Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

Nanocellulose is not only a biocompatible and environmentally friendly material but also has excellent mechanical properties, biodegradability, and a large number of hydroxyl groups that have a strong affinity for water. These characteristics have attracted significant attention from researchers in the field of glucose sensing.

Objective

This review provides a brief overview of the current research status of traditional materials used in glucose sensors. The sensing performance, chemical stability, and environmental properties of nanocellulose-based glucose sensors are compared and summarized based on the three sensing methods: electrochemical sensing, colorimetric sensing, and fluorescence sensing. The article focuses on recent strategies for glucose sensing using nanocellulose as a matrix. The development prospects of nanocellulose-based glucose sensors are also discussed.

Conclusion

Nanocellulose has outstanding structural characteristics that contribute significantly to the sensing performance of glucose sensors in different detection modes. However, the preparation process for high-quality nanocellulose is complicated and has a low yield. Furthermore, the sensitivity and selectivity of nanocellulose-based glucose sensors require further improvement.

© 2025s The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794273511231212072414
2024-02-15
2025-05-02
The full text of this item is not currently available.

References

  1. TraceyC.T. TorlopovM.A. MartakovI.S. VdovichenkoE.A. ZhukovM. KrivoshapkinP.V. MikhaylovV.I. KrivoshapkinaE.F. Hybrid cellulose nanocrystal/magnetite glucose biosensors.J. Carbohydrate Polymers.202024711670411671210.1016/j.carbpol.2020.116704
    [Google Scholar]
  2. FangL. ZhuQ. CaiY. LiangB. YeX. 3D Porous structured polyaniline/reduced graphene oxide/copper oxide decorated elec- trode for high performance nonenzymatic glucose detectionJ.Electroanal. Chem.20198411910.1016/j.jelechem.2019.04.032
    [Google Scholar]
  3. YoonH. NahJ. KimH. KoS. SharifuzzamanM. BarmanS.C. XuanX. KimJ. ParkJ.Y. A chemically modified laser-in- duced porous graphene based flexible and ultrasensitive electro- chemical biosensor for sweat glucose detection.Sens. Actuators B Chem.202031112786610.1016/j.snb.2020.127866
    [Google Scholar]
  4. RahseparM. ForoughiF. KimH. A new enzyme-free biosen- sor based on nitrogen-doped graphene with high sensing perfor- mance for electrochemical detection of glucose at biological PH value.Sens. Actuators B Chem.201928232233010.1016/j.snb.2018.11.078
    [Google Scholar]
  5. DuY. ZhangX. LiuP. DengG. GeR. Electrospun nanofiber-based glucose sensors for glucose detection.J. Frontiers in Chemistry.20221094442810.3389/fchem.2022.944428
    [Google Scholar]
  6. OllmarS. Fernandez SchrunderA. BirgerssonU. KristofferssonT. RusuA. ThorssonE. HedenqvistP. ManellE. RydénA. Jensen-WaernM. RodriguezS. A battery-less implantable glucose sensor based on electrical impedance spectroscopy.J. Scientific Reports.20231311812210.1038/s41598‑023‑45154‑8
    [Google Scholar]
  7. AlamM.W. Al, Qahtani H.S.; Souayeh, B.; Ahmed, W.; Albalawi, H.; Farhan, M.; Abuzir, A.; Naeem, S. Novel copper-zinc-manganese ternary metal oxide nanocomposite as heterogeneous catalyst for glucose sensor and antibacterial activity.J. Antioxidants.2022116106410.3390/antiox11061064
    [Google Scholar]
  8. SteinerM. DuerkopA. WolfbeisO. Optical methods for sensing glucose.Chem. Soc. Rev.2011404805483910.1039/c1cs15063d
    [Google Scholar]
  9. WenyanT. Structural Desigh and Performance Study of Electrode Materials for Non-enzymatic Glucose Sensors.Master Thesis, Central South University of Forestry and Technology: Changsha, June2022
    [Google Scholar]
  10. PingpingQ. Application of Nanomaterials Based on Bio-derived Carbon in Non-enzymatic Glucose Sensors.PhD Thesis, Central China Normal University: Wuhan, June2017
    [Google Scholar]
  11. ShaY. LiyunD. HaitaoL. WeiW. JunH. A novel optical fiber glucose biosensor based on carbon quantum dots-glucose oxidase/cellulose acetate complex sensitive film.J. Biosens. Bioelectron.201914611176011176710.1016/j.bios.2019.111760
    [Google Scholar]
  12. JingjingY. PengJ. BaoxiuW. HuapingW. ShiyanC. Color-tunable luminescent macrofibers based on CdTe QDs-loaded bacterial cellulose nanofibers for pH and glucose sensing.J. Sensors & Actuators: B. Chemical.201825411011910.1016/j.snb.2017.07.071
    [Google Scholar]
  13. AhmadiA. KhoshfetratS.M. KabiriS. FotouhiL. DorrajiP.S. OmidfarK. Impedimetric paper-based enzymatic biosensor using electrospun cellulose acetate nanofiber and reduced graphene oxide for detection of glucose from whole blood.J. IEEE Sensors Journal.20212179210921710.1109/JSEN.2021.3053033
    [Google Scholar]
  14. PengfeiLv. Preparation and Sensing Properties of Bacterial Cellulose Modified by Nanocarbon.PhD Thesis, Jiang Nan University: Wuxi, June2019
    [Google Scholar]
  15. YeeY.C. HashimR. Mohd-YahyaA.R. BustamiY. Colorimetric analysis of glucose oxidase-magnetic cellulose nanocrystals (CNCs) for glucose detection.J. Sens.201919112511252310.3390/s19112511
    [Google Scholar]
  16. BeitollahiH. TajikS. di BartolomeoA. Application of MnO2 nanorod-ionic liquid modified carbon paste electrode for the voltammetric determination of sulfanilamide.J Micromachines.202213459861410.3390/mi13040598
    [Google Scholar]
  17. TajikS. AfsharA.A. ShamsaddiniS. AskariM.B. DourandishZ. NejadF.G. BeitollahiH. di BartolomeoA. Fe3O4@MoS2/rGO nanocomposite/ionic liquid modified carbon paste electrode for electrochemical sensing of Dasatinib in the presence of doxorubicin.J Ind Eng Chem Res.202262114473448010.1021/acs.iecr.2c00370
    [Google Scholar]
  18. AlamM.W. Electrochemical sensing of dextrose and photocatalytic activities by nickel ferrite nanoparticles synthesized by probe sonication method.J Curr Nanosci.20211789390310.2174/1573413717666210816100826
    [Google Scholar]
  19. BrinchiL. CotanaF. FortunatiE. KennyJ.M. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. J.Carbohydr. Polym.201394115416910.1016/j.carbpol.2013.01.033
    [Google Scholar]
  20. KlemnD. KramerF. MoritzS. LindströmT. AnkerforsM. GrayD. DorrisA. Nanocelluloses: A new family of nature-based materials. J.Angew. Chem. Int. Ed.201150245438546610.1002/anie.201001273
    [Google Scholar]
  21. ZhangY. SunY. YuF. MaJ. Research progress on the application of bactieral cellulose and its composites in environmental field.J. Acta Materiae Compositae Sinica20213882418242710.13801/j.cnki.fhclxb.20210402.002
    [Google Scholar]
  22. LiM. LiuX. LiuN. GuoZ. SinghP.K. FuS. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. J.Colloids Surf. A Physicochem. Eng. Asp.201855412212810.1016/j.colsurfa.2018.06.031
    [Google Scholar]
  23. YuS. SunJ. ShiY. WangQ. WuJ. LiuJ. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. J.Environmental Science and Ecotechnology.2021510007710008910.1016/j.ese.2020.100077
    [Google Scholar]
  24. PurkaitB.S. RayD. SenguptaS. KarT. MohantyA. MisraM. Isolation of cellulose nanoparticles from sesame husk. J.Ind. Eng. Chem. Res.201150287187610.1021/ie101797d
    [Google Scholar]
  25. SatyamurthyP. JainP. BalasubramanyaR.H. VigneshwaranN. Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis.J. Carbohydrate Polymers.201183112212910.1016/j.carbpol.2010.07.029
    [Google Scholar]
  26. ZhuJ.Y. SaboR. LuoX. Integrated production of nano-fibrillated cellulose and cellu- losic biofuel (ethanol) by enzymatic fractionation of wood fibers.J. Green Chemistry.20111351339134410.1039/C1GC15103G
    [Google Scholar]
  27. DeepaB. AbrahamE. CherianB.M. BismarckA. BlakerJ.J. PothanL.A. LeaoA.L. SouzaS.F. KottaisamyM. Structure, morphology and thermal charac-teristics of banana nano fibers obtained by steam explosion.J. Bioresource Technology.201110221988199710.1016/j.biortech.2010.09.030
    [Google Scholar]
  28. KaushikA. SinghM. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization.J. Carbohydrate Research.20113461768510.1016/j.carres.2010.10.020
    [Google Scholar]
  29. KimI. JeonH. KimD. YouJ. KimD. All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process.J. Nano Energy.20185397598110.1016/j.nanoen.2018.09.060
    [Google Scholar]
  30. AbitbolT. RivkinA. CaoY. NevoF. AbrahamE. Ben-ShalomT. LapidotS. ShoseyovO. Nanocellulose, a tiny fiber with huge applications.J. Current Opinion in Biotechnology.201639768810.1016/j.copbio.2016.01.002
    [Google Scholar]
  31. MulyadiA. ZhangZ. DutzerM. LiuW. DengY. Facile approach for synthesis of doped carbon electrocatalyst from cellulose nanofibrils toward high-performance metal-free oxygen reduction and hydrogen evolution.J. Nano Energy.20173233634610.1016/j.nanoen.2016.12.057
    [Google Scholar]
  32. El-NahrawyA.M. Abou-HammadA.B. KhattabT.A. HarounA. KamelS. Development of electrically conductive nanocomposites from cellulose nanowhiskers, polypyrrole and silver nanoparticles assisted with Nickel (III) oxide nanoparticles.React. Funct. Polym.202014910453310454410.1016/j.reactfunctpolym.2020.104533
    [Google Scholar]
  33. AbdelrahmanM.S. NassarS.H. MashalyH. MahmoudS. MaamounD. EI-Sakhawy, M.; Khattab, T.A.; Kamel, S. Studies of polylactic acid and metal oxide nanoparticles-based composites for multifunctional textile prints.J. Coatings.2020101587710.3390/coatings10010058
    [Google Scholar]
  34. SehitE. AltintasZ. Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016-2020).J. Biosens. Bioelectron.202015911216511221710.1016/j.bios.2020.112165
    [Google Scholar]
  35. LiX. FengQ. LuK. HuangJ. ZhangY. HouY. QiaoH. LiD. Encapsulating enzyme into metal-organic framework during in-situ growth on cellulose acetate nanofibers as self-powered glucose biosensor.J. Biosens. Bioelectron.202117111269011269710.1016/j.bios.2020.112690
    [Google Scholar]
  36. J-S, Yoo.; S-M, Park. An electrochemical impedance measurement technique employing Fourier transform.J. Anal. Chem.20007292035204110.1021/ac9907540
    [Google Scholar]
  37. FuL. FuZ. Plectranthus amboinicus leaf extract-assisted biosyn- thesis of zno nanoparticles and their photocatalytic activity.Ceram. Int.2015412, Part A2492249610.1016/j.ceramint.2014.10.069
    [Google Scholar]
  38. LiH. KuangX. ShenX. ZhuJ. ZhangB. LiH. Improvement of voltammetric detection of sulfanilamide with a nanodiamond− modified glassy carbon electrode.Int. J. Electrochem. Sci.2019147858787010.20964/2019.08.47
    [Google Scholar]
  39. HongX-P. MaJ-Y. Electrochemical study of sulfadiazine on a novel phthalocyanine-containing chemically modified electrode.Chin. Chem. Lett.201324432933110.1016/j.cclet.2013.02.010
    [Google Scholar]
  40. TavanaT. RezvaniA.R. Karimi-MalehH. Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: An excellent, powerful electrocatalyst for the fabrication of An electrochemical sensor to determine nalbuphine in the presence of trama dol as two opioid analgesic drugs.J. Pharm. Biomed. Anal.202018911339710.1016/j.jpba.2020.113397 32563934
    [Google Scholar]
  41. WangA. WangC. FuL. Wong-NgW. LanY. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs.Nano-Micro Lett.2017944710.1007/s40820‑017‑0148‑2 30393742
    [Google Scholar]
  42. J-S, Yoo.; S-M, Park. Reply to comments on the article ‘an electro chemical impedance measurementtechniques employing Fourier trans form.J. Anal. Chem.200173164060406110.1021/ac0155052
    [Google Scholar]
  43. PaulrajT. WennmalmS. RiazanovaA.V. WuQ. CrespoG.A. SvaganA.J. Porous cellulose nanofiber-based microcapsules for biomolecular sensing. J.ACS Appl. Mater. Interfaces20181048411464115410.1021/acsami.8b16058
    [Google Scholar]
  44. JacksonE. CorreaS. BetancorL. Cellulose-Based Nanosupports for Enzyme Immobilization.J. Cellulose-Based Superabsorbent Hydrogels201912351253
    [Google Scholar]
  45. TangY. PetropoulosK. KurthF. GaoH. MigliorelliD. GuenatO. GenerelliS. Screen-printed glucose sensors modified with cellulose nanocrystals (CNCs) for cell culture monitoring.J. Biosensors.202010912514010.3390/bios10090125
    [Google Scholar]
  46. ZhaoY. YangJ. ShanG. LiuZ. CuiA. WangA. ChenY. LiuY. Photothermal-enhanced tandem enzyme-like activity of Ag2-xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine.J. Sensors and Actuators B: Chemical.202030512742012745110.1016/j.snb.2019.127420
    [Google Scholar]
  47. BandiR. AlleM. ParkC.W. HanS.Y. KwonG.J. KimJ.C. Rapid synchronous synthesis of Ag nanoparticles and Ag nanoparticles/holocellulose nanofibrils: Hg (II) detection and dye discoloration.J. Carbohydrate Polymers.202024011635611636610.1016/j.carbpol.2020.116356
    [Google Scholar]
  48. BandiR. AlleM. ParkC.W. HanS.Y. KwonG.J. KimN.H. KimJ.C. LeeS.H. Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose.J. Sensors and Actuators B: Chemical.202133012933012934010.1016/j.snb.2020.129330
    [Google Scholar]
  49. LiW. ZhangL. LiQ. WangS. LuoX. DengH. LiuS. Porous structured cellulose microsphere acts as biosensor for glucose detection with “signal‐and‐color” output.J. Carbohydr. Polym.201920529530110.1016/j.carbpol.2018.10.084
    [Google Scholar]
  50. FranconettiA. CarnereroJ.M. Prado-GotorR. Cabrera-EscribanoF. JaimeC. Chitosan as a capping agent: Insights on the stabilization of gold nanoparticles. J.Carbohydr. Polym.201920780681410.1016/j.carbpol.2018.12.046
    [Google Scholar]
  51. AlleM. ParkS.C. BandiR. LeeS.H. KimJ.C. Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: recyclable nanozyme for the colorimetric glucose detection.J. Carbohydrate Polymers.202125311723911725110.1016/j.carbpol.2020.117239
    [Google Scholar]
  52. CatalánJ. IlvesM. JärventausH. HannukainenK.S. KontturiE. VanhalaE. AleniusH. SavolainenK.M. NorppaH. Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. J. Environ. Mol. Mutagen.201556217118210.1002/em.21913
    [Google Scholar]
  53. MenasA.L. YanamalaN. FarcasM.T. RussoM. FriendS. FournierP.M. StarA. IavicoliI. ShurinG.V. VogelU.B. FadeelB. BeezholdD. KisinE.R. ShvedovaA.A. Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation?J. Chemosphere.201717167168010.1016/j.chemosphere.2016.12.105
    [Google Scholar]
  54. RomanM. Toxicity of cellulose nanocrystals: A review.J. Industrial Biotechnology.2015111253310.1089/ind.2014.0024
    [Google Scholar]
  55. YanamalaN. FarcasM.T. HatfieldM.K. KisinE.R. KaganV.E. GeraciC.L. ShvedovaA.A. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future. J.ACS Sustain. Chem.& Eng.2014271691169810.1021/sc500153k
    [Google Scholar]
  56. CaoS-L. LiX-H. LouW-Y. ZongM-H. Preparation of a novel magnetic cellulose nanocrystal and its efficient use for enzyme immobilization.J. Mater. Chem. B Mater. Biol. Med.201425522553010.1039/c4tb00584h
    [Google Scholar]
  57. SiripongpredaT. SomchobB. RodthongkumN. HovenV.P. Bacterial cellulose-based re-swellable hydrogel: Facile preparation and its potential application as colorimetric sensor of sweat pH and glucose.J. Carbohydrate Polymers.202125611750611751410.1016/j.carbpol.2020.117506
    [Google Scholar]
  58. ChoM.J. ParkS.Y. Carbon-dot-based ratiometric fluorescence glucose biosensor.J. Sensors and Actuators B: Chemical.201928271972910.1016/j.snb.2018.11.055
    [Google Scholar]
  59. HuangY. ZhuC. YangJ. NieY. ChenC. SunD. Recent advances in bacterial cellulose.J. Cellulose.201421113010.1007/s10570‑013‑0088‑z
    [Google Scholar]
  60. VittaS. ThiruvengadamV. Multifunctional bacterial cellulose and nanoparticle-embedded composites.J. Current Science.20121021013981405https://www.jstor.org/stable/24107797
    [Google Scholar]
  61. MoonR.J. MartiniA. NairnJ. SimonsenJ. YoungbloodJ. Cellulose nanomaterials review: Structure, properties and nanocomposites. J.Chem. Soc. Rev.20114073941399410.1039/C0CS00108B
    [Google Scholar]
  62. Håkansson, Karl M.O.; Fall, A.B.; Lundell, F.; Yu, S.; Krywka, C.; Roth, S.V.; Santoro, G.; Kvick, M.; Wittberg, L.P.; Wågberg, L.; Söderberg, L.D. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. J.Nat. Commun.2014514018402810.1038/ncomms5018
    [Google Scholar]
  63. Torres-RendonJ.G. SchacherF.H. IfukuH. WaltherA. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: A critical comparison.J. Biomacromolecules.20141572709271710.1021/bm500566m
    [Google Scholar]
  64. YaoJ. ChenS. ChenY. WangB. PeiQ. WangH. Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. J.ACS Appl. Mater. Interfaces2017924203302033910.1021/acsami.6b14650
    [Google Scholar]
/content/journals/cos/10.2174/0115701794273511231212072414
Loading
/content/journals/cos/10.2174/0115701794273511231212072414
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test