Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Polyethylene glycol (PEG) has become a popular solvent and green catalyst for a variety of chemical reactions. It is a stable and biodegradable polymeric catalyst used in organic synthesis because it may be recycled numerous times without significantly losing its catalytic activity. Recently, the use of PEG-HO mixed solvent systems in organic synthesis has gained popularity.

This article presents an overview of PEG-HO solvent system-mediated organic reactions, with a main focus on the importance of the solvent system. The study also focuses on recent developments in the PEG-HO solvent system-mediated synthesis of a number of heterocyclic compounds.

Important characteristics of these PEG-HO solvent systems include high atom economies, gentle reaction conditions, faster reaction rates, readily isolated side products and high yields. Results from various reactions showed that the choice of proper ratio of PEG: HO solvent system plays a key role in product yields.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794284081240206043435
2024-03-12
2025-07-06
The full text of this item is not currently available.

References

  1. HorváthI.T. AnastasP.T. Innovations and green chemistry.Chem. Rev.200710762169217310.1021/cr078380v 17564478
    [Google Scholar]
  2. TundoP. AnastasP.T. Green Chemistry: Challenging Perspectives Eds.; Oxford University Press: Oxford: U.K,2000
    [Google Scholar]
  3. LiZ. ChenS. HuangY. ZhouH. YangS. ZhangH. WangM. GuoH. YinJ. Photoswitchable AIE photosensitizer for reversible control of singlet oxygen generation in specific bacterial discrimination and photocontrolled photodynamic killing of bacteria.Chem. Eng. J.202245013808710.1016/j.cej.2022.138087
    [Google Scholar]
  4. LiZ. ZengX. GaoC. SongJ. HeF. HeT. GuoH. YinJ. Photoswitchable diarylethenes: From molecular structures to biological applications.Coord. Chem. Rev.202349721545110.1016/j.ccr.2023.215451
    [Google Scholar]
  5. SimonM.O. LiC.J. Green chemistry oriented organic synthesis in water.Chem. Soc. Rev.20124141415142710.1039/C1CS15222J 22048162
    [Google Scholar]
  6. LiC.J. AnastasP.T. Green Solvents, Reactions in Water Handbook of Green Chemistry.Wiley-VCH20135
    [Google Scholar]
  7. JessopP.G. SubramaniamB. Gas-expanded liquids.Chem. Rev.200710762666269410.1021/cr040199o 17564482
    [Google Scholar]
  8. LeiningerN.F. ClontzR. GainerJ.L. KirwanD.J. Polyethylene glycol-water and polypropylene glycol-water solutionsas benign reaction solvents.Chem. Eng. Commun.2003190443144410.1080/00986440302082
    [Google Scholar]
  9. HeldebrantD.J. WittH.N. WalshS.M. EllisT. RauscherJ. JessopP.G. Liquid polymers as solvents for catalytic reductions.Green Chem.20068980781510.1039/b605405f
    [Google Scholar]
  10. JessopP.G. LeitnerW. Chemical synthesis using supercritical fluids.John Wiley & Sons2008
    [Google Scholar]
  11. CliffordA. CliffordT. Fundamentals of supercritical fluids.Oxford University Press1999
    [Google Scholar]
  12. DhimanD. BishtM. TavaresA.P.M. FreireM.G. VenkatesuP. Cholinium based ionic liquids as efficient media for improving the structural and thermal stability of immunoglobulin G antibodies.ACS Sustain. Chem.& Eng.202210175404542010.1021/acssuschemeng.1c07979
