Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

Nitroaromatic compounds are important scaffolds used for the synthesis of a variety of compounds, such as explosives, herbicides, dyes, perfumes and pharmaceuticals. Bismuth nitrate pentahydrate is a widely used reagent in organic synthesis; however, its utility as a nitrating agent for anilines is underexplored.

Objective

The aim of this work is to propose and find the proper reaction conditions of an alternative nitrating agent constituted by a mixture of bismuth nitrate / acetic anhydride in DCM with a series of substituted anilines under mild reflux.

Methods

Several anilines having both activating and deactivating substituents in the , and positions were the substrate for the nitration reaction. Experimental conditions were performed in “one-pot” conditions before product purification.

Results

Bi(NO)•5HO demonstrated to be effective and somehow regioselective when it came to the nitration of anilines in the position. Although other products were also identified under these conditions, in most cases, the derivative was the major or even the only product obtained with moderate to high yields in the range of 50% – 96%.

Conclusion

Bi(NO)•5HO is an efficient and safe nitrating agent since the use of concentrated and corrosive acids like sulfuric and nitric is avoided; furthermore, bismuth nitrate is low-priced and no special care nor equipment is required.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794273947231206111750
2024-02-19
2025-01-31
Loading full text...

Full text loading...

References

  1. Leyva-RamosS. Pedraza-AlvarezA. Quinoxaline 1,4-di-N-oxides: A review of the importance of their structure in the development of drugs against infectious diseases and cancer.Med. Chem. Res.20213061175118410.1007/s00044‑021‑02731‑8
    [Google Scholar]
  2. ChengG. SaW. CaoC. GuoL. HaoH. LiuZ. WangX. YuanZ. Quinoxaline 1,4-di-N-oxides: Biological activities and mechanisms of actions.Front. Pharmacol.20167646410.3389/fphar.2016.00064 27047380
    [Google Scholar]
  3. ViktorssonE.Ö. AesoyR. StøaS. LekveV. DøskelandS.O. HerfindalL. RongvedP. New prodrugs and analogs of the phenazine 5,10-dioxide natural products iodinin and myxin promote selective cytotoxicity towards human acute myeloid leukemia cells.RSC Med. Chem.202112576777810.1039/D1MD00020A 34124675
    [Google Scholar]
  4. DibN. FernándezL. SantoM. OteroL. AlustizaF. LiaudatA.C. BoschP. LavaggiM.L. CerecettoH. GonzálezM. Formation of dendrimer-guest complexes as a strategy to increase the solubility of a phenazine N,N′-dioxide derivative with antitumor activity.Heliyon20195412310.1016/j.heliyon.2019.e01528
    [Google Scholar]
  5. LavaggiM.L. AguirreG. BoianiL. OrelliL. GarcíaB. CerecettoH. GonzálezM. Pyrimido[1,2-a]quinoxaline 6-oxide and phenazine 5,10-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi.Eur. J. Med. Chem.20084381737174110.1016/j.ejmech.2007.10.031 18068272
    [Google Scholar]
  6. BoianiM. BoianiL. DenicolaA. Torres de OrtizS. SernaE. Vera de BilbaoN. SanabriaL. YaluffG. NakayamaH. Rojas de AriasA. VegaC. RolanM. Gómez-BarrioA. CerecettoH. GonzálezM. 2H-benzimidazole 1,3-dioxide derivatives: A new family of water-soluble anti-trypanosomatid agents.J. Med. Chem.200649113215322410.1021/jm0600343 16722639
    [Google Scholar]
