Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

The effect of power and duration of ultrasonic irradiation on the synthesis of thiazoles the Hantzsch reaction was investigated.

Methods

The reaction of phenacyl bromides with thioamides under ultrasonic irradiation afforded the target thiazoles in good yields.

Results

The results showed that high power and long irradiation time cause the decomposition of the reaction materials, and for this reaction, the irradiation power of 720 watts and a total duration of 4 minutes, wherein a pulsing function was performed in 50% of each second, were considered the most suitable irradiation properties for the synthesis of thiazoles through the Hantzsch reaction.

Conclusion

The use of mild conditions, short time frame, high yields, simple separation of the reaction product, and no use of the base for neutralization are the advantages of the present method.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794287558240220115823
2024-03-18
2025-01-19
Loading full text...

Full text loading...

References

  1. EicherT. HauptmannS. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications.WeinheimWiley-VCH200310.1002/352760183X
    [Google Scholar]
  2. DucD.X. ChungN.T. Recent development in the synthesis of thiazoles.Curr. Org. Synth.202219670273010.2174/1570179419666220216122637 35170413
    [Google Scholar]
  3. AliS.H. SayedA.R. Review of the synthesis and biological activity of thiazoles.Synth. Commun.202151567070010.1080/00397911.2020.1854787
    [Google Scholar]
  4. FengM. TangB. LiangS.H. JiangX. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry.Curr. Top. Med. Chem.201616111200121610.2174/1568026615666150915111741 26369815
    [Google Scholar]
  5. (a AyatiA. EmamiS. AsadipourA. ShafieeA. ForoumadiA. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery.Eur. J. Med. Chem.20159769971810.1016/j.ejmech.2015.04.01525934508
    [Google Scholar]
  6. (b PolaS. Significance of thiazole-based heterocycles for bioactive systems.Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective.InTech201610.5772/62077
    [Google Scholar]
  7. (c AymanM. AbdelmonsefA.H. RashdanH.R.M. Mini review on the synthesis and biological impact of thiazoles.ChemistrySelect20238e20230041410.1002/slct.202300414
    [Google Scholar]
  8. (a GhodseS.M. TelvekarV.N. Synthesis of 2-aminothiazole derivatives from easily available thiourea and alkyl/aryl ketones using aqueous NaICl2.Tetrahedron Lett.201556247247410.1016/j.tetlet.2014.11.140
    [Google Scholar]
  9. (b YadavJ.S. ReddyB.V.S. RaoY.G. NarsaiahA.V. First example of the coupling of α-diazoketones with thiourea: A novel route for the synthesis of 2-aminothiazoles.Tetrahedron Lett.200849152381238310.1016/j.tetlet.2008.02.068
    [Google Scholar]
  10. SrinivasanK.V. PotewarT.M. IngaleS.A. Catalyst-free efficient synthesis of 2-aminothiazoles in water at ambient temperature.Tetrahedron2008645019502210.1016/j.tet.2008.03.082
    [Google Scholar]
  11. ChenB. GuoS. GuoX. ZhangG. YuY. Selective access to 4-substituted 2-aminothiazoles and 4-substituted 5-thiocyano-2-aminothiazoles from vinyl azides and potassium thiocyanate switched by palladium and iron catalysts.Org. Lett.2015174698470110.1021/acs.orglett.5b02152
    [Google Scholar]
  12. BonillaM.P. CardenaP.A. MarmolQ.E. TellezA.J.L. RejonM.G.J. Preparation, antimicrobial activity, and toxicity of 2-amino-4-arylthiazole aerivatives.Heteroatom Chem.20061725410.1002/hc.20182
    [Google Scholar]
  13. PotewarT.M. IngaleS.A. SrinivasanK.V. Efficient synthesis of 2,4-disubstituted thiazoles using ionic liquid under ambient conditions: A practical approach towards the synthesis of fanetizole.Tetrahedron200763110661106910.1016/j.tet.2007.08.036
    [Google Scholar]
  14. BoeiniZ.H. MansouriS.G. Three-component and solvent-free synthesis of thiazoles from tertiary thioamides.J. Iran. Chem. Soc.2016131571157710.1007/s13738‑016‑0873‑3
    [Google Scholar]