    [Google Scholar]
  13. PadinhattathS.P. ChenthamaraB. GardasR.L. Ionic liquids as alternative solvents for energy conservation and environmental engineering.Acta Innovations20213838627910.32933/ActaInnovations.38.6
    [Google Scholar]
  14. BasaiahgariA. GardasR.L. Ionic liquid-based aqueous biphasic systems as sustainable extraction and separation techniques.Curr. Opin. Green Sustain. Chem.20212710042310.1016/j.cogsc.2020.100423
    [Google Scholar]
  15. SinghV. AmirchandK.D. GardasR.L. Ionic liquid-nanoparticle based hybrid systems for energy conversion and energy storage applications.J. Taiwan Inst. Chem. Eng.202213310423710.1016/j.jtice.2022.104237
    [Google Scholar]
  16. WeltonT. Solvents and sustainable chemistry.Proc. R. Soc. A20154712015050210.1098/rspa.2015.0502
    [Google Scholar]
  17. SmithE.L. AbbottA.P. RyderK.S. Deep eutectic solvents (DESs) and their applications.Chem. Rev.201411421110601108210.1021/cr300162p 25300631
    [Google Scholar]
  18. FlorindoC. LimaF. RibeiroB.D. MarruchoI.M. Deep eutectic solvents: Overcoming 21st century challenges.Curr. Opin. Green Sustain. Chem.201918313610.1016/j.cogsc.2018.12.003
    [Google Scholar]
  19. ToméL.I.N. BaiãoV. da SilvaW. BrettC.M.A. Deep eutectic solvents for the production and application of new materials.Appl. Mater. Today201810305010.1016/j.apmt.2017.11.005
    [Google Scholar]
  20. ZhuD. ChenJ. XiaoH. LiuM. DingJ. WuH. Efficient and expeditious synthesis of di- and trisubstituted thiazoles in PEG under catalyst-free conditions.Synth. Commun.200939162895290610.1080/00397910802691874
    [Google Scholar]
  21. NagarapuL. MallepalliR. YeramanchiL. BantuR. Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for one-pot synthesis of polysubstituted pyrroles under catalyst-free conditions.Tetrahedron Lett.201152263401340410.1016/j.tetlet.2011.04.095
    [Google Scholar]
  22. ZhongX. DouG. WangD. Polyethylene glycol (PEG-400): An efficient and recyclable reaction medium for the synthesis of pyrazolo[3,4-b]pyridin-6(7H)-one derivatives.Molecules20131811131391314710.3390/molecules181113139 24284481
    [Google Scholar]
  23. KidwaiM. LalM. MishraN.K. JahanA. Potassium carbonate as a green catalyst for Markovnikov addition of azoles to vinyl acetate in PEG.Green Chem. Lett. Rev.201361636810.1080/17518253.2012.704082
    [Google Scholar]
  24. KarnakarK. Narayana MurthyS. RameshK. SatishG. NanuboluJ.B. NageswarY.V.D. Polyethylene glycol (PEG-400): An efficient and recyclable reaction medium for the synthesis of pyrazolo[3,4-b]quinoline derivatives.Tetrahedron Lett.201253232897290310.1016/j.tetlet.2012.03.135
    [Google Scholar]
  25. LiJ. LiuR. YeQ. CaiM. Recyclable [RuCl2(p-cymene)]2/PEG-400/H2O solvent system for efficient annulations of N-methoxybenzamides with alkynes under external oxidant-free conditions.Catal. Lett.2023153373273910.1007/s10562‑022‑04040‑0
    [Google Scholar]
  26. ChandrasekharS. PrakashS.J. RaoC.L. Poly(ethylene glycol) (400) as superior solvent medium against ionic liquids for catalytic hydrogenations with PtO2.J. Org. Chem.20067152196219910.1021/jo052604x 16497019
    [Google Scholar]
  27. JainS.L. SinghalS. SainB. PEG-assisted solvent and catalyst free synthesis of 3,4-dihydropyrimidinones under mild reaction conditions.Green Chem.20079774074110.1039/b702311a