  7. LimaL.M. AmaralD.N. Beirut reaction and its application in the synthesis of quinoxaline-N,N′-dioxides bioactive compounds.Revista Virtual de Química2013561075110010.5935/1984‑6835.20130079
    [Google Scholar]
  8. TorresE. Moreno-ViguriE. GalianoS. DevarapallyG. CrawfordP.W. AzquetaA. ArbillagaL. VarelaJ. BirrielE. Di MaioR. CerecettoH. GonzálezM. AldanaI. MongeA. Pérez-SilanesS. Novel quinoxaline 1,4-di-N-oxide derivatives as new potential antichagasic agents.Eur. J. Med. Chem.20136632433410.1016/j.ejmech.2013.04.065 23811257
    [Google Scholar]
  9. ZhangH. ZhangJ. QuW. XieS. HuangL. ChenD. TaoY. LiuZ. PanY. YuanZ. Design, synthesis and biological evaluation of novel thiazolidinone-containing quinoxaline-1,4-di-N-oxides as antimycobacterial and antifungal agents.Front Chem.2020811510.3389/fchem.2020.00598
    [Google Scholar]
  10. BuravchenkoG.I. ScherbakovA.M. KorlukovA.A. DorovatovskiiP.V. ShchekotikhinA.E. Revision of the regioselectivity of the Beirut reaction of monosubstituted benzofuroxans with benzoylacetonitrile. 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides: Structural characterization and estimation of anticancer activity and hypoxia selectivity.Curr. Org. Synth.2020171293910.2174/1570179416666191210100754 32103715
    [Google Scholar]
  11. CerecettoH. GonzálezM. LavaggiM.L. PorcalW. Preparation of phenazine N5,N10-dioxides: Effects of benzofuroxan substituents in the outcome of their expansion reaction with phenolates.J. Braz. Chem. Soc.2005166a1290129610.1590/S0103‑50532005000700030
    [Google Scholar]
  12. ChugunovaE.A. SamsonovV.A. GazizovA.S. BurilovA.R. PudovikM.A. SinyashinO.G. 2H-Benzimidazole N-oxides: Synthesis, chemical properties, and biological activity.Russ. Chem. Bull.201867111955197010.1007/s11172‑018‑2315‑0
    [Google Scholar]
  13. FernandesG.F.S. CamposD.L. Da SilvaI.C. PratesJ.L.B. PavanA.R. PavanF.R. Dos SantosJ.L. Benzofuroxan derivatives as potent agents against multidrug-resistant Mycobacterium tuberculosis.ChemMedChem20211681268128210.1002/cmdc.202000899 33410233
    [Google Scholar]
  14. ChugunovaE.A. GazizovA.S. BurilovA.R. YusupovaL.M. PudovikM.A. SinyashinO.G. Benzofuroxans: Their synthesis, properties, and biological activity.Russ. Chem. Bull.201968588791010.1007/s11172‑019‑2503‑6
    [Google Scholar]
  15. JovenéC. ChugunovaE.A. GoumontR. The properties and the use of substituted benzofuroxans in pharmaceutical and medicinal chemistry: A comprehensive review.Mini Rev. Med. Chem.20131381089113610.2174/1389557511313080001 23544466
    [Google Scholar]
  16. SartiniS. CosconatiS. MarinelliL. BarresiE. Di MaroS. SimoriniF. TalianiS. SalernoS. MariniA.M. Da SettimoF. NovellinoE. La MottaC. Benzofuroxane derivatives as multi-effective agents for the treatment of cardiovascular diabetic complications. Synthesis, functional evaluation, and molecular modeling studies.J. Med. Chem.20125523105231053110.1021/jm301124s 23134227
    [Google Scholar]
  17. CerecettoH. PorcalW. Pharmacological properties of furoxans and benzofuroxans: Recent developments.Mini Rev. Med. Chem.200551577110.2174/1389557053402864 15638792
    [Google Scholar]
  18. SikderA.K. SalunkeR.B. SikderN. Synthesis, characterization and explosives properties of 7-(1h -1,2,4-triazol-3-amino)-4,6-dinitrobenzofuroxan (TADNB) and 7-(1h-1,2,3,4-tetrazol-5-amino)-4,6-dinitrobenzofuroxan (TEADNBF).J. Energ. Mater.2002201395110.1080/07370650208244813
    [Google Scholar]
  19. CallanJ.F. de SilvaA.P. FergusonJ. HuxleyA.J.M. O’BrienA.M. Fluorescent photoionic devices with two receptors and two switching mechanisms: Applications to pH sensors and implications for metal ion detection.Tetrahedron20046049111251113110.1016/j.tet.2004.08.057
    [Google Scholar]
  20. WangL. LiC. ZhangY. QiaoC. YeY. Synthesis and biological evaluation of benzofuroxan derivatives as fungicides against phytopathogenic fungi.J. Agric. Food Chem.201361368632864010.1021/jf402388x 23937418
    [Google Scholar]
  21. ZhangY.F. MellahM. Convenient electrocatalytic synthesis of azobenzenes from nitroaromatic derivatives using SmI2.ACS Catal.20177128480848610.1021/acscatal.7b02940
    [Google Scholar]
  22. LiJ. LiuH. HuoX. GramaticaP. Structure-activity relationship analysis of the thermal stabilities of nitroaromatic compounds following different decomposition mechanisms.Mol. Inform.201332219320210.1002/minf.201200089 27481280
    [Google Scholar]
  23. BraiA. RivaV. SaladiniF. ZamperiniC. TrivisaniC.I. GarbelliA. PennisiC. GianniniA. BoccutoA. BugliF. MartiniM. SanguinettiM. ZazzicM. DreassiE. BottaM. MagaG. DDX3X inhibitors, an effective way to overcome HIV-1 resistance targeting host proteins.Eur. J. Med. Chem.202020011210.1016/j.ejmech.2020.112319
    [Google Scholar]
  24. GarrisonA.T. AbouelhassanY. KallifidasD. TanH. KimY.S. JinS. LueschH. HuigensR.W. III Huigens R.W III. An efficient Buchwald-Hartwig/reductive cyclization for the scaffold diversification of halogenated phenazines: Potent antibacterial targeting, biofilm eradication, and prodrug exploration.J. Med. Chem.20186193962398310.1021/acs.jmedchem.7b01903 29638121
    [Google Scholar]
  25. JanakiramuduD.B. Subba RaoD. SrikanthC. MadhusudhanaS. Sreenivasa MurthyP. NagalakshmidevammaM. ChalapathiP.V. Naga RajuC. Sulfonamides and carbamates of 3-fluoro-4-morpholinoaniline (linezolid intermediate): Synthesis, antimicrobial activity and molecular docking study.Res. Chem. Intermed.201844146948910.1007/s11164‑017‑3114‑1
    [Google Scholar]
  26. ParkS. KimE. KimW.Y. KangC. KimJ.S. Biotin-guided anticancer drug delivery with acidity-triggered drug release.Chem. Commun.201551459343934510.1039/C5CC03003J 25959901
    [Google Scholar]
  27. NepaliK. LeeH.Y. LiouJ.P. Nitro-group-containing drugs.J. Med. Chem.20196262851289310.1021/acs.jmedchem.8b00147 30295477
    [Google Scholar]
  28. NoriegaS. Cardoso-OrtizJ. López-LunaA. Cuevas-FloresM.D.R. Flores De La TorreJ.A. The diverse biological activity of recently synthesized nitro compounds.Pharmaceuticals202215611410.3390/ph15060717
    [Google Scholar]
  29. YanG. YangM. Recent advances in the synthesis of aromatic nitro compounds.Org. Biomol. Chem.201311162554256610.1039/c3ob27354g 23443836
    [Google Scholar]
  30. NishiwakiN. Synthesis of nitroso, nitro, and related compounds.Comprehensive Organic SynthesisElsevier: Oxford, UK2014610013010.1016/B978‑0‑08‑097742‑3.00604‑2
    [Google Scholar]
  31. AdamiakJ. TomaszewskiW. SkupińskiW. Interaction of nitromethane with MoO3/SiO2 and its influence on toluene nitration.Catal. Commun.201229929510.1016/j.catcom.2012.09.026
    [Google Scholar]
  32. SmithK. El-HitiG.A. Use of zeolites for greener and more para-selective electrophilic aromatic substitution reactions.Green Chem.20111371579160810.1039/c0gc00689k
    [Google Scholar]
