Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

Nowadays, macrocyclic compounds constitute a privileged source for the development of compounds with interesting biological properties. Ring-closing olefin metathesis has received great attention for the synthesis of small, medium, and larger ring systems.

Materials and Methods

In the present work, we described the synthesis of eight original pyridyl macrocyclic triarylmethanes using an efficient 3-step synthetic strategy. The bisalkylated 4,4'-(pyridin-X-ylmethylene) diphenols (X = 2 - 4) were prepared by ring-closing metathesis as macrocyclization key step, using Grubbs second generation catalyst.

Results

The pyridyl macrocyclic triarylmethanes were obtained with moderate to good yields. The introduction of a pyridine -oxide moiety before the macrocyclization proved to be interesting to afford a higher yield of the corresponding metathesis product. FT-IR, 1 H NMR, 13C NMR, and X-ray diffraction analysis have been used for the characterization of the synthesized compounds.

Conclusion

The synthetic strategy used here proposes an efficient alternative to prepare macrocyclic triarylmethanes of different sizes.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794249707230930113307
2024-04-04
2025-05-30
Loading full text...

Full text loading...

References

  1. ChattopadhyayS.K. KarmakarS. BiswasT. MajumdarK.C. RahamanH. RoyB. Formation of medium-ring heterocycles by diene and enyne metathesis.Tetrahedron200763193919395210.1016/j.tet.2007.01.063
    [Google Scholar]
  2. ZieglerF. RoiderT. PyschikM. HaasC.P. WangD. TallarekU. BuchmeiserM.R. Olefin ring‐closing metathesis under spatial confinement and continuous flow.ChemCatChem20211392234224110.1002/cctc.202001993
    [Google Scholar]
  3. MandalT. DashJ. Ring closing metathesis for the construction of carbazole and indole-fused natural products.Org. Biomol. Chem.202119459797980810.1039/D1OB01471D 34747427
    [Google Scholar]
  4. LiQ. ZhangL. BaiL. MiaoJ. ChengZ. ZhuX. Atom transfer radical polymerization.Huaxue Jinzhan2010221120792088
    [Google Scholar]
  5. GrubbsR.H. Applications of olefin metathesis in synthesis.227th ACS National MeetingAnaheim, CA, United StatesMarch 28-April 1, 2004
    [Google Scholar]
  6. CossyJ. ArseniyadisS. Eds.; Modern Tools for the Synthesis of Complex Bioactive Molecules.John Wiley & Sons, Inc.201210.1002/9781118342886
    [Google Scholar]
  7. ZhengK. HongR. Stereoconfining macrocyclizations in the total synthesis of natural products.Nat. Prod. Rep.201936111546157510.1039/C8NP00094H 30758359
    [Google Scholar]
  8. CossyJ. ArseniyadisS. MeyerC. Eds.; Metathesis In Natural Product Synthesis: Strategies, Substrates And Catalysts;Wiley- VCH Verlag GmbH & Co. KGaA, 2010, p. 384.
    [Google Scholar]
  9. SaitoA. HanzawaY. Metathesis Reactions in Drug and Natural Product Synthesis.Stereoselective Synthesis of Drugs and Natural Products2013146
    [Google Scholar]
  10. CummingsM.D. SekharanS. Structure-based macrocycle design in small-molecule drug discovery and simple metrics to identify opportunities for macrocyclization of small-molecule ligands.J. Med. Chem.201962156843685310.1021/acs.jmedchem.8b01985 30860377
    [Google Scholar]
  11. AderibigbeB.A. GreenI.R. MabankT. Janse van RensburgM. MorgansG.L. FernandesM.A. MichaelJ.P. van OtterloW.A.L. Observations concerning the synthesis of heteroatom-containing 9-membered benzo-fused rings by ring-closing metathesis.Tetrahedron201773314671468310.1016/j.tet.2017.06.039