    [Google Scholar]
  28. ChenJ. YuanT. HaoW. CaiM. Simple and efficient CuI/PEG-400 system for amination of aryl halides with aqueous ammonia.Tetrahedron Lett.201152293710371310.1016/j.tetlet.2011.02.096
    [Google Scholar]
  29. SheJ. JiangZ. WangY. Simple, efficient and recyclable catalytic system for performing copper-catalyzed C-S coupling of thiols with aryl iodides in PEG and PEG-H2O.Tetrahedron Lett.200950559359610.1016/j.tetlet.2008.11.082
    [Google Scholar]
  30. VekariyaR.H. PatelH.D. Sulfonated polyethylene glycol (PEG-OSO 3 H) as a polymer supported biodegradable and recyclable catalyst in green organic synthesis: Recent advances.RSC Advances2015561490064903010.1039/C5RA06532A
    [Google Scholar]
  31. IslamA. SinghaR. GhoshP. Polyethylene Glycol (200): An efficient, green and biocompatible reaction medium for the metal-free synthesis of functionalized 1,4-benzothiazines.ChemistrySelect202382e20220378010.1002/slct.202203780
    [Google Scholar]
  32. LiW.D. DingE.Y. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid-solid phase change heat storage material.Sol. Energy Mater. Sol. Cells200791976476810.1016/j.solmat.2007.01.011
    [Google Scholar]
  33. ZhangZ-H. YinL. WangY-M. LiuJ-Y. LiY. Indium tribromide in poly(ethylene glycol)(PEG): A novel and efficient recycle system for chemoselective deprotection of 1,1-diacetates.Green Chem.200461156356510.1039/b410583d
    [Google Scholar]
  34. RaeisiM. MohammadiF. Soleiman-BeigiM. NaghipourA. 2PdCl4/PPh3-catalyzed carbon-sulfur coupling reaction; An efficient and one-pot method to direct synthesis of organic disulfides/sulphides from aryl halides and thiourea.Lett. Org. Chem.2018151189990410.2174/1570178615666180412122502
    [Google Scholar]
  35. SoniJ. SahibaN. SethiyaA. AgarwalS. Polyethylene glycol: A promising approach for sustainable organic synthesis.J. Mol. Liq.202031511376611383610.1016/j.molliq.2020.113766
    [Google Scholar]
  36. AndradeC.K.Z. AlvesL.M. Environmentally benign solvents in organic synthesis: Current topics.Curr. Org. Chem.2005919521810.2174/1385272053369178
    [Google Scholar]
  37. ZhangZ.H. Polyethylene glycol (PEG): A green solvent in organic synthesis.Res. J. Chem. Environ.2006109798
    [Google Scholar]
  38. FadhelA.Z. PolletP. LiottaC.L. EckertC.A. Novel solvents for sustainable production of specialty chemicals.Annu. Rev. Chem. Biomol. Eng.20112118921010.1146/annurev‑chembioeng‑061010‑114221 22432616
    [Google Scholar]
  39. ChenK. ZhangP. WangY. LiH. Metal-free allylic/benzylic oxidation strategies with molecular oxygen: Recent advances and future prospects.Green Chem.20141652344237610.1039/c3gc42135j
    [Google Scholar]
  40. VafaeezadehM. HashemiM.M. Polyethylene glycol (PEG) as a green solvent for carbon-carbon bond formation reactions.J. Mol. Liq.2015207737910.1016/j.molliq.2015.03.003
    [Google Scholar]
  41. PiresM. PurificaçãoS. SantosA. MarquesM. The role of PEG on Pd- and Cu-catalyzed cross-coupling reactions.Synthesis201749112337235010.1055/s‑0036‑1589498
    [Google Scholar]
  42. KardooniR. KiasatA.R. Polyethylene glycol as a green and biocompatible reaction media for the catalyst free synthesis of organic compounds.Curr. Org. Chem.202024121275131410.2174/1385272824999200605161840