  15. NarenderM. SomiR.M. SridharR. NageswarK. NageswarK. RamaR.K. Aqueous phase synthesis of thiazoles and aminothiazoles in the presence of β-cyclodextrin.Tetrahedron Lett.2005465953595510.1016/j.tetlet.2005.06.130
    [Google Scholar]
  16. RautD.G. BhosaleR.B. One-pot PEG-mediated syntheses of 2-(2-Hydrazinyl) thiazole derivatives: Novel route.J. Sulfur Chem.2018391710.1080/17415993.2017.1371175
    [Google Scholar]
  17. (a BrahmachariG. NayekN. MandalM. BhowmickA. KarmakarI. Ultrasound-promoted organic synthesis - a recent update.Curr. Org. Chem.202125131539156510.2174/1385272825666210316122319
    [Google Scholar]
  18. (b ZiaraniM.G. kheilkordi, Z.; Gholamzadeh, P. Ultrasound-assisted synthesis of heterocyclic compounds.Mol. Divers.202024377182010.1007/s11030‑019‑09964‑1 31165431
    [Google Scholar]
  19. PagadalaR. KasiV. ShabalalaN.G. JonnalagaddaS.B. Ultrasound-assisted multicomponent synthesis of heterocycles in water – A review.Arab. J. Chem.202215110354410.1016/j.arabjc.2021.103544
    [Google Scholar]
  20. NomuraH. KodaS. What is sonochemistry?Sonochemistry and the Acoustic Bubble.Elsevier20151910.1016/B978‑0‑12‑801530‑8.00001‑3
    [Google Scholar]
  21. JohansenK. SongJ.H. PrenticeP. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound.Ultrason. Sonochem.20184314615510.1016/j.ultsonch.2018.01.007 29555269
    [Google Scholar]
  22. SharmaA. PriyaA. KaurM. SinghA. KaurG. BanerjeeB. Ultrasound-assisted synthesis of bioactive S -heterocycles.Synth. Commun.202151213209323610.1080/00397911.2021.1970775
    [Google Scholar]
  23. BanerjeeB. Ultrasound and nanocatalysts: An ideal and sustainable combination to carry out diverse organic transformations.ChemistrySelect201942484250010.1002/slct.201803081
    [Google Scholar]
  24. ChebanovV.A. DesenkoS.M. LipsonV.V. Heterocycles on the crest of microwaves and ultrasonics in the institute for single crystals of national academy of sciences of ukraine: Chemistry and history.Chem. Heterocycl. Compd.20235938640510.1007/s10593‑023‑03207‑w
    [Google Scholar]
  25. HussienM. AliT.E. SayedI.E.E. AbdelaleemA.H. TorkeyH.M. AssiriM.A. YahiaI.S. Ultrasound-assisted synthesis of some novel 1,3-diarylpyrazolyl α-aminophosphonates conjugated with nitrogen heterocycles as antifungal agents using CdI2 nanoparticles as an efficient catalyst.Russ. J. Org. Chem.2023591214122310.1134/S1070428023070138
    [Google Scholar]
  26. ShihabI.A. MuhammedM.Y. AlheetyM.A. NuamanH.A. KaradagA. Rapid ultrasound-assisted synthesis, characterization, DFT, molecular docking, and anticancer activity of palladium and zinc complexes with 2,6-dimethoxybenzoic acid: A comprehensive study.J. Mol. Struct.2023129413625910.1016/j.molstruc.2023.136259
    [Google Scholar]
  27. DesaiV. PatilS. NipaneS. SawantV. KuraneR. DeshmukhM. KI-oxone catalyzed ultrasound-promoted synthesis of imidazo[1,2-a]-pyridine-3-carboxylates (IPCs) and evaluation of their anti-tubercular activity.J. Iran Chem. Soc.2023201917192510.1007/s13738‑023‑02808‑8
    [Google Scholar]
  28. AzargashbS. SarvaryA. DarziH.S.K. Synthesized NaA nanozeolite as a catalyst for the preparation of 3-amino imidazo[1,2-a]pyridines under solvent-free conditions.Lett. Org. Chem.202219971171810.2174/1570178619666211220103759
    [Google Scholar]
  29. DehghanN. IsfahaniN.H. SarvaryA. BakheradM. Synthesis of bis(1,5-disubstituted tetrazoles) via double four component azido-ugi reaction.J. Heterocycl. Chem.20215835035610.1002/jhet.4178
    [Google Scholar]
  30. SarvaryA. ShaabaniS. GhanjiN. ShaabaniA. Three-component reaction of isocyanide with dialkyl acetylene dicarboxylate and alkyl mercaptan: Preparation of new derivatives of stable ketenimines.J. Sulfur Chem.20153611712310.1080/17415993.2014.978330
    [Google Scholar]
/content/journals/cos/10.2174/0115701794287558240220115823
Loading
/content/journals/cos/10.2174/0115701794287558240220115823
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. Full experimental detail and 1H NMR for 3a-3n and 13C NMR spectra.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test