Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Aims

The small organic molecular compounds with biological activity containing C-C and C-N or C-O bonding were efficiently prepared without catalyst and solvent in the hydrothermal synthesis reactor.

Objectives

Our goal was to explore new applications for the more environmentally friendly and efficient synthesis of bis(indolyl)methyl, xanthene, quinazolinone, and -heterocyclic derivatives in hydrothermal synthesis reactors under solvent-free and catalyst-free conditions.

Methods

A greener and more efficient method was successfully developed for the synthesis of bis(indolyl)methyl, heteroanthracene, quinazolinone, and -heterocyclic derivatives using a hydrothermal synthesis reactor in a solvent- and catalyst-free manner.

Results

In a hydrothermal synthesis reactor, bis(indoyl)methyl, xanthene, quinazolinone, and -heterocyclic derivatives were synthesized without catalysts and solvents.

Conclusion

Overall, it is proved once again that the catalyst-free and solvent-free synthesis method has universal value and is a more ideal and environmentally friendly new method, especially the hydrothermal reactor for synthesis.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794285717240124053728
2024-02-14
2025-01-31
Loading full text...

Full text loading...

References

  1. LiC.J. Cross-dehydrogenative coupling (CDC): Exploring C-C bond formations beyond functional group transformations.Acc. Chem. Res.200942233534410.1021/ar800164n 19220064
    [Google Scholar]
  2. XinJ. ZhangS. YanD. AyodeleO. LuX. WangJ. Formation of C–C bonds for the production of bio-alkanes under mild conditions.Green Chem.20141673589359510.1039/C4GC00501E
    [Google Scholar]
  3. OhkadoR. IshikawaT. IidaH. Flavin–iodine coupled organocatalysis for the aerobic oxidative direct sulfenylation of indoles with thiols under mild conditions.Green Chem.201820598498810.1039/C8GC00117K
    [Google Scholar]
  4. LiuY. ZhangY. HuC. WanJ.P. WenC. Synthesis of 3-sulfenylated indoles by a simple NaOH promoted sulfenylation reaction.RSC Advances2014467355283553010.1039/C4RA05206D
    [Google Scholar]
  5. ZhangX. ZhouX. XiaoH. LiX. A catalyst-free system for 3-sulfenylation of free (N–H) indoles with mercaptobenzoic acid under alkaline conditions.RSC Advances2013344222802228410.1039/c3ra44484h
    [Google Scholar]
  6. KainzQ.M. MatierC.D. BartoszewiczA. ZultanskiS.L. PetersJ.C. FuG.C. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light.Science2016351627468168410.1126/science.aad8313 26912852
    [Google Scholar]
  7. ZhouX. LiX. Catalyst-free system for sulfenylation of free (N–H) indoles with 2,2′-dithiosalicylic acid under alkaline conditions.RSC Advances2014431241124510.1039/C3RA46361C
    [Google Scholar]
  8. ZouL.H. ReballJ. MottweilerJ. BolmC. Transition metal-free direct C–H bond thiolation of 1,3,4-oxadiazoles and related heteroarenes.Chem. Commun.20124892113071130910.1039/c2cc36711d 23072812
    [Google Scholar]
  9. WangG. WuZ. LiangY. LiuW. ZhanH. SongM. SunY. Exploring the coordination confinement effect of divalent palladium/zero palladium doped polyaniline-networking: As an excellent-performance nanocomposite catalyst for C-C coupling reactions.J. Catal.202038417718810.1016/j.jcat.2020.02.021
    [Google Scholar]
  10. PatelH.A. SawantA.M. RaoV.J. PatelA.L. BedekarA.V. Polyaniline supported FeCl3: An effective heterogeneous catalyst for biginelli reaction.Catal. Lett.201714792306231210.1007/s10562‑017‑2139‑9