    [Google Scholar]
  43. CamposJ.F. Berteina-RaboinS. Greener synthesis of nitrogen containing heterocycles in water, PEG, and bio-based solvents.Catalysts202010442910.3390/catal10040429
    [Google Scholar]
  44. LiC.J. ChanT.H. Organic Reactions in Aqueous Media.New YorkJohn Wiley & Sons1997
    [Google Scholar]
  45. LiC.J. Organic reactions in aqueous media - with a focus on carbon-carbon bond formation.Chem. Rev.19939362023203510.1021/cr00022a004
    [Google Scholar]
  46. LubineauA. AugéJ. QueneauY. Water-promoted organic reactions.Synthesis19941994874176010.1055/s‑1994‑25562
    [Google Scholar]
  47. GriecoP.A. Organic Synthesis in WaterEd. Blackie Academic & Professional, Glasgow,199810.1007/978‑94‑011‑4950‑1
    [Google Scholar]
  48. SmithG.D. YoonD.Y. JaffeR.L. ColbyR.H. KrishnamoortiR. FettersL.J. Conformations and structures of poly(oxyethylene) melts from molecular dynamics simulations and small-angle neutron scattering experiments.Macromolecules199629103462346910.1021/ma951621t
    [Google Scholar]
  49. HuddlestonJ.G. WillauerH.D. GriffinS.T. RogersR.D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media.Ind. Eng. Chem. Res.199938252310.1021/ie980505m
    [Google Scholar]
  50. ChenJ. SpearS.K. HuddlestonJ.G. RogersR.D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media.Green Chem.20057648210.1039/b413546f
    [Google Scholar]
  51. HooshmandS.E. ZhangW. Ugi four-component reactions using alternative reactants.Molecules20232841642165910.3390/molecules28041642 36838630
    [Google Scholar]
  52. Flores-ReyesJ.C. Islas-JácomeA. González-ZamoraE. The Ugi three-component reaction and its variants.Org. Chem. Front.20218195460551510.1039/D1QO00313E
    [Google Scholar]
  53. NiuT. LuG. CaiC. The Ugi reaction in a polyethylene glycol medium: A mild, protocol for the production of compound libraries.J. Chem. Res.201135844444710.3184/174751911X13128244394427
    [Google Scholar]
  54. van BeurdenK. de KoningS. MolendijkD. van SchijndelJ. The Knoevenagel reaction: A review of the unfinished treasure map to forming carbon-carbon bonds.Green Chem. Lett. Rev.202013434936410.1080/17518253.2020.1851398
    [Google Scholar]
  55. RostamiA. AtashkarB. GholamiH. Novel magnetic nanoparticles Fe3O4-immobilized domino Knoevenagel condensation, Michael addition, and cyclization catalyst.Catal. Commun.201337697410.1016/j.catcom.2013.03.022
    [Google Scholar]
  56. BorahP. BorahG. NathA.C. LatifW. BanikB.K. Facile multicomponent Mannich reaction towards biologically active compounds.ChemistrySelect202384e20220375810.1002/slct.202203758
    [Google Scholar]
  57. WangX.C. ZhangL.J. ZhangZ. QuanZ.J. PEG-OSO3H as an efficient and recyclable catalyst for the synthesis of β-amino carbonyl compounds via the Mannich reaction in PEG-H2O.Chin. Chem. Lett.201223442342610.1016/j.cclet.2012.01.016
    [Google Scholar]
  58. KrauseN. Hoffmann-RöderA. Recent advances in catalytic enantioselective Michael Additions.Synthesis2001200120171019610.1055/s‑2001‑10803
    [Google Scholar]
  59. FirouzabadiH. IranpoorN. AbbasiM. A facile generation of C-S bonds via one-pot, odourless and efficient thia-Michael addition reactions using alkyl, aryl or allyl halides, thiourea and electron-deficient alkenes in wet polyethylene glycol (PEG 200) under mild reaction conditions.Tetrahedron200965275293530110.1016/j.tet.2009.04.079