    [Google Scholar]
  12. ZielińskiG.K. SamojłowiczC. WdowikT. GrelaK. In tandem or alone: A remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts.Org. Biomol. Chem.20151392684268810.1039/C4OB02480J 25586518
    [Google Scholar]
  13. YetL. Metal-mediated synthesis of medium-sized rings.Chem. Rev.200010082963300810.1021/cr990407q 11749312
    [Google Scholar]
  14. SchmidtB. HaukeS. KrehlS. KunzO. Comprehensive organic synthesis II.Ring-closing metathesisKnochel, P.; Molander, GA., Eds.; Elsevier: Amsterdam,201451400
    [Google Scholar]
  15. van OtterloW.A.L. de KoningC.B. Metathesis in the synthesis of aromatic compounds.Chem. Rev.200910983743378210.1021/cr900178p 19618929
    [Google Scholar]
  16. GiordanettoF. KihlbergJ. Macrocyclic drugs and clinical candidates: What can medicinal chemists learn from their properties?J. Med. Chem.201457227829510.1021/jm400887j 24044773
    [Google Scholar]
  17. DriggersE.M. HaleS.P. LeeJ. TerrettN.K. The exploration of macrocycles for drug discovery — an underexploited structural class.Nat. Rev. Drug Discov.20087760862410.1038/nrd2590 18591981
    [Google Scholar]
  18. MallinsonJ. CollinsI. Macrocycles in new drug discovery.Future Med. Chem.20124111409143810.4155/fmc.12.93 22857532
    [Google Scholar]
  19. AlihodžićS. BukvićM. ElenkovI.J. HutinecA. KoštrunS. PešićD. SaxtyG. TomaškovićL. ŽiherD. Current trends in macrocyclic drug discovery and beyond -Ro5.Prog. Med. Chem.201857111323310.1016/bs.pmch.2018.01.002 29680148
    [Google Scholar]
  20. StachelS.J. CoburnC.A. SankaranarayananS. PriceE.A. WuG. CrouthamelM. Erratum: Macrocyclic inhibitors of β-secretase: Functional activity in an animal model.J. Med. Chem.20064924725210.1021/jm061234h
    [Google Scholar]
  21. MarsaultE. PetersonM.L. Macrocycles are great cycles: Applications, opportunities, and challenges of synthetic macrocycles in drug discovery.J. Med. Chem.20115471961200410.1021/jm1012374 21381769
    [Google Scholar]
  22. StachelS.J. CoburnC.A. SankaranarayananS. PriceE.A. PietrakB.L. HuangQ. LinebergerJ. EspesethA.S. JinL. EllisJ. HollowayM.K. MunshiS. AllisonT. HazudaD. SimonA.J. GrahamS.L. VaccaJ.P. GrahamS.L. VaccaJ.P. Macrocyclic inhibitors of β-secretase: Functional activity in an animal model.J. Med. Chem.200649216147615010.1021/jm060884i 17034118
    [Google Scholar]
  23. MannA. Conformational Restriction and/or Steric Hindrance in Medicinal Chemistry.2nd edPract Med Chem200323325010.1016/B978‑012744481‑9/50019‑2
    [Google Scholar]
  24. LafayeK. BossetC. NicolasL. GuérinotA. CossyJ. Beyond catalyst deactivation: Cross-metathesis involving olefins containing N -heteroaromatics.Beilstein J. Org. Chem.2015112223224110.3762/bjoc.11.241 26664645
    [Google Scholar]
  25. StewartI.C. UngT. PletnevA.A. BerlinJ.M. GrubbsR.H. SchrodiY. Highly efficient ruthenium catalysts for the formation of tetrasubstituted olefins via ring-closing metathesis.Org. Lett.2007981589159210.1021/ol0705144 17378575
    [Google Scholar]
  26. SinclairF. AlkattanM. PrunetJ. ShaverM.P. Olefin cross metathesis and ring-closing metathesis in polymer chemistry.Polym. Chem.20178223385339810.1039/C7PY00340D
    [Google Scholar]
  27. DavisA.J. WatsonR.B. NasrallahD.J. Gomez-LopezJ.L. SchindlerC.S. Superelectrophilic aluminium(iii)-ion pairs promote a distinct reaction path for carbonyl-olefin ring-closing metathesis.Nat. Catal.202031078779610.1038/s41929‑020‑00499‑5
