google Scholar]
  54. GhoshA.K. ChoH. CappielloJ. Bis(oxazoline) derived cationic aqua complexes: Highly effective catalysts for enantioselective Diels–Alder reactions.Tetrahedron Asymmetry19989203687369110.1016/S0957‑4166(98)00362‑0 30449952
    [Google Scholar]
  55. IchiyanagiT. ShimizuM. FujisawaT. Enantioselective diels−alder reaction using chiral Mg complexes derived from chiral 2-[2-[(alkyl- or 2-[2-[(arylsulfonyl)amino]phenyl]-4-phenyl-1,3-oxazoline.J. Org. Chem.199762237937794110.1021/jo9621276 11671895
    [Google Scholar]
  56. EvansD.A. BarnesD.M. JohnsonJ.S. LectkaT. von MattP. MillerS.J. MurryJ.A. NorcrossR.D. ShaughnessyE.A. CamposK.R. Bis(oxazoline) and bis(oxazolinyl)pyridine copper complexes as enantioselective diels−alder catalysts: reaction scope and synthetic applications.J. Am. Chem. Soc.1999121337582759410.1021/ja991191c
    [Google Scholar]
  57. De SouzaL.A. Da SilvaE.T. LourençoM.C.S. De SouzaM.V.N. Synthesis and antitubercular evaluation of aryl substituted 2-oxazolines from L-amino acids.Mediterr. J. Chem.20142564865710.13171/mjc.2.5.2014.06.01.23
    [Google Scholar]
  58. ManouryE. FosseyJ.S. Aït-HaddouH. DaranJ-C. BalavoineG.G.A. New ferrocenyloxazoline for the preparation of ferrocenes with planar chirality.Organometallics200019183736373910.1021/om000016y
    [Google Scholar]
  59. EvantsD.A. PetersonG.S. JohnsonJ.S. BarnesD.M. CamposK.R. WoerpelK.A. An improved procedure for the preparation of 2,2-bis[2-[4(s)-tert-butyl-1,3-oxazolinyl]]propane[(s,s)-tert-butyl- bis(oxazoline)] and derived copper(II) complexes.J. Org. Chem.199863134541454410.1021/jo980296f
    [Google Scholar]
/content/journals/cos/10.2174/0115701794317332240610073030
Loading
/content/journals/cos/10.2174/0115701794317332240610073030
Loading

Data & Media loading...

Supplements

The preparation experiment details of the compound, the main raw material identifier (CAS Registry Number), the spectral data of some raw material compounds, and the 1H NMR and 13C NMR nuclear magnetic spectra of the new compound are displayed in the auxiliary materials. These materials can be downloaded from our website (https://www.eurekaselect.com/journal/cos.doi.10.2174/0115701794317332240610073030 ).

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test