Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Natural polysaccharide-based nanoparticles are known for their non-toxic nature and diverse medical applications. Graphene oxide (GO) nanoparticles show potential in cancer treatment due to their ability to target medication delivery and influence ROS generation. These nanocomposites are versatile in gene transport, therapy, and photodynamic therapy, especially when surface-modified. Proper dispersion and functionalization of GO in polymer matrices are crucial, with examples like hyaluronic acid-functionalized GO offering versatile platforms for cancer drug administration. The potential of graphene oxide extends to cancer phototherapy, electronic nanowires, hydrogels, antibacterial nanocomposites, and environmental applications. When activated by polysaccharides, graphene-based nanocomposites exhibit anti-inflammatory and anticancer properties, making them valuable across various industries, including water treatment.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794298435240324175513
2024-04-15
2025-01-31
Loading full text...

Full text loading...

References

  1. SinghP.P. Ambika, Supported ionic liquids and their applications in organic transformations.Curr. Org. Synth.202219890592210.2174/1570179419666220303110933 36267047
    [Google Scholar]
  2. KalarP.L. AgrawalS. KushwahaS. GayenS. DasK. Recent developments on synthesis of organofluorine compounds using green approaches.Curr. Org. Chem.202327319020510.2174/1385272827666230516100739
    [Google Scholar]
  3. Hernández, P.L.D.; García, M.M. Synthesis of open-resorcinarene dendrimers with l-serine (ibuprofen) derivatives.Curr. Org. Chem.2022261718010.2174/1385272825666211130164548
    [Google Scholar]
  4. Schäfer, C.; Cho, H.; Vlocskó, B.; Xie, G.; Török, B. Recent advances in the green synthesis of heterocycles: From building blocks to biologically active compounds.Curr. Org. Synth.202219342646210.2174/1570179418666210910110205 34515007
    [Google Scholar]
  5. JurakM. WiącekA.E. ŁadniakA. PrzykazaK. SzafranK. What affects the biocompatibility of polymers?Adv. Colloid Interface Sci.202129410245110.1016/j.cis.2021.102451 34098385
    [Google Scholar]
  6. KimH.S. SunX. LeeJ.H. KimH.W. FuX. LeongK.W. Advanced drug delivery systems and artificial skin grafts for skin wound healing.Adv. Drug Deliv. Rev.201914620923910.1016/j.addr.2018.12.014 30605737
    [Google Scholar]
  7. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules25010112 31892180
    [Google Scholar]
  8. BhattacharyaT. PreetamS. GhoshB. ChakrabartiT. ChakrabartiP. SamalS.K. ThoratN. Advancement in biopolymer assisted cancer theranostics.ACS Appl. Bio Mater.20236103959398310.1021/acsabm.3c00458 37699558
    [Google Scholar]
  9. SayedE.A. KamelM. Advances in nanomedical applications: Diagnostic, therapeutic, immunization, and vaccine production.Environ. Sci. Pollut. Res. Int.20202716192001921310.1007/s11356‑019‑06459‑2 31529348
    [Google Scholar]
  10. ManujaA. KumarB. SinghR.K. Nanotechnology developments: Opportunities for animal health and production.Nanotechnol. Dev.201221410.4081/nd.2012.e4
    [Google Scholar]
  11. MohantyaN. An overview of nanomedicine in veterinary science.Vet. Res.2014249095
    [Google Scholar]
  12. RapoportN. GaoZ. KennedyA. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy.J. Natl. Cancer Inst.200799141095110610.1093/jnci/djm043 17623798
    [Google Scholar]
  13. MeenaN. Applications of nanotechnology in veterinary therapeutics.J. Entomol. Zool. Stud.201862167175Available from: https://www.entomoljournal.com/archives/2018/vol6issue2/ PartC/6-1-85-412.pdf
    [Google Scholar]
  14. ZhaoL. SethA. WibowoN. ZhaoC.X. MitterN. YuC. MiddelbergA.P.J. Nanoparticle vaccines.Vaccine201432332733710.1016/j.vaccine.2013.11.069 24295808