    [Google Scholar]
  28. FürstnerA. LeitnerA. A catalytic approach to (R)-(+)-muscopyridine with integrated “self-clearance”.Angew. Chem. Int. Ed.200342330831110.1002/anie.200390103 12548686
    [Google Scholar]
  29. MangoldS.L. ProstL.R. KiesslingL.L. Quinoxalinoneinhibitors of the lectin DC-SIGN.Chem. Sci.20123377277710.1039/C2SC00767C 22639721
    [Google Scholar]
  30. KressS. BlechertS. Asymmetric catalysts for stereocontrolled olefin metathesis reactions.Chem. Soc. Rev.201241124389440810.1039/c2cs15348c 22456467
    [Google Scholar]
  31. SchwabP. GrubbsR.H. ZillerJ.W. Synthesis and applications of RuCl 2 (CHR’)(PR 3) 2: The influence of the alkylidene moiety on metathesis activity.J. Am. Chem. Soc.1996118110011010.1021/ja952676d
    [Google Scholar]
  32. PiedraE. FrancosJ. NebraN. SuárezF.J. DíezJ. CadiernoV. Access to unusual polycyclic spiro-enones from 2,2′-bis(allyloxy)-1,1′-binaphthyls using Grubbs’ catalysts: an unprecedented one-pot RCM/Claisen sequence.Chem. Commun. 201147277866786810.1039/c1cc11907a 21637888
    [Google Scholar]
  33. LafayeK. NicolasL. GuérinotA. ReymondS. CossyJ. Lewis basicity modulation of N-heterocycles: A key for successful cross-metathesis.Org. Lett.201416194972497510.1021/ol502016h 25243368
    [Google Scholar]
  34. LummissJ.A.M. McClennanW.L. McDonaldR. FoggD.E. Donor-induced decomposition of the Grubbs catalysts: An intercepted intermediate.Organometallics201433236738674110.1021/om501011y
    [Google Scholar]
  35. BatesJ.M. LummissJ.A.M. BaileyG.A. FoggD.E. Operation of the boomerang mechanism in olefin metathesis reactions promoted by the second-generation Hoveyda catalyst.ACS Catal.2014472387239410.1021/cs500539m
    [Google Scholar]
  36. SanfordM.S. LoveJ.A. GrubbsR.H. Mechanism and activity of ruthenium olefin metathesis catalysts.J. Am. Chem. Soc.2001123276543655410.1021/ja010624k 11439041
    [Google Scholar]
  37. van OtterloW.A.L. MorgansG.L. KhanyeS.D. AderibigbeB.A.A. MichaelJ.P. BillingD.G. Isomerization and ring-closing metathesis for the synthesis of 6-, 7- and 8-membered benzo- and pyrido-fused N,N-, N,O- and N,S-heterocycles.Tetrahedron Lett.200445509171917510.1016/j.tetlet.2004.10.108
    [Google Scholar]
  38. MillerS.J. KimS.H. ChenZ.R. GrubbsR.H. Catalytic ring-closing.J. Am. Chem. Soc.199511772108210910.1021/ja00112a031
    [Google Scholar]
  39. NuñezA. AbarcaB. CuadroA.M. Alvarez-BuillaJ. VaqueroJ.J. Ring-closing metathesis reactions on azinium salts: Straightforward access to quinolizinium cations and their dihydro derivatives.J. Org. Chem.200974114166417610.1021/jo900292b 19405504
    [Google Scholar]
  40. NúñezA. CuadroA.M. Alvarez-BuillaJ. VaqueroJ.J. A new approach to polycyclic azonia cations by ring-closing metathesis.Org. Lett.20079162977298010.1021/ol070773t 17625878
    [Google Scholar]
  41. NúñezA. CuadroA.M. Alvarez-BuillaJ. VaqueroJ.J. A unified approach to quinolizinium cations and related systems by ring-closing metathesis.Org. Lett.20046224125412710.1021/ol048177b 15496115
    [Google Scholar]
  42. ChatterjeeA.K. TosteF.D. GoldbergS.D. GrubbsR.H. Synthesis of coumarins by ring-closing metathesis.Pure Appl. Chem.200375442142510.1351/pac200375040421
    [Google Scholar]