  33. MaX.M. LiB.D. ChenL. LuM. LvC.X. Selective nitration of aromatic compounds catalyzed by Hβ zeolite using N2O5.Chin. Chem. Lett.201223780981210.1016/j.cclet.2012.05.016
    [Google Scholar]
  34. GaoM. YeR. ShenW. XuB. Copper nitrate: A privileged reagent for organic synthesis.Org. Biomol. Chem.201816152602261810.1039/C8OB00332G 29565088
    [Google Scholar]
  35. SamajdarS. BeckerF.F. BanikB.K. Surface-mediated highly efficient regioselective nitration of aromatic compounds by bismuth nitrate.Tetrahedron Lett.200041428017802010.1016/S0040‑4039(00)01397‑6
    [Google Scholar]
  36. VasudevanA.K. SchoenitzM. DreizinE.L. Mechanochemical nitration of toluene with metal oxide catalysts.Appl. Catal. A Gen.202020111760410.1016/j.apcata.2020.117604
    [Google Scholar]
  37. AlbadiJ. ShiriniF. GhabeziB. SeiadatnasabT. Melamine trisulfonic acid catalyzed regioselective nitration of aromatic compounds with sodium nitrate under solvent-free conditions.Arab. J. Chem.201710S1S509S51310.1016/j.arabjc.2012.10.011
    [Google Scholar]
  38. BoseA. MalP. Using weak interactions to control C-H mono-nitration of indolines.Chem. Commun.20175382113681137110.1039/C7CC06267B 28972219
    [Google Scholar]
  39. AnuradhaV. SrinivasP.V. AparnaP. RaoJ.M. p-Toluenesulfonic acid catalyzed regiospecific nitration of phenols with metal nitrates.Tetrahedron Lett.200647284933493510.1016/j.tetlet.2006.05.017
    [Google Scholar]
  40. SongL.R. FanZ. ZhangA. Recent advances in transition metal-catalyzed C(sp 2)–H nitration.Org. Biomol. Chem.20191761351136110.1039/C8OB02750A 30644943
    [Google Scholar]
  41. GaoY. MaoY. ZhangB. ZhanY. HuoY. Regioselective nitration of anilines with Fe(NO 3) 3 ·9H 2 O as a promoter and a nitro source.Org. Biomol. Chem.201816213881388410.1039/C8OB00841H 29745962
    [Google Scholar]
  42. ShackelfordS.A. AndersonM.B. ChristieL.C. GoetzenT. GuzmanM.C. HananelM.A. KornreichW.D. LiH. PathakV.P. RabinovichA.K. RajapakseR.J. TruesdaleL.K. TsankS.M. VazirH.N. Electrophilic tetraalkylammonium nitrate nitration. II. Improved anhydrous aromatic and heteroaromatic mononitration with tetramethylammonium nitrate and triflic anhydride, including selected microwave examples.J. Org. Chem.200368226727510.1021/jo026202q 12530848
    [Google Scholar]
  43. SanaS. ReddyK.R. RajannaK.C. VenkateswarluM. AliM.M. Mortar-pestle and microwave assisted regioselective nitration of aromatic compounds in presence of certain group V and VI metal salts under solvent free conditions.Int. J. Org. Chem.20122323324710.4236/ijoc.2012.23032
    [Google Scholar]
  44. JacowayJ. KumarG.G.K.S.N. LaaliK.K. Aromatic nitration with bismuth nitrate in ionic liquids and in molecular solvents: A comparative study of Bi(NO3)3·5H2O/[bmim][PF6] and Bi(NO3)3·5H2O/1,2-DCE systems.Tetrahedron Lett.201253506782678510.1016/j.tetlet.2012.09.137
    [Google Scholar]
  45. YadavR.R. VishwakarmaR.A. BharateS.B. Catalyst-free ipso-nitration of aryl boronic acids using bismuth nitrate.Tetrahedron Lett.201253445958596010.1016/j.tetlet.2012.08.121
    [Google Scholar]
  46. GuoF.C. JiM.Z. ZhangP. GuoZ.X. Facile nitration of aromatic compounds using Bi(NO3)3·5H2O/MgSO4 under mechanochemical conditions.Green Proc. Synth.20187545345910.1515/gps‑2017‑0069
    [Google Scholar]