    [Google Scholar]
  60. WangL. HuangM. ZhuX. WanY. Polyethylene glycol (PEG-200)-promoted sustainable one-pot three-component synthesis of 3-indole derivatives in water.Appl. Catal. A Gen.201345416016310.1016/j.apcata.2012.12.008
    [Google Scholar]
  61. WangJ. LiuX. FengX. Asymmetric strecker reactions.Chem. Rev.2011111116947698310.1021/cr200057t 21851054
    [Google Scholar]
  62. KouznetsovV.V. GalvisC.E.P. GalvisP. Strecker reaction and α-amino nitriles: Recent advances in their chemistry, synthesis, and biological properties.Tetrahedron201874877381010.1016/j.tet.2018.01.005
    [Google Scholar]
  63. KumarM.A. BabuM.F.S. SrinivasuluK. KiranY.B. ReddyC.S. Polyethylene glycol in water: A simple and environment friendly media for Strecker reaction.J. Mol. Catal. Chem.20072651-226827110.1016/j.molcata.2006.10.030
    [Google Scholar]
  64. HooshmandS.E. HeidariB. SedghiR. VarmaR.S. Recent advances in the suzuki-miyaura cross-coupling reaction using efficient catalysts in eco-friendly media.Green Chem.201921338140510.1039/C8GC02860E
    [Google Scholar]
  65. FarhangM. AkbarzadehA.R. RabbaniM. GhadiriA.M. A retrospective-prospective review of suzuki-miyaura reaction: From cross-coupling reaction to pharmaceutical industry applications.Polyhedron202222711612410.1016/j.poly.2022.116124
    [Google Scholar]
  66. LiuL. ZhangY. WangY. Phosphine-free palladium acetate catalyzed Suzuki reaction in water.J. Org. Chem.200570156122612510.1021/jo050724z 16018716
    [Google Scholar]
  67. GaoL. MaiW. PEG-Supported dipyridyl ligand for palladium-catalyzed Suzuki and Suzuki-type reactions in PEG and aqueous media.Synlett20062006162553255810.1055/s‑2006‑951488
    [Google Scholar]
  68. de SouzaA.L.F. Silva¸A.C. AntunesO.A.C. Suzuki-Miyaura reactions in PEG-water solutions using Pd/BaSO 4 as catalytic source.Appl. Organomet. Chem.20092315810.1002/aoc.1455
    [Google Scholar]
  69. ZhuY. SunP. YangH. LuL. YanH. CreusM. MaoJ. Effective palladium-catalyzed synthesis of triarylethene-based molecules in aqueous solution.Eur. J. Org. Chem.20122012254831483710.1002/ejoc.201200577
    [Google Scholar]
  70. FoubeloF. NájeraC. YusM. The Hiyama cross-coupling reaction: New discoveries.Chem. Rec.20161662521253310.1002/tcr.201600063 27415605
    [Google Scholar]
  71. ShiS. ZhangY. Pd(OAc)2-catalyzed fluoride-free cross-coupling reactions of arylsiloxanes with aryl bromides in aqueous medium.J. Org. Chem.200772155927593010.1021/jo070855v 17585827
    [Google Scholar]
  72. BarluengaJ. MorielP. ValdésC. AznarF. N-tosylhydrazones as reagents for cross-coupling reactions: A route to polysubstituted olefins.Angew. Chem. Int. Ed.200746295587559010.1002/anie.200701815 17577897
    [Google Scholar]
  73. LamaaD. MesseE. GandonV. AlamiM. HamzeA. Toward a greener barluenga-valdés cross-coupling: Microwave-promoted C-C bond formation with a Pd/PEG/H2O recyclable catalytic system.Org. Lett.201921218708871210.1021/acs.orglett.9b03310 31618043
    [Google Scholar]
  74. ChinchillaR. NájeraC. Recent advances in Sonogashira reactions.Chem. Soc. Rev.201140105084512110.1039/c1cs15071e 21655588
    [Google Scholar]
  75. ChenG. XieJ. WengJ. ZhuX. ZhengZ. CaiJ. WanY. CuI/PPh3/PEG-Water: An efficient catalytic system for cross-coupling reaction of aryl iodides and alkynes.Synth. Commun.201141213123313310.1080/00397911.2010.517363
    [Google Scholar]
  76. XinB. ZhangY. ChengK. Phosphine-free cross-coupling reaction of arylboronic acids with carboxylic anhydrides or acyl chlorides in aqueous media.J. Org. Chem.200671155725573110.1021/jo060749d 16839154
    [Google Scholar]
  77. ChenJ. ZhangY. HaoW. ZhangR. YiF. Efficient synthesis of aryl hydrazines using copper-catalyzed cross-coupling of aryl halides with hydrazine in PEG-400.Tetrahedron201369261361710.1016/j.tet.2012.11.014
    [Google Scholar]
  78. CamposK.R. Direct sp 3 C-H bond activation adjacent to nitrogen in heterocycles.Chem. Soc. Rev.20073671069108410.1039/B607547A 17576475
    [Google Scholar]
  79. MukhopadhyayC. Pradip KumarT. ButcherbR.J. A ligand-free copper (I) catalysed intramolecular N-arylation of diazoaminobenzenes in PEG-water: An expeditious protocol towards regiospecific 1-aryl benzotriazoles.Org. Biomol. Chem.2021191705172110.1039/c0ob00177e 20820653
    [Google Scholar]
  80. LiaoY. WeiT. YanT. CaiM. Recyclable [Ru2Cl3(p-cymene)2][PF6]/Cu(OAc)2/PEG-400/H2O system for oxidative annulation of alkynes by aniline derivatives: Green synthesis of indoles.Tetrahedron20177391238124610.1016/j.tet.2017.01.023
    [Google Scholar]
  81. ZhaoH. ZhangT. YanT. CaiM. Recyclable and reusable [RuCl2(p-cymene)]2/Cu(OAc)2/PEG-400/H2O system for oxidative C-H bond alkenylations: Green synthesis of phthalides.J. Org. Chem.201580178849885510.1021/acs.joc.5b01388 26244596
    [Google Scholar]
  82. BeheraP. RamakrishnaD.S. ChandrasekharM.M. KothakapuS.R. A concise review on recent advances in catalytic asymmetric hydrogenation.Chirality202335847749710.1002/chir.23559 36960690
    [Google Scholar]
  83. ZhouH.F. FanQ.H. TangW.J. XuL.J. HeY.M. DengG.J. ZhaoL-W. GuL-Q. ChanA.S.C. Polyethylene glycol as an environmentally friendly and recyclable reaction medium for enantioselective hydrogenation.Adv. Synth. Catal.2006348152172218210.1002/adsc.200606215
    [Google Scholar]
  84. XuL. LamK.H. JiJ. WuJ. FanQ.H. LoW.H. ChanA.S.C. Air-stable Ir-(P-Phos) complex for highly enantioselective hydrogenation of quinolines and their immobilization in poly(ethylene glycol) dimethyl ether (DMPEG).Chem. Commun.200511111390139210.1039/b416397d 15756313
    [Google Scholar]
  85. QinR. WangJ. XiongW. ChenH. FengJ. LiuD. PEG-400-H2O as a green and recyclable medium for asymmetric hydrogenations of aromatic ketones catalyzed by RuCl2(TPPTS)2-(S,S)-DPENDS.Tetrahedron Asymmetry20122311-1283483710.1016/j.tetasy.2012.06.006
    [Google Scholar]
  86. DuanY. BaiR. TianJ. ChenL. YanX. Hydrogenation of aldehydes and ketones to corresponding alcohols with methylamine borane in neat water.Synth. Commun.201444172555256410.1080/00397911.2014.909489
    [Google Scholar]
  87. TrostB.M. CrawleyM.L. Asymmetric transition-metal-catalyzed allylic alkylations: Applications in total synthesis.Chem. Rev.200310382921294410.1021/cr020027w 12914486
    [Google Scholar]
  88. ShihC-J. ShueY-J. YangS.Y. YangS.C. PEG‐4000‐promoted palladium‐catalyzed N ‐allylation in water: Aminonaphthalene as an example.Appl. Organomet. Chem.2012261055055510.1002/aoc.2899
