Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

One of the most researched issues is the elimination of uremic toxins from the human body. These toxins can build up and lead to catastrophic issues including renal failure. To get rid of them, absorbents like activated carbon, zeolites, and other minerals are frequently utilized.

Methods

Mesoporous silica nanoparticles functionalized with (3-Aminopropyl) triethoxysilane (APTES) linker (MSN-NH) and mesoporous silica nanoparticles grafted with molecularly imprinted polymers (MSN-MIP) from the previous study were examined in this study to determine how well they absorbed urea, creatinine, and uric acid in a simulated intestinal serum.

Results

MSN-MIP's large surface area (879.12 (m2/g)) and volume of pores (0.8475 (cm3/g)) made removal results that were satisfactory in the simulated serum. Additionally, MSN-MIP demonstrated a high urea adsorption capacity (q = 1836.45 mg/g). Creatinine (q = 1529.5 mg/g) and uric acid (q = 1210.6 mg/g) were absorbed NH-MSN, which demonstrated a noticeable potential for absorption. The results of cell viability test for the first 72 hours, showed that the use of these absorbents in hemodialysis systems is acceptable.

Conclusion

Synthesized adsorbents can be utilized in the hemodialysis system since the results of the cell viability test also showed that the percentage of cell viability was extremely high up to 72 hours.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794282603240115112013
2024-02-02
2025-01-19
Loading full text...

Full text loading...

References

  1. WebsterA.C. NaglerE.V. MortonR.L. MassonP. Chronic kidney disease.Lancet2017389100751238125210.1016/S0140‑6736(16)32064‑5 27887750
    [Google Scholar]
  2. BikbovB. PurcellC.A. LeveyA.S. SmithM. AbdoliA. AbebeM. AdebayoO.M. AfaridehM. AgarwalS.K. Agudelo-BoteroM. AhmadianE. Al-AlyZ. AlipourV. Almasi-HashianiA. Al-RaddadiR.M. Alvis-GuzmanN. AminiS. AndreiT. AndreiC.L. AndualemZ. AnjomshoaM. ArablooJ. AshagreA.F. AsmelashD. AtaroZ. AtoutM.M.W. AyanoreM.A. BadawiA. BakhtiariA. BallewS.H. BalouchiA. BanachM. BarqueraS. BasuS. BayihM.T. BediN. BelloA.K. BensenorI.M. BijaniA. BoloorA. Borzì, A.M.; Cámera, L.A.; Carrero, J.J.; Carvalho, F.; Castro, F.; Catalá-López, F.; Chang, A.R.; Chin, K.L.; Chung, S-C.; Cirillo, M.; Cousin, E.; Dandona, L.; Dandona, R.; Daryani, A.; Das Gupta, R.; Demeke, F.M.; Demoz, G.T.; Desta, D.M.; Do, H.P.; Duncan, B.B.; Eftekhari, A.; Esteghamati, A.; Fatima, S.S.; Fernandes, J.C.; Fernandes, E.; Fischer, F.; Freitas, M.; Gad, M.M.; Gebremeskel, G.G.; Gebresillassie, B.M.; Geta, B.; Ghafourifard, M.; Ghajar, A.; Ghith, N.; Gill, P.S.; Ginawi, I.A.; Gupta, R.; Hafezi-Nejad, N.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hariyani, N.; Hasan, M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, S.I.; Heidari, B.; Herteliu, C.; Hoang, C.L.; Hosseini, M.; Hostiuc, M.; Irvani, S.S.N.; Islam, S.M.S.; Jafari Balalami, N.; James, S.L.; Jassal, S.K.; Jha, V.; Jonas, J.B.; Joukar, F.; Jozwiak, J.J.; Kabir, A.; Kahsay, A.; Kasaeian, A.; Kassa, T.D.; Kassaye, H.G.; Khader, Y.S.; Khalilov, R.; Khan, E.A.; Khan, M.S.; Khang, Y-H.; Kisa, A.; Kovesdy, C.P.; Kuate Defo, B.; Kumar, G.A.; Larsson, A.O.; Lim, L-L.; Lopez, A.D.; Lotufo, P.A.; Majeed, A.; Malekzadeh, R.; März, W.; Masaka, A.; Meheretu, H.A.A.; Miazgowski, T.; Mirica, A.; Mirrakhimov, E.M.; Mithra, P.; Moazen, B.; Mohammad, D.K.; Mohammadpourhodki, R.; Mohammed, S.; Mokdad, A.H.; Morales, L.; Moreno Velasquez, I.; Mousavi, S.M.; Mukhopadhyay, S.; Nachega, J.B.; Nadkarni, G.N.; Nansseu, J.R.; Natarajan, G.; Nazari, J.; Neal, B.; Negoi, R.I.; Nguyen, C.T.; Nikbakhsh, R.; Noubiap, J.J.; Nowak, C.; Olagunju, A.T.; Ortiz, A.; Owolabi, M.O.; Palladino, R.; Pathak, M.; Poustchi, H.; Prakash, S.; Prasad, N.; Rafiei, A.; Raju, S.B.; Ramezanzadeh, K.; Rawaf, S.; Rawaf, D.L.; Rawal, L.; Reiner, R.C., Jr; Rezapour, A.; Ribeiro, D.C.; Roever, L.; Rothenbacher, D.; Rwegerera, G.M.; Saadatagah, S.; Safari, S.; Sahle, B.W.; Salem, H.; Sanabria, J.; Santos, I.S.; Sarveazad, A.; Sawhney, M.; Schaeffner, E.; Schmidt, M.I.; Schutte, A.E.; Sepanlou, S.G.; Shaikh, M.A.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Silva, D.A.S.; Singh, J.A.; Singh, N.P.; Sisay, M.M.M.; Soheili, A.; Sutradhar, I.; Teklehaimanot, B.F.; Tesfay, B.; Teshome, G.F.; Thakur, J.S.; Tonelli, M.; Tran, K.B.; Tran, B.X.; Tran Ngoc, C.; Ullah, I.; Valdez, P.R.; Varughese, S.; Vos, T.; Vu, L.G.; Waheed, Y.; Werdecker, A.; Wolde, H.F.; Wondmieneh, A.B.; Wulf Hanson, S.; Yamada, T.; Yeshaw, Y.; Yonemoto, N.; Yusefzadeh, H.; Zaidi, Z.; Zaki, L.; Zaman, S.B.; Zamora, N.; Zarghi, A.; Zewdie, K.A.; Ärnlöv, J.; Coresh, J.; Perico, N.; Remuzzi, G.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet20203951022570973310.1016/S0140‑6736(20)30045‑3 32061315
    [Google Scholar]
  3. XieY. BoweB. MokdadA.H. XianH. YanY. LiT. MaddukuriG. TsaiC.Y. FloydT. Al-AlyZ. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016.Kidney Int.201894356758110.1016/j.kint.2018.04.011 30078514
    [Google Scholar]
  4. ForemanK.J. MarquezN. DolgertA. FukutakiK. FullmanN. McGaugheyM. PletcherM.A. SmithA.E. TangK. YuanC.W. BrownJ.C. FriedmanJ. HeJ. HeutonK.R. HolmbergM. PatelD.J. ReidyP. CarterA. CercyK. ChapinA. Douwes-SchultzD. FrankT. GoettschF. LiuP.Y. NandakumarV. ReitsmaM.B. ReuterV. SadatN. SorensenR.J.D. SrinivasanV. UpdikeR.L. YorkH. LopezA.D. LozanoR. LimS.S. MokdadA.H. VollsetS.E. MurrayC.J.L. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories.Lancet2018392101592052209010.1016/S0140‑6736(18)31694‑5 30340847
    [Google Scholar]
  5. Kalantar-ZadehK. WightmanA. LiaoS. Ensuring choice for people with kidney failure-dialysis, supportive care, and hope.N. Engl. J. Med.202038329910110.1056/NEJMp2001794 32640129
    [Google Scholar]
  6. TeehanB. Urea kinetic analysis and clinical outcome on CAPD. A five year longitudinal study.Adv. Perit. Dial.199061815
    [Google Scholar]
  7. RosnerM.H. ReisT. Husain-SyedF. VanholderR. HutchisonC. StenvinkelP. BlankestijnP.J. CozzolinoM. JuillardL. KashaniK. KaushikM. KawanishiH. MassyZ. SirichT.L. ZuoL. RoncoC. Classification of uremic toxins and their role in kidney failure.Clin. J. Am. Soc. Nephrol.202116121918192810.2215/CJN.02660221 34233920
    [Google Scholar]
  8. GansevoortR.T. MatsushitaK. van der VeldeM. AstorB.C. WoodwardM. LeveyA.S. de JongP.E. CoreshJ. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts.Kidney Int.20118019310410.1038/ki.2010.531 21289597
    [Google Scholar]
  9. Pérez-Sáez, M.J.; Prieto-Alhambra, D.; Barrios, C.; Crespo, M.; Redondo, D.; Nogués, X.; Díez-Pérez, A.; Pascual, J. Increased hip fracture and mortality in chronic kidney disease individuals: The importance of competing risks.Bone20157315415910.1016/j.bone.2014.12.020 25549867
    [Google Scholar]
  10. NarimaniR. EsmaeiliM. RastaS.H. KhosroshahiH.T. MobedA. Trend in creatinine determining methods: Conventional methods to molecular‐based methods.Anal. Sci. Adv.202125-630832510.1002/ansa.202000074
    [Google Scholar]
  11. ZhybakM. BeniV. VaginM.Y. DempseyE. TurnerA.P.F. KorpanY. Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite.Biosens. Bioelectron.20167750551110.1016/j.bios.2015.10.009 26457736
    [Google Scholar]
  12. TsengC.C. YangR-J. JuW-J. FuL-M. Microfluidic paper-based platform for whole blood creatinine detection.Chem. Eng. J.201834811712410.1016/j.cej.2018.04.191
    [Google Scholar]
  13. MussoC.G. Alvarez GregoriJ. JaureguiJ.R. Macías Núñez, J.F. Creatinine, urea, uric acid, water and electrolytes renal handling in the healthy oldest old.World J. Nephrol.20121512312610.5527/wjn.v1.i5.123 24175249
    [Google Scholar]
  14. OoiC.H. CheahW.K. YeohF.Y. Comparative study on the urea removal by different nanoporous materials.Adsorption20192561169117510.1007/s10450‑019‑00130‑5
    [Google Scholar]
  15. ChengY.C. FuC-C. HsiaoY-S. ChienC-C. JuangR-S. Clearance of low molecular-weight uremic toxins p-cresol, creatinine, and urea from simulated serum by adsorption.J. Mol. Liq.201825220321010.1016/j.molliq.2017.12.084
    [Google Scholar]
  16. CheahW.K. IshikawaK. OthmanR. YeohF.Y. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review.J. Biomed. Mater. Res. B Appl. Biomater.201710551232124010.1002/jbm.b.33475 26913694
    [Google Scholar]
  17. KamedaT. HorikoshiK. KumagaiS. SaitoY. YoshiokaT. Adsorption of urea, creatinine, and uric acid from three solution types using spherical activated carbon and its recyclability.Chin. J. Chem. Eng.202028122993300110.1016/j.cjche.2020.03.018
    [Google Scholar]
  18. MaY. LiS. TonelliM. UnsworthL.D. Adsorption-based strategies for removing uremic toxins from blood.Microporous Mesoporous Mater.202131911103510.1016/j.micromeso.2021.111035
    [Google Scholar]
  19. KongX.P. ZhangB.H. WangJ. Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: A review.J. Agric. Food Chem.202169246735675410.1021/acs.jafc.1c01091 34110151
    [Google Scholar]
  20. ZaidiS.A. Recent developments in molecularly imprinted polymer nanofibers and their applications.Anal. Methods20157187406741510.1039/C5AY01609F
    [Google Scholar]
  21. ZhouZ. HartmannM. Progress in enzyme immobilization in ordered mesoporous materials and related applications.Chem. Soc. Rev.20134293894391210.1039/c3cs60059a 23570038
    [Google Scholar]
  22. PandeyS. MewadaA. ThakurM. PillaiS. DharmattiR. PhadkeC. SharonM. Synthesis of mesoporous silica oxide/C-dot complex (meso-SiO 2/C-dots) using pyrolysed rice husk and its application in bioimaging.RSC Advances2014431174117910.1039/C3RA45227A
    [Google Scholar]
  23. NguyenC.H. FuC-C. ChenZ-H. TranT.T.V. LiuS-H. JuangR-S. Enhanced and selective adsorption of urea and creatinine on amine-functionalized mesoporous silica SBA-15 via hydrogen bonding.Microporous Mesoporous Mater.202131111073310.1016/j.micromeso.2020.110733
    [Google Scholar]
  24. RumiyantiL. DestianaC. OktavianiR. Syafriadi; Marjunus, R.; Chotimah; Suharyadi, E. Facile pore size control and low-cost synthesis of mesoporous silica nanoparticles based on rice husk.Adv. Nat. Sci.: Nanosci. Nanotechnol.202314101500710.1088/2043‑6262/acc456
    [Google Scholar]
  25. DuanF. ChenC. ZhaoX. YangY. LiuX. QinY. Water-compatible surface molecularly imprinted polymers with synergy of bifunctional monomers for enhanced selective adsorption of bisphenol A from aqueous solution.Environ. Sci. Nano20163121322210.1039/C5EN00198F
    [Google Scholar]
  26. SamahN.A. Sánchez-Martín, M.J.; Sebastián, R.M.; Valiente, M.; López-Mesas, M. Molecularly imprinted polymer for the removal of diclofenac from water: Synthesis and characterization.Sci. Total Environ.2018631-6321534154310.1016/j.scitotenv.2018.03.087 29727977
    [Google Scholar]
  27. ChianellaI. PiletskyS.A. TothillI.E. ChenB. TurnerA.P.F. MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR.Biosens. Bioelectron.2003182-311912710.1016/S0956‑5663(02)00165‑3 12485758
    [Google Scholar]
  28. LeeM.H. ThomasJ.L. HoM.H. YuanC. LinH.Y. Synthesis of magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles and their uses in the extraction and sensing of target molecules in urine.ACS Appl. Mater. Interfaces2010261729173610.1021/am100227r 20521774
    [Google Scholar]
  29. BelBruno, J.J. Molecularly imprinted polymers.Chem. Rev.201911919411910.1021/acs.chemrev.8b00171 30246529
    [Google Scholar]
  30. MiardanL.N. RezaiiE. MahkamM. KhosroshahiH.T. Synthesis of mesoporous silica nanoparticles linked by molecularly imprinted polymers and examination of their ability to remove uremic toxins.J. Porous Mater.20233061995201010.1007/s10934‑023‑01480‑w
    [Google Scholar]
  31. HuangC. WangD. ZhangD. ShaoZ. ZhangQ. WangJ. ZhangY. QinN. MiL. Integration of CdS with a fiber-based cadmium coordination polymer for turning on photocatalytic oxidative coupling reactions.Cryst. Growth Des.20222231792180010.1021/acs.cgd.1c01380
    [Google Scholar]
  32. SingK.S.W. WilliamsR.T. Physisorption hysteresis loops and the characterization of nanoporous materials.Adsorpt. Sci. Technol.2004221077378210.1260/0263617053499032
    [Google Scholar]
  33. FengL. MengH. LuY. LiC. Efficient and reversible absorption of HCl gas by ChCl-based deep eutectic solvents-Insights into the absorption behavior and mechanism.Separ. Purif. Tech.202228111999410.1016/j.seppur.2021.119994
    [Google Scholar]
/content/journals/cos/10.2174/0115701794282603240115112013
Loading
/content/journals/cos/10.2174/0115701794282603240115112013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test