    [Google Scholar]
  11. Gutiérrez-BonetÁ. RemeurC. MatsuiJ.K. MolanderG.A. Late-Stage C–H alkylation of heterocycles and 1,4-quinones via oxidative homolysis of 1,4-dihydropyridines.J. Am. Chem. Soc.2017139351225112258
    [Google Scholar]
  12. YueX. WuZ. WangG. LiangY. SunY. SongM. ZhanH. BiS. LiuW. High acidity cellulose sulfuric acid from sulfur trioxide: A highly efficient catalyst for the one step synthesis of xanthene and dihydroquinazolinone derivatives.RSC Advances2019949287182872310.1039/C9RA05748J 35529635
    [Google Scholar]
  13. RathwaS.K. VasavaM.S. BhoiM.N. BoradM.A. PatelH.D. Recent advances in the synthesis of C-5-substituted analogs of 3,4-dihydropyrimidin-2-ones: A review.Synth. Commun.201848996399410.1080/00397911.2017.1423503
    [Google Scholar]
  14. NagarajaiahH. MukhopadhyayA. MoorthyJ.N. Biginelli reaction: An overview.Tetrahedron Lett.201657475135514910.1016/j.tetlet.2016.09.047
    [Google Scholar]
  15. PatilR.V. ChavanJ.U. DalalD.S. ShindeV.S. BeldarA.G. Biginelli reaction: Polymer supported catalytic approaches.ACS Comb. Sci.201921310514810.1021/acscombsci.8b00120 30645098
    [Google Scholar]
  16. WangM. SongJ. LuQ. WangQ. Green biginelli-type reaction: Solvent-free synthesis of 5-unsubstituted 3,4-dihydropyrimdin-2(1 H)-ones.J. Heterocycl. Chem.20155261907191010.1002/jhet.2279
    [Google Scholar]
  17. AcharyL.S.K. KumarA. RoutL. KunapuliS.V.S. DhakaR.S. DashP. Phosphate functionalized graphene oxide with enhanced catalytic activity for Biginelli type reaction under microwave condition.Chem. Eng. J.201833130031010.1016/j.cej.2017.08.109
    [Google Scholar]
  18. ZhalehS. HazeriN. MaghsoodlouM.T. Green protocol for synthesis of 2,3-dihydroquinazolin-4(1H)-ones: Lactic acid as catalyst under solvent-free condition.Res. Chem. Intermed.20164276381639010.1007/s11164‑016‑2469‑z
    [Google Scholar]
  19. ZhaoS.Y. ChenZ.Y. WeiN. LiuL. HanZ.B. Highly efficient cooperative catalysis of single-site lewis acid and brønsted acid in a metal–organic framework for the biginelli reaction.Inorg. Chem.201958127657766110.1021/acs.inorgchem.9b00816 31124668
    [Google Scholar]
  20. NarayananD.P. SankaranS. NarayananB.N. Novel rice husk ash - reduced graphene oxide nanocomposite catalysts for solvent free Biginelli reaction with a statistical approach for the optimization of reaction parameters.Mater. Chem. Phys.2019222637410.1016/j.matchemphys.2018.09.078
    [Google Scholar]
  21. WangR. LiuZ.Q. Solvent-free and catalyst-free Biginelli reaction to synthesize ferrocenoyl dihydropyrimidine and kinetic method to express radical-scavenging ability.J. Org. Chem.20127783952395810.1021/jo300282y 22489679
    [Google Scholar]
  22. SunJ. RenJ. ZhangS. ChengW. Water as an efficient medium for the synthesis of cyclic carbonate.Tetrahedron Lett.200950442342610.1016/j.tetlet.2008.11.034
    [Google Scholar]
  23. RanuB.C. HajraA. DeyS.S. A practical and green approach towards synthesis of dihydropyrimidinones without any solvent or catalyst.Org. Process Res. Dev.20026681781810.1021/op0255478
    [Google Scholar]
  24. HajjamiM. GhiasbeygiE. First catalyst- and solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones.Russ. J. Org. Chem.201652342943210.1134/S1070428016030222
    [Google Scholar]
  25. CarvalhoR.B. JoshiS.V. Solvent and catalyst free synthesis of 3,4-dihydropyrimidin-2(1 H)-ones/thiones by twin screw extrusion.Green Chem.20192181921192410.1039/C9GC00036D
    [Google Scholar]
  26. HarikrishnanP.S. RajeshS.M. PerumalS. AlmansourA.I. A microwave-mediated catalyst- and solvent-free regioselective Biginelli reaction in the synthesis of highly functionalized novel tetrahydropyrimidines.Tetrahedron Lett.20135491076107910.1016/j.tetlet.2012.12.034
    [Google Scholar]
  27. AhmedE.A. KhodairyA. Abd El AleemA.A.E.M. AhmedA.M. One-step, low-cost, operator-friendly, and scalable procedure to synthetize novel tetrazolopyrimidinylbenzopyran-2-ones by benign protocol.Curr. Org. Chem.202326242214222210.2174/1385272827666230206162235
    [Google Scholar]
  28. Abd El Aleem Ali Ali El-RemailyM. ElhadyO.M. Green bio‐organic and recoverable catalyst taurine (2‐aminoethanesulfonic acid) for synthesis of bio‐active compounds 3,4‐dihydropyrimidin derivatives in aqueous medium.ChemistrySelect2020539120981210210.1002/slct.202002575
    [Google Scholar]
  29. El-RemailyM.A.E.A.A.A. ElhadyO. AbdouA. AlhashmialameerD. EskanderT.N.A. Abu-DiefA.M. Development of new 2-(Benzothiazol-2-ylimino)-2,3-dihydro-1H-imidazol-4-ol complexes as a robust catalysts for synthesis of thiazole 6-carbonitrile derivatives supported by DFT studies.J. Mol. Struct.202312922413618810.1016/j.molstruc.2023.136188
    [Google Scholar]
  30. WuZ. WangG. YuanS. WuD. LiuW. MaB. BiS. ZhanH. ChenX. Synthesis of bis(indolyl)methanes under dry grinding conditions, promoted by a Lewis acid–surfactant–SiO 2 -combined nanocatalyst.Green Chem.201921133542354610.1039/C9GC01073D
    [Google Scholar]
  31. NiuX. WeiH. TangK. LiuW. ZhaoG. YangY. Solvothermal synthesis of 1D nanostructured Mn 2 O 3: effect of Ni 2+ and Co 2+ substitution on the catalytic activity of nanowires.RSC Advances2015581662716627710.1039/C5RA14618F
    [Google Scholar]
  32. WaltonR.I. Solvothermal synthesis of cerium oxides.Prog. Cryst. Growth Charact. Mater.20115749310810.1016/j.pcrysgrow.2011.10.002
    [Google Scholar]
  33. WangY.J. LaiC. WeiK. ChenX. DingY. WangZ.L. Investigations on the formation mechanism of hydroxyapatite synthesized by the solvothermal method.Nanotechnology200617174405441210.1088/0957‑4484/17/17/020
    [Google Scholar]
  34. WangG. WangB. ParkJ. YangJ. ShenX. YaoJ. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method.Carbon2009471687210.1016/j.carbon.2008.09.002
    [Google Scholar]
  35. ShchipunovY. IvanovaN. Silant’evV. Bionanocomposites formed by in situ charged chitosan with clay.Green Chem.200911111758176110.1039/b914548f
    [Google Scholar]
  36. XuZ. ZhangY. FuH. ZhongH. HongK. ZhuW. Antifungal quinazolinones from marine-derived Bacillus cereus and their preparation.Bioorg. Med. Chem. Lett.201121134005400710.1016/j.bmcl.2011.05.002 21612927
    [Google Scholar]
  37. KangH.B. RimH.K. ParkJ.Y. ChoiH.W. ChoiD.L. SeoJ.H. ChungK.S. HuhG. KimJ. ChooD.J. LeeK.T. LeeJ.Y. In vivo evaluation of oral anti-tumoral effect of 3,4-dihydroquinazoline derivative on solid tumor.Bioorg. Med. Chem. Lett.20122221198120110.1016/j.bmcl.2011.11.083 22177784
    [Google Scholar]
  38. SuW. YangD. JinC. ZhangB. Yb(OTf)3 catalyzed condensation reaction of β-naphthol and aldehyde in ionic liquids: A green synthesis of aryl-14H-dibenzo[a,j]xanthenes.Tetrahedron Lett.2008492133913394[a,j]10.1016/j.tetlet.2008.03.124
    [Google Scholar]
  39. TabatabaeianK. KhorshidiA. MamaghaniM. DadashiA. Facile and efficient method for the synthesis of 14-substituted-14- H -dibenzo[ a,j]xanthenes catalyzed by ruthenium chloride hydrate as a homogeneous catalyst.Synth. Commun.201141101427143410.1080/00397911.2010.486507