    [Google Scholar]
  89. PengB.J. HuangY.T. FülöpF. LinI.L. YangS.C. Palladium-catalyzed selective N -allylation of indoles assisted by PEG-water system.New J. Chem.20194329115491155310.1039/C9NJ02335F
    [Google Scholar]
  90. ChenG. WengJ. ZhengZ. ZhuX. CaiY. CaiJ. WanY. Pd/C-catalyzed cyanation of aryl halides in aqueous PEG.Eur. J. Org. Chem.20082008203524352810.1002/ejoc.200800295
    [Google Scholar]
  91. ZhangZ. BiJ. LiuQ. ZhangG. The synthesis of α,α-difluoroacetamides via electrophilic fluorination in the mixed-solvent of water and PEG-400.J. Fluor. Chem.2013151454910.1016/j.jfluchem.2013.03.016
    [Google Scholar]
  92. MugeshG. du MontW.W. SiesH. Chemistry of biologically important synthetic organoselenium compounds.Chem. Rev.200110172125218010.1021/cr000426w 11710243
    [Google Scholar]
  93. JanaS. ChakrabortyA. MondalS. HajraA. Catalyst-free selenylation of imidazoheterocycles.RSC Advances2015595775347753710.1039/C5RA16729A
    [Google Scholar]
  94. DheerD. SinghV. ShankarR. Medicinal attributes of 1,2,3-triazoles: Current developments.Bioorg. Chem.201771305410.1016/j.bioorg.2017.01.010 28126288
    [Google Scholar]
  95. KumarD. ReddyV.B. VarmaR.S. A facile and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles using click chemistry.Tetrahedron Lett.200950182065206810.1016/j.tetlet.2009.02.107
    [Google Scholar]
  96. ReddivariC.K.R. DevineniS.R. NemallapudiB.R. SravyaG. AvulaB. ShaikN. BadavathV.N. ZyryanovG.V. YellalaVenkata, R.R.; Chamarthi, N.R. Design, synthesis, biological evaluation and molecular docking studies of 1,4- disubstituted 1,2,3-triazoles: PEG-400:H2O mediated Click reaction of fluorescent organic probes under ultrasonic irradiation.Polycycl. Aromat. Compd.20224273953397410.1080/10406638.2021.1878246
    [Google Scholar]
  97. WangL. CaiC. Reusable polymer-supported copper catalyst for one-pot synthesis of 1-alkyl- and 1-aryl-1,2,3-triazoles: green, simple, and effective.Green Chem. Lett. Rev.20103212112510.1080/17518251003591771
    [Google Scholar]
  98. MukhopadhyayC. TapaswiP.K. ButcherR.J. A ligand-free copper (1) catalysed intramolecular N-arylation of diazoaminobenzenes in PEG-water: An expeditious protocol towards regiospecific 1-aryl benzotriazoles.Org. Biomol. Chem.20108204720472910.1039/c0ob00177e 20820653
    [Google Scholar]
  99. AliS.H. SayedA.R. Review of the synthesis and biological activity of thiazoles.Synth. Commun.202151567070010.1080/00397911.2020.1854787
    [Google Scholar]
  100. KidwaiM. ChauhanR. BhatnagarD. Eco-friendly synthesis of 2-aminothiazoles using Nafion-H as a recyclable catalyst in PEG-water solvent system.J. Sulfur Chem.2011321374410.1080/17415993.2010.533773
    [Google Scholar]
  101. MirR.H. MirP.A. Mohi-ud-din, R.; Sabreen, S.; Maqbool, M.; Shah, A.J.; Shenmar, K.; Raza, S.N.; Pottoo, F.H. A comprehensive review on journey of pyrrole scaffold against multiple therapeutic targets.Anticancer. Agents Med. Chem.202222193291330310.2174/1871520622666220613140607 35702764
    [Google Scholar]
  102. PonduriR. KumarP. VadaliL.R. PEG-400 promoted a simple, efficient, and recyclable catalyst for the one-pot eco-friendly synthesis of functionalized isoxazole substituted pyrroles in aqueous medium.Synth. Commun.201848243113312210.1080/00397911.2018.1535078