    [Google Scholar]
  15. ChakravarthiV.P. BalajiN. Applications of nanotechnology in veterinary medicine.Vet. World2010310477480Available from https://www.veterinaryworld.org/Vol.3/October/Applications% 20of%20Nanotechnology%20in%20Veterinary%20Medicine. pdf
    [Google Scholar]
  16. JurjA. BraicuC. PopL.A. TomuleasaC. GhermanC. NeagoeB.I. The new era of nanotechnology, an alternative to change cancer treatment.Drug Des. Devel. Ther.2017112871289010.2147/DDDT.S142337 29033548
    [Google Scholar]
  17. ChuM. Semiconductor quantum dots and rods for in vivo imaging and cancer phototherapy.ChinaTongji University201710.1142/10112
    [Google Scholar]
  18. VillaverdeA. Nanoparticles in translational science and medicine.1st EditionAcademic Press2011104
    [Google Scholar]
  19. ReviaR.A. ZhangM. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: Recent advances.Mater. Today201619315716810.1016/j.mattod.2015.08.022 27524934
    [Google Scholar]
  20. PatilS. KoreK. KumarP. Nanotechnology and its applications in veterinary and animal science.Vet. World20092147547710.5455/vetworld.2009.475‑477
    [Google Scholar]
  21. SangiaoT.E. HolbanA. GestalM. Advanced nanobiomaterials: Vaccines, diagnosis and treatment of infectious diseases.Molecules201621786710.3390/molecules21070867 27376260
    [Google Scholar]
  22. BurneoR.N. BusquetsM. Estelrich, J. Magnetic nanoemulsions: Comparison between nanoemulsions formed by ultrasonication and by spontaneous emulsification.Nanomaterials 20177719010.3390/nano7070190 28737673
    [Google Scholar]
  23. ElgqvistJ. Nanoparticles as theranostic vehicles in experimental and clinical applications—focus on prostate and breast cancer.Int. J. Mol. Sci.2017185110210.3390/ijms18051102 28531102
    [Google Scholar]
  24. FreitasR.A. Jr Microbivores: Artificial mechanical phagocytes using digest and discharge protocol.J. Evol. Technol.200514154106
    [Google Scholar]
  25. FreitasR.A. Current status of nanomedicine and medical nanorobotics.J. Comput. Theor. Nanosci.200521125
    [Google Scholar]
  26. MariadossA.V.A. SaravanakumarK. SathiyaseelanA. WangM.H. Preparation, characterization and anti-cancer activity of graphene oxide‐silver nanocomposite.J. Photochem. Photobiol. B2020210111984 10.1016/j.jphotobiol.2020.111984 32771914
    [Google Scholar]
  27. VerdeV. LongoA. CucciL.M. SanfilippoV. Magrì, A.; Satriano, C.; Anfuso, C.D.; Lupo, G.; La Mendola, D. Anti-angiogenic and anti-proliferative graphene oxide nanosheets for tumor cell therapy.Int. J. Mol. Sci.20202115557110.3390/ijms21155571 32759830
    [Google Scholar]
  28. ZhuJ. LiB. XuM. LiuR. XiaT. ZhangZ. XuY. LiuS. Graphene oxide promotes cancer metastasis through associating with plasma membrane to promote tgf-β signaling-dependent epithelial–mesenchymal transition.ACS Nano202014181882710.1021/acsnano.9b07891 31877027
    [Google Scholar]
  29. RibeiroB.F.M. SouzaM.M. FernandesD.S. do CarmoD.R. SantelliM.G.M. Graphene oxide‐based nanomaterial interaction with human breast cancer cells.J. Biomed. Mater. Res. A2020108486387010.1002/jbm.a.36864 31846174
    [Google Scholar]
  30. SharpP.S. StylianouM. ArellanoL.M. NevesJ.C. GravagnuoloA.M. DoddA. BarrK. LozanoN. KisbyT. KostarelosK. Graphene oxide nanoscale platform enhances the anti‐cancer properties of bortezomib in glioblastoma models.Adv. Healthc. Mater.2023123220196810.1002/adhm.202201968 36300643
    [Google Scholar]
  31. GiustoE. Žárská, L.; Beirne, D.F.; Rossi, A.; Bassi, G.; Ruffini, A.; Montesi, M.; Montagner, D.; Ranc, V.; Panseri, S. Graphene oxide nanoplatforms to enhance cisplatin-based drug delivery in anticancer therapy.Nanomaterials20221214237210.3390/nano12142372 35889596
    [Google Scholar]
  32. HasaninM.S. SakhawyE.M. AhmedH.Y. KamelS. Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for 5‐fluorouracil.Biotechnol. J.2022174210018310.1002/biot.202100183 34499787