    [Google Scholar]
  40. RajithaB. SunilK.B. ThirupathiR.Y. NarsimhaR.P. SreenivasuluN. Sulfamic acid: A novel and efficient catalyst for the synthesis of aryl-14H-dibenzo[a.j]xanthenes under conventional heating and microwave irradiation.Tetrahedron Lett.200546508691869310.1016/j.tetlet.2005.10.057
    [Google Scholar]
  41. HeoJ.H. SeoH.N. ChoeY.J. KimS. OhC.R. KimY.D. RhimH. ChooD.J. KimJ. LeeJ.Y. T-type Ca2+ channel blockers suppress the growth of human cancer cells.Bioorg. Med. Chem. Lett.200818143899390110.1016/j.bmcl.2008.06.034 18585035
    [Google Scholar]
  42. ZeniG. LarockR.C. Synthesis of heterocycles via palladium π-olefin and π-alkyne chemistry.Chem. Rev.200410452285231010.1021/cr020085h 15137792
    [Google Scholar]
  43. UbaleM. UbaleM. Silica chloride catalyzed efficient synthesis of 2,3-dihydroquinazoline-4(1h)-ones derivatives in water.Biomed. J. Sci. Tech. Res.2017161786178910.26717/BJSTR.2017.01.000549
    [Google Scholar]
  44. XieZ.B. ZhangS.G. JiangG.F. SunD.Z. LeZ.G. The green synthesis of 2,3-dihydroquinazolin-4(1 H)-ones via direct cyclocondensation reaction under catalyst-free conditions.Green Chem. Lett. Rev.201583-4959810.1080/17518253.2015.1109145
    [Google Scholar]
  45. KimN.Y. CheonC.H. Synthesis of quinazolinones from anthranilamides and aldehydes via metal-free aerobic oxidation in DMSO.Tetrahedron Lett.201455152340234410.1016/j.tetlet.2014.02.065
    [Google Scholar]
  46. YangX. ChengG. ShenJ. KuaiC. CuiX. Cleavage of the C–C triple bond of ketoalkynes: Synthesis of 4(3H)-quinazolinones.Org. Chem. Front.20152436636810.1039/C4QO00260A
    [Google Scholar]
  47. YashwantraoG. JejurkarV.P. KshatriyaR. SahaS. Solvent-free, mechanochemically scalable synthesis of 2,3-dihydroquinazolin-4(1H)-one using brønsted acid catalyst.ACS Sustain. Chem.& Eng.2019715135511355810.1021/acssuschemeng.9b03199
    [Google Scholar]
  48. KhiratkarA.G. MuskawarP.N. BhagatP.R. Polymer-supported benzimidazolium based ionic liquid: An efficient and reusable Brønsted acid catalyst for Biginelli reaction.RSC Advances2016610710508710509310.1039/C6RA23781A
    [Google Scholar]
  49. BarberoM. CadamuroS. DugheraS. A Brønsted acid catalysed enantioselective Biginelli reaction.Green Chem.20171961529153510.1039/C6GC03274E
    [Google Scholar]
  50. QuanZ.J. DaY.X. ZhangZ. WangX.C. PS–PEG–SO3H as an efficient catalyst for 3,4-dihydropyrimidones via Biginelli reaction.Catal. Commun.20091081146114810.1016/j.catcom.2008.12.017
    [Google Scholar]
  51. KappeC.O. A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate.J. Org. Chem.199762217201720410.1021/jo971010u 11671828
    [Google Scholar]
  52. FolkersK. JohnsonT.B. Researches on pyrimidines. CXXXVI. the mechanism of formation of tetrahydropyrimidines by the biginelli reaction.J. Am. Chem. Soc.19335593784379110.1021/ja01336a054
    [Google Scholar]
  53. SweetF. FissekisJ.D. Synthesis of 3,4-dihydro-2(1H)-pyrimidinones and the mechanism of the Biginelli reaction.J. Am. Chem. Soc.197395268741874910.1021/ja00807a040
    [Google Scholar]
  54. PuripatM. RamozziR. HatanakaM. ParasukW. ParasukV. MorokumaK. The Biginelli reaction is a urea-catalyzed organocatalytic multicomponent reaction.J. Org. Chem.201580146959696710.1021/acs.joc.5b00407 26066623
    [Google Scholar]
/content/journals/cos/10.2174/0115701794285717240124053728
Loading
/content/journals/cos/10.2174/0115701794285717240124053728
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test