    [Google Scholar]
  103. GribbleG.W. Recent developments in indole ring synthesis—methodology and applications.J. Chem. Soc., Perkin Trans. 1200071045107510.1039/a909834h
    [Google Scholar]
  104. KidwaiM. ChauhanR. BhatnagarD. Nafion-H® catalyzed efficient condensation of indoles with aromatic aldehydes in PEG-water solvent system: A green approach.Arab. J. Chem.20169S2004S201010.1016/j.arabjc.2014.05.009
    [Google Scholar]
  105. JadhavS.A. ShioorkarM.G. ChavanO.S. SarkateA.P. ShindeD.B. SarkatA.P. ShindeD.B. Rapid and efficient one-pot microwave-assisted synthesis of 2-phenylimidazo[1,2- a]pyridines and 2-phenylimidazo[1,2- a]quinoline in water-PEG-400.Synth. Commun.201747428529010.1080/00397911.2016.1262040
    [Google Scholar]
  106. SurvaseD. BandgarB. HelaviV. Polyethylene glycol-promoted synthesis of pyrimido[1,2- a]benzimidazole and pyrano[2,3- c]pyrazole derivatives in water.Synth. Commun.201747768068710.1080/00397911.2017.1278774
    [Google Scholar]
  107. ZengL.Y. LiuT. YangJ. YangY. CaiC. LiuS. “On-water” facile synthesis of novel pyrazolo[3,4-b]pyridinones possessing anti-influenza virus activity.ACS Comb. Sci.201719743744610.1021/acscombsci.7b00016 28581706
    [Google Scholar]
  108. ChavanH. AdsulL.K. BandgarB.P. Polyethylene glycol in water: A simple, efficient and green protocol for the synthesis of quinoxalines.J. Chem. Sci.2011123447748310.1007/s12039‑011‑0081‑8
    [Google Scholar]
  109. WagareD.S. SononeA. FarooquiM. DurraniA. An efficient and green microwave-assisted one-pot synthesis of imidazothiadiazoles in PEG-400 and water.Polycycl. Aromat. Compd.20214181749175410.1080/10406638.2019.1695637
    [Google Scholar]
  110. MalK. NaskarB. MondalA. GoswamiS. ProdhanC. ChaudhuriK. MukhopadhyayC. Dihydroindeno[1,2- b]pyrroles: new Al 3+ selective off-on chemosensors for bio-imaging in living HepG2 cells.Org. Biomol. Chem.201816325920593110.1039/C8OB01411F 30074036
    [Google Scholar]
  111. SurvaseD.N. ChavanH.V. DongareS.B. HelaviV.B. Polyethylene glycol in water: Simple, efficient, and catalyst-free synthesis of 4H-pyran derivatives.Synth. Commun.201646201665167010.1080/00397911.2016.1219749
    [Google Scholar]
  112. YanS. JiangX. WangZ. HeS. ZhangW. Zinc-proline complex as a novel and efficient catalyst for the green synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones.Res. Chem. Intermed.20224862413242710.1007/s11164‑022‑04728‑3
    [Google Scholar]
  113. Uma Maheswara RaoK. NamkoongS. YuH.C. ParkJ. ChungC.M. OhS.Y. Green synthesis and biological evaluation of new di-α-aminophosphonate derivatives as cytotoxic agents.Arch. Pharm. 20133461285185910.1002/ardp.201300249 24214666
    [Google Scholar]
  114. BandgarB.P. PatilS.A. KorbadB.L. BandgarS.B. HoteB.S. Uncatalyzed synthesis of β-enamino ketones in PEG-water.Aust. J. Chem.200861755255510.1071/CH08041
    [Google Scholar]
  115. AwasthiS. Narasimha RaoA. GanesanK. An environmental-benign approach for the synthesis of alkylthiocyanates.J. Sulfur Chem.200930551351710.1080/17415990902894315
    [Google Scholar]
/content/journals/cos/10.2174/0115701794284081240206043435
Loading
/content/journals/cos/10.2174/0115701794284081240206043435
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test