    [Google Scholar]
  33. SeoS.H. JoeA. HanH.W. ManivasaganP. JangE.S. Methylene blue-loaded mesoporous silica-coated gold nanorods on graphene oxide for synergistic photothermal and photodynamic therapy.Pharmaceutics20221410224210.3390/pharmaceutics14102242 36297675
    [Google Scholar]
  34. PaskehM.D.A. MehrabiA. GholamiM.H. ZabolianA. RanjbarE. SalekiH. RanjbarA. HashemiM. ErtasY.N. HushmandiK. MirzaeiS. AshrafizadehM. ZarrabiA. SamarghandianS. EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed. Pharmacother.2022146112532 10.1016/j.biopha.2021.112532 34906772
    [Google Scholar]
  35. WangX. ZhouW. LiX. RenJ. JiG. DuJ. TianW. LiuQ. HaoA. Graphene oxide suppresses the growth and malignancy of glioblastoma stem cell-like spheroids via epigenetic mechanisms.J. Transl. Med.202018120010.1186/s12967‑020‑02359‑z 32410622
    [Google Scholar]
  36. BaryA.A.S. TolanD.A. NassarM.Y. TaketsuguT. NahasE.A.M. Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: Synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations.Int. J. Biol. Macromol.202015462163310.1016/j.ijbiomac.2020.03.106 32179117
    [Google Scholar]
  37. WangY. SunG. GongY. ZhangY. LiangX. YangL. Functionalized folate-modified graphene oxide/PEI siRNA nanocomplexes for targeted ovarian cancer gene therapy.Nanoscale Res. Lett.20201515710.1186/s11671‑020‑3281‑7 32140846
    [Google Scholar]
  38. GurunathanS. KimJ.H. Graphene oxide enhances biogenesis and release of exosomes in human ovarian cancer cells.Int. J. Nanomedicine2022175697573110.2147/IJN.S385113 36466784
    [Google Scholar]
  39. DashB.S. LuY.J. PejrprimP. LanY.H. ChenJ. P Hyaluronic acid-modified, IR780-conjugated and doxorubicin-loaded reduced graphene oxide for targeted cancer chemo/photothermal/photodynamic therapy.Biomater. Adv.2022136212764
    [Google Scholar]
  40. ChoiH.W. LimJ.H. KimC.W. LeeE. KimJ.M. ChangK. ChungB.G. Near-infrared light-triggered generation of reactive oxygen species and induction of local hyperthermia from indocyanine green encapsulated mesoporous silica-coated graphene oxide for colorectal cancer therapy.Antioxidants202211117410.3390/antiox11010174 35052678
    [Google Scholar]
  41. KrętowskiR. PaskoC.M. The reduced graphene oxide (rgo) induces apoptosis, autophagy and cell cycle arrest in breast cancer cells.Int. J. Mol. Sci.20222316928510.3390/ijms23169285 36012549
    [Google Scholar]
  42. ShenJ. DongJ. ShaoF. ZhaoJ. GongL. WangH. ChenW. ZhangY. CaiY. Graphene oxide induces autophagy and apoptosis via the ROS-dependent AMPK/mTOR/ULK-1 pathway in colorectal cancer cells.Nanomedicine202217959160510.2217/nnm‑2022‑0030 35394351
    [Google Scholar]
  43. IzadiS. MoslehiA. KheiryH. KianiK.F. AhmadiA. MasjediA. GhaniS. RafieeB. KarpishehV. HajizadehF. AtyabiF. AssaliA. tekie, M.F.S.; Namdar, A.; Ghalamfarsa, G.; Sojoodi, M.; Niaragh, J.F. Codelivery of HIF-1α siRNA and dinaciclib by carboxylated graphene oxide-trimethyl chitosan-hyaluronate nanoparticles significantly suppresses cancer cell progression.Pharm. Res.2020371019610.1007/s11095‑020‑02892‑y 32944844
    [Google Scholar]
  44. LuY.J. LanY.H. ChuangC.C. LuW.T. ChanL.Y. HsuP.W. ChenJ.P. Injectable thermo-sensitive chitosan hydrogel containing CPT-11-loaded EGFR-targeted graphene oxide and SLP2 shRNA for localized drug/gene delivery in glioblastoma therapy.Int. J. Mol. Sci.20202119711110.3390/ijms21197111 32993166
    [Google Scholar]
  45. QuY. SunF. HeF. YuC. LvJ. ZhangQ. LiangD. YuC. WangJ. ZhangX. XuA. WuJ. Glycyrrhetinic acid-modified graphene oxide mediated siRNA delivery for enhanced liver-cancer targeting therapy.Eur. J. Pharm. Sci.201913910503610.1016/j.ejps.2019.105036 31446078
    [Google Scholar]