  43. RiccoC. AbdmoulehF. RiccobonoC. GueninecheL. MartinF. Goya-JorgeE. LagardeN. LiagreB. AliM.B. FerroudC. ArbiM.E. VeitíaM.S.I. Pegylated triarylmethanes: Synthesis, antimicrobial activity, anti-proliferative behavior and in silico studies.Bioorg. Chem.202096January10359110.1016/j.bioorg.2020.103591 32004896
    [Google Scholar]
  44. VeitíaM.S-I. MotaD.S. LerariV. MarínM. GinerR.M. MuroL.V. GuerraY.R. DumasF. FerroudC. de WitteP.A.M. CrawfordA.D. AránV.J. PonceY.M. Fishing anti-inflammatories from known drugs: in silico repurposing, design, synthesis and biological evaluation of bisacodyl analogues.Curr. Top. Med. Chem.2017172528662887 28816107
    [Google Scholar]
  45. Goya-JorgeE. RampalC. LoonesN. BarigyeS.J. CarpioL.E. GozalbesR. FerroudC. Sylla-Iyarreta VeitíaM. GinerR.M. Targeting the aryl hydrocarbon receptor with a novel set of triarylmethanes.Eur. J. Med. Chem.202020711277710.1016/j.ejmech.2020.112777 32971427
    [Google Scholar]
  46. KlencJ. RauxE. BarnesS. SullivanS. DuszynskaB. BojarskiA.J. Synthesis of 4-substituted 2- (4-Methylpiperazino) pyrimidines and quinazoline analogs as serotonin 5-HT 2A receptor ligands.J. Heterocycl. Chem.200946November12591265
    [Google Scholar]
  47. BerscheidR. VögtleF. NiegerZ. Multi-bridged triphenylmethanes.Chem. Ber.199212571687169510.1002/cber.19921250726
    [Google Scholar]
  48. BarluengaS. WangC. FontaineJ.G. AouadiK. BeebeK. TsutsumiS. NeckersL. WinssingerN. Divergent synthesis of a pochonin library targeting HSP90 and in vivo efficacy of an identified inhibitor.Angew. Chem. Int. Ed.200847234432443510.1002/anie.200800233 18435518
    [Google Scholar]
  49. El KaïmL. GrimaudL. ObleJ. New Ugi-Smiles-metathesis strategy toward the synthesis of pyrimido azepines.J. Org. Chem.200772155835583810.1021/jo070706c 17585822
    [Google Scholar]
  50. MossT.A. A ring-closing metathesis approach to heterocycle-fused azepines.Tetrahedron Lett.201354899399710.1016/j.tetlet.2012.12.042
    [Google Scholar]
  51. Sylla-Iyarreta VeitíaM. FerroudC. JoudatM. WagnerM. FalguièresA. GuyA. Ready available chiral azapyridinomacrocycles n-oxides; First results as lewis base catalysts in asymmetric allylation of p-nitrobenzaldehyde.Heterocycles20118392011203910.3987/COM‑11‑12249
    [Google Scholar]
  52. GörmenM. VeitíaM.S.I. TriguiF. El ArbiM. FerroudC. Ferrocenyl analogues of bisacodyl: Synthesis and antimicrobial activity.J. Organomet. Chem.201579427428110.1016/j.jorganchem.2015.07.016
    [Google Scholar]
  53. MedhioubH. ZerroukiC. FouratiN. SmaouiH. GuermaziH. BonnetJ.J. Towards a structural characterization of an epoxy based polymer using small-angle x-ray scattering.J. Appl. Phys.2007101404350910.1063/1.2511890
    [Google Scholar]
  54. JilaniW. MzabiN. FouratiN. ZerroukiC. Gallot-LavalléeO. ZerroukiR. GuermaziH. A comparative study of structural and dielectric properties of diglycidyl ether of bisphenol A (DGEBA) cured with aromatic or aliphatic hardeners.J. Mater. Sci.201651177874788610.1007/s10853‑016‑0043‑0
    [Google Scholar]
  55. SinnokrotM.O. ValeevE.F. SherrillC.D. Estimates of the ab initio limit for π-π interactions: The benzene dimer.J. Am. Chem. Soc.200212436108871089310.1021/ja025896h 12207544
    [Google Scholar]
/content/journals/cos/10.2174/0115701794249707230930113307
Loading
/content/journals/cos/10.2174/0115701794249707230930113307
Loading

Data & Media loading...

Supplements

Supplementary material is available on the web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test