  47. BrahmachariG. BegamS. NurjamalK. Bismuth nitrate catalyzed one-pot multicomponent synthesis of a novel series of diversely 1,8-dioxodecahydroacridines at room temperature.ChemistrySelect20172113311331610.1002/slct.201700265
    [Google Scholar]
  48. BandyopadhyayD. MaldonadoS. BanikB.K. A microwave-assisted bismuth nitrate-catalyzed unique route toward 1,4-dihydropyridines.Molecules20121732643266210.3390/molecules17032643 22391599
    [Google Scholar]
  49. BrahmachariG. DasS. Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature.Tetrahedron Lett.201253121479148410.1016/j.tetlet.2012.01.042
    [Google Scholar]
  50. BandyopadhyayD. GranadosJ.C. ShortJ.D. BanikB.K. Polycyclic aromatic compounds as anticancer agents: Evaluation of synthesis and in vitro cytotoxicity.Oncol. Lett.201231454910.3892/ol.2011.436 22740854
    [Google Scholar]
  51. MukhopadhyayC. DattaA. Bismuth(III) nitrate pentahydrate: A stoichiometric reagent for microwave induced mild and highly efficient aerial oxidation of aromatic aldehydes under solvent-free conditions.Catal. Commun.20089152588259210.1016/j.catcom.2008.07.019
    [Google Scholar]
  52. AzarifarD. MalekiB. Microwave-assisted aromatization of 1,3,5-trisubstituted 2-pyrazolines by Bi(NO3)3·5H2O, as a novel and convenient oxidizing agent.Synth. Commun.200535192581258510.1080/00397910500214136
    [Google Scholar]
  53. KhodaeiM.M. Mohammadpoor-BaltorkI. NikoofarK. Bismuth (III) nitrate pentahydrate Bi(NO3)3·5H2O: An inexpensive and mild reagent for the efficient and clean oxidation of thiols to disulfides.Bull. Korean Chem. Soc.200324788588610.5012/bkcs.2003.24.7.885
    [Google Scholar]
  54. LuY. LiY. ZhangR. JinK. DuanC. Regioselective ortho-nitration of N-phenyl carboxamides and primary anilines using bismuth nitrate/acetic anhydride.Tetrahedron201369459422942710.1016/j.tet.2013.08.076
    [Google Scholar]
  55. McConnellN. FrettB. LiH. Microwave-assisted green synthesis of anilines, phenols, and benzenediamines without transition metals, ligands, or organic solvents.Green Chem. Lett. Rev.201811328629510.1080/17518253.2018.1486464 30984284
    [Google Scholar]
  56. PatilV.V. ShankarlingG.S. Steric-hindrance-induced regio- and chemoselective oxidation of aromatic amines.J. Org. Chem.201580167876788310.1021/acs.joc.5b00582 26212905
    [Google Scholar]
  57. IlangovanA. SakthivelP. SakthivelP. Green and practical transition metal-free one-pot conversion of substituted benzoic acids to anilines using tosyl azide.Org. Chem. Front.20163121680168510.1039/C6QO00343E
    [Google Scholar]
  58. PawarG.G. BrahmanandanA. KapurM. Palladium(II)-catalyzed, heteroatom-directed, regioselective C-H nitration of anilines using pyrimidine as a removable directing group.Org. Lett.201618344845110.1021/acs.orglett.5b03493 26799985
    [Google Scholar]
  59. Ma̧koszaM. BiałeckiM. Nitroarylamines via the vicarious nucleophilic substitution of hydrogen: Amination, alkylamination, and arylamination of nitroarenes with sulfenamides.J. Org. Chem.199863154878488810.1021/jo970582b
    [Google Scholar]
  60. LeyvaS. CastanedoV. LeyvaE. Synthesis of novel fluorobenzofuroxans by oxidation of anilines and thermal cyclization of arylazides.J. Fluor. Chem.2003121217117510.1016/S0022‑1139(03)00011‑3
    [Google Scholar]
  61. LiangY. GaoS. WanH. WangJ. ChenH. ZhengZ. HuX. Syntheses and resolutions of new chiral biphenyl backbones: 2-amino-2′-hydroxy-6,6′-dimethyl-1,1′-biphenyl and 2-amino-2′-hydroxy-4,4′,6,6′-tetramethyl-1,1′-biphenyl.Tetrahedron Asymmetry200314101267127310.1016/S0957‑4166(03)00217‑9
    [Google Scholar]
  62. JinM. XuH. HongH. BaoC. PuH. WanD. ZhuL. Micropatterning of polymethacrylates by single‐ or two‐photon irradiation using π‐conjugated o ‐nitrobenzyl ester phototrigger as side chains.J. Appl. Polym. Sci.201313064099410610.1002/app.39683
    [Google Scholar]
  63. HernandoE. CastilloR.R. RodríguezN. Gómez ArrayásR. CarreteroJ.C. Copper-catalyzed mild nitration of protected anilines.Chemistry20142043138541385910.1002/chem.201404000 25213167
    [Google Scholar]
  64. PreissA. LevsenK. HumpferE. SpraulM. Application of high-field proton nuclear magnetic resonance ((1)H-NMR) spectroscopy for the analysis of explosives and related compounds in groundwater samples - a comparison with the high-performance liquid chromatography (HPLC) method.Anal. Bioanal. Chem.1996356744545110.1007/s0021663560445 15045226
    [Google Scholar]
  65. FelpinF.X. FouquetE. Efficient and practical cross-coupling of arenediazonium tetrafluoroborate salts with boronic acids catalyzed by palladium(0)/barium carbonate.Adv. Synth. Catal.2008350686386810.1002/adsc.200800025
    [Google Scholar]
  66. BertiF.A. ZitiL.M. The preparation of 2, 6-dinitroaniline.Mem. Inst. Butantan1952241912 13012827
    [Google Scholar]
  67. MurphyJ.T. RiddJ.H. The rearrangement of aromatic nitro compounds. Part 1. The reactions of nitroanilines in aqueous sulphuric acid.J. Chem. Soc., Perkin Trans. 219872121767177210.1039/p29870001767
    [Google Scholar]
  68. ZhuY. ZhaoM. LuW. LiL. ShenZ. Acetonitrile as a cyanating reagent: Cu-catalyzed cyanation of arenes.Org. Lett.201517112602260510.1021/acs.orglett.5b00886 25988665
    [Google Scholar]
  69. MuathenH. Selective nitration of aromatic compounds with bismuth subnitrate and thionyl chloride.Molecules20038759359810.3390/80700593
    [Google Scholar]
  70. CanalesL. BandyopadhyayD. BanikB.K. Bismuth nitrate pentahydrate-induced novel nitration of eugenol.Org. Med. Chem. Lett.2011191310.1186/2191‑2858‑1‑9 22373430
    [Google Scholar]
  71. WąsińskaM. KorczewskaA. GiurgM. SkarżewskiJ. Improved protocol for mononitration of phenols with bismuth(III) and iron(III) nitrates.Synth. Commun.201545114315010.1080/00397911.2014.954730
    [Google Scholar]
  72. PrakashG.K.S. PanjaC. MathewT. SurampudiV. PetasisN.A. OlahG.A. ipso-nitration of arylboronic acids with chlorotrimethylsilane-nitrate salts.Org. Lett.20046132205220710.1021/ol0493249 15200321
    [Google Scholar]
  73. PatelS.S. PatelD.B. PatelH.D. Synthetic protocols for aromatic nitration: A review.ChemistrySelect2021661337135610.1002/slct.202004695
    [Google Scholar]
  74. AgastiS. MaitiS. MaityS. AnniyappanM. TalawarM.B. MaitiD. Bismuth nitrate as a source of nitro radical in ipso-nitration of carboxylic acids.Polyhedron201917212012410.1016/j.poly.2019.04.005
    [Google Scholar]
  75. BandyopadhyayD. KrishnaB.B. Versatile bismuth salts-induced reactions from our laboratory: A perspective.Heterocycl. Lett.2020102341
    [Google Scholar]
/content/journals/cos/10.2174/0115701794273947231206111750
Loading
/content/journals/cos/10.2174/0115701794273947231206111750
Loading

Data & Media loading...

Supplements

All FT-IR, 1H, 13C and 19F NMR, and HRMS spectra are in the Supplementary Information.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test