  46. SunQ. WangX. CuiC. LiJ. WangY. Doxorubicin and anti-VEGF siRNA co-delivery via nano-graphene oxide for enhanced cancer therapy in vitro and in vivo.Int. J. Nanomedicine2018133713372810.2147/IJN.S162939 29983564
    [Google Scholar]
  47. SlekieneN. SnitkaV. Impact of graphene oxide functionalized with doxorubicin on viability of mouse hepatoma MH-22A cells.Toxicol. In Vitro 20206510482110.1016/j.tiv.2020.104821 32151703
    [Google Scholar]
  48. YangZ. YangD. ZengK. LiD. QinL. CaiY. JinJ. Simultaneous delivery of antimiR-21 and doxorubicin by graphene oxide for reducing toxicity in cancer therapy.ACS Omega2020524144371444310.1021/acsomega.0c01010 32596581
    [Google Scholar]
  49. AlipourN. NamaziH. Chelating ZnO-dopamine on the surface of graphene oxide and its application as pH-responsive and antibacterial nanohybrid delivery agent for doxorubicin.Mater. Sci. Eng. C202010811045910.1016/j.msec.2019.110459 31924031
    [Google Scholar]
  50. CharmiJ. NosratiH. AmjadM.J. MohammadkhaniR. DanafarH. Polyethylene glycol (PEG) decorated graphene oxide nanosheets for controlled release curcumin delivery.Heliyon201954e0146610.1016/j.heliyon.2019.e01466 31011643
    [Google Scholar]
  51. LinK.C. LinM.W. HsuM.N. ChenY.G. ChaoY.C. TuanH.Y. ChiangC.S. HuY.C. Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis.Theranostics2018892477248710.7150/thno.24173 29721093
    [Google Scholar]
  52. HuangX. ChenJ. WuW. YangW. ZhongB. QingX. ShaoZ. Delivery of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic therapy triggers cell death in osteosarcoma.Acta Biomater.202010922924310.1016/j.actbio.2020.04.009 32294550
    [Google Scholar]
  53. Cortázar, C.I.; Vidaurre, A.; Marí, B.; Fernández, C.A.J. Morphology, crystallinity, and molecular weight of poly(ε-caprolactone)/graphene oxide hybrids.Polymers2019117109910.3390/polym11071099 31261770
    [Google Scholar]
  54. MalkappaK. SalehiyanR. RayS.S. Supramolecular poly (cyclotriphosphazene) functionalized graphene oxide/polypropylene composites with simultaneously improved thermal stability, flame retardancy, and viscoelastic properties.Macromol. Mater. Eng.20203058200020710.1002/mame.202000207
    [Google Scholar]
  55. FerreiraF.V. Functionalizing graphene and carbon nanotubes: A review.Springer Briefs in Applied Sciences and Technology (Functionalizing Graphene and Carbon Nanotubes).Springer2016316110.1007/978‑3‑319‑35110‑0_2
    [Google Scholar]
  56. MonjiP. JahanmardiR. MehranpourM. Preparation of melamine-grafted graphene oxide and evaluation of its efficacy as a flame retardant additive for polypropylene.Carbon lett.20182718189
    [Google Scholar]
  57. PascualD.A.M. RahdarA. Graphene-based polymer composites for flexible electronic applications.Micromachines2022137112310.3390/mi13071123 35888940
    [Google Scholar]
  58. HuskićM. BolkaS. VeselA. MozetičM. AnžlovarA. VizintinA. ŽagarE. One-step surface modification of graphene oxide and influence of its particle size on the properties of graphene oxide/epoxy resin nanocomposites.Eur. Polym. J.201810121121710.1016/j.eurpolymj.2018.02.036
    [Google Scholar]
  59. de SousaM. MartinsC.H.Z. FranquiL.S. FonsecaL.C. DeliteF.S. LanzoniE.M. MartinezD.S.T. AlvesO.L. Covalent functionalization of graphene oxide with D -mannose: Evaluating the hemolytic effect and protein corona formation.J. Mater. Chem. B Mater. Biol. Med.20186182803281210.1039/C7TB02997G 32254233
    [Google Scholar]
  60. ChavoshiN. JahanmardiR. Chemical functionalization of graphene oxide by a hindered amine stabilizer and evaluation of the product as a UV-stabilizer for polypropylene.Fuller. Nanotub. Carbon Nanostruct.20192711910.1080/1536383X.2018.1472084
    [Google Scholar]
  61. YuW. SisiL. HaiyanY. JieL. Progress in the functional modification of graphene/graphene oxide: A review.RSC Advances20201026153281534510.1039/D0RA01068E 35495479
    [Google Scholar]
  62. WangH. BiS.G. YeY.S. XueY. XieX.L. MaiY.W. An effective non-covalent grafting approach to functionalize individually dispersed reduced graphene oxide sheets with high grafting density, solubility and electrical conductivity.Nanoscale2015783548355710.1039/C4NR06710J 25630871
    [Google Scholar]
  63. HuangH.D. ZhouS-Y. RenP-G. JiX. LiZ-M. Improved mechanical and barrier properties of low-density polyethylene nanocomposite films by incorporating hydrophobic graphene oxide nanosheets.RSC Advances2015598807398074810.1039/C5RA12694K
    [Google Scholar]
  64. JeongJ.H. ChoiM-C. NagappanS. LeeW-K. HaC-S. Preparation and properties of poly(lactic acid)/lipophilized graphene oxide nanohybrids.Polym. Int.2018671919910.1002/pi.5478
    [Google Scholar]
  65. YaoJ. LiuS. HuangY. RenS. LvY. KongM. LiG. Acyl-chloride functionalized graphene oxide chemically grafted with hindered phenol and its application in anti-degradation of polypropylene.Prog. Nat. Sci.202030332833610.1016/j.pnsc.2020.05.010
    [Google Scholar]
  66. SharmaB. MalikP. JainP. Biopolymer reinforced nanocomposites: A comprehensive review.Mater. Today Commun.20181635336310.1016/j.mtcomm.2018.07.004
    [Google Scholar]
  67. KhanW.S. HamadnehN.N. KhanW.A. Polymer nanocomposites–synthesis techniques, classification and properties.Science and applications of Tailored Nanostructures One Central Press (OCP)2016
    [Google Scholar]
  68. BiruE.I. NecolauM.I. ZaineaA. IovuH. Graphene oxide–protein-based scaffolds for tissue engineering: Recent advances and applications.Polymers2022145103210.3390/polym14051032 35267854
    [Google Scholar]
  69. Jamróz, E.; Kulawik, P.; Kopel, P. The effect of nanofillers on the functional properties of biopolymer-based films: A review.Polymers201911467510.3390/polym11040675 31013855
    [Google Scholar]
  70. XiongR. GrantA.M. MaR. ZhangS. TsukrukV.V. Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications.Mater. Sci. Eng. Rep.201812514110.1016/j.mser.2018.01.002
    [Google Scholar]
  71. NiamsapT. LamN.T. SukyaiP. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals.Carbohydr. Polym.201920515916610.1016/j.carbpol.2018.10.034 30446091
    [Google Scholar]
  72. BaoY. ZhangH. LuanQ. ZhengM. TangH. HuangF. Fabrication of cellulose nanowhiskers reinforced chitosan-xylan nanocomposite films with antibacterial and antioxidant activities.Carbohydr. Polym.2018184667310.1016/j.carbpol.2017.12.051 29352944
    [Google Scholar]
  73. HassanE.A. HassanM.L. zeid, A.R.E.; Wakil, E.N.A. Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating.Ind. Crops Prod.20169321922610.1016/j.indcrop.2015.12.006
    [Google Scholar]
  74. NaskarS. SharmaS. KuotsuK. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation.J. Drug Deliv. Sci. Technol.201949668110.1016/j.jddst.2018.10.022
    [Google Scholar]
  75. BertolinoV. CavallaroG. MiliotoS. LazzaraG. Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials.Carbohydr. Polym.202024511650210.1016/j.carbpol.2020.116502 32718613
    [Google Scholar]
  76. RaccichiniR. VarziA. PasseriniS. ScrosatiB. The role of graphene for electrochemical energy storage.Nat. Mater.201514327127910.1038/nmat4170 25532074
    [Google Scholar]
  77. ImranK.A. ShivakumarK.N. Enhancement of electrical conductivity of epoxy using graphene and determination of their thermo-mechanical properties.J. Reinf. Plast. Compos.201837211813310.1177/0731684417736143
    [Google Scholar]
  78. LiY. ZhangH. PorwalH. HuangZ. BilottiE. PeijsT. Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites.Compos., Part A Appl. Sci. Manuf.20179522923610.1016/j.compositesa.2017.01.007
    [Google Scholar]
  79. CantorK. WattsP. KutzM. Applied plastics engineering handbook.Process. Mater. Appl.20172017743759
    [Google Scholar]
  80. FerrariA.C. BonaccorsoF. Fal’koV. NovoselovK.S. RocheS. Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; Garrido, J.A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato, M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhänen, T.; Morpurgo, A.; Coleman, J.N.; Nicolosi, V.; Colombo, L.; Fert, A.; Hernandez, G.M.; Bachtold, A.; Schneider, G.F.; Guinea, F.; Dekker, C.; Barbone, M.; Sun, Z.; Galiotis, C.; Grigorenko, A.N.; Konstantatos, G.; Kis, A.; Katsnelson, M.; Vandersypen, L.; Loiseau, A.; Morandi, V.; Neumaier, D.; Treossi, E.; Pellegrini, V.; Polini, M.; Tredicucci, A.; Williams, G.M.; Hee Hong, B.; Ahn, J.H.; Kim, M.J.; Zirath, H.; Wees, V.B.J.; Zant, V.D.H.; Occhipinti, L.; Matteo, D.A.; Kinloch, I.A.; Seyller, T.; Quesnel, E.; Feng, X.; Teo, K.; Rupesinghe, N.; Hakonen, P.; Neil, S.R.T.; Tannock, Q.; Löfwander, T.; Kinaret, J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems.Nanoscale20157114598481010.1039/C4NR01600A 25707682
    [Google Scholar]
  81. TerzopoulouZ. KyzasG. BikiarisD. Recent advances in nanocomposite materials of graphene derivatives with polysaccharides.Materials 20158265268310.3390/ma8020652 28787964
    [Google Scholar]
  82. ZhuY. YiB. YuanQ. WuY. WangM. YanS. Removal of methylene blue from aqueous solution by cattle manure-derived low temperature biochar.RSC Advances2018836199171992910.1039/C8RA03018A 35541638
    [Google Scholar]
  83. YanX. QiM. LiP. ZhanY. ShaoH. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action.Cell Biosci.2017715010.1186/s13578‑017‑0179‑x 29034071
    [Google Scholar]
  84. HuX. JiaX. ZhiC. JinZ. MiaoM. Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles.Carbohydr. Polym.201921020420910.1016/j.carbpol.2019.01.043 30732755
    [Google Scholar]
  85. UsmanA. HussainZ. RiazA. KhanA.N. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.Carbohydr. Polym.201615359259910.1016/j.carbpol.2016.08.026 27561532
    [Google Scholar]
  86. PalN. DubeyP. GopinathP. PalK. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity.Int. J. Biol. Macromol.2017959410510.1016/j.ijbiomac.2016.11.041 27856322
    [Google Scholar]
  87. GeorgeA. ShahP.A. ShrivastavP.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review.Int. J. Pharm.201956124426410.1016/j.ijpharm.2019.03.011 30851391
    [Google Scholar]
  88. TehraniK.F. RanjiN. KouhkanF. HosseinzadehS. Apoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs.Iran. J. Basic Med. Sci.2020234469482 32489562
    [Google Scholar]
  89. SukJ.S. XuQ. KimN. HanesJ. EnsignL.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.201699Pt A285110.1016/j.addr.2015.09.012 26456916
    [Google Scholar]
  90. YinF. HuK. ChenY. YuM. WangD. WangQ. YongK.T. LuF. LiangY. LiZ. SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer.Theranostics2017751133114810.7150/thno.17841 28435453
    [Google Scholar]
  91. DunnS.E. BrindleyA. DavisS.S. DaviesM.C. IllumL. Polystyrene-poly (ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution.Pharm. Res.19941171016102210.1023/A:1018939521589 7937542
    [Google Scholar]
  92. ScottR.A. PeppasN.A. Highly crosslinked, PEG-containing copolymers for sustained solute delivery.Biomaterials199920151371138010.1016/S0142‑9612(99)00040‑X 10454008
    [Google Scholar]
  93. CarelliV. ColoD.G. NannipieriE. SerafiniM.F. Evaluation of a silicone based matrix containing a crosslinked polyethylene glycol as a controlled drug delivery system for potential oral application.J. Control. Release199533115316210.1016/0168‑3659(94)00081‑5
    [Google Scholar]
  94. LiJ. KaoW.J. Synthesis of polyethylene glycol (PEG) derivatives and PEGylated-peptide biopolymer conjugates.Biomacromolecules2003441055106710.1021/bm034069l 12857092
    [Google Scholar]
  95. SunX. LiuZ. WelsherK. RobinsonJ.T. GoodwinA. ZaricS. DaiH. Nano-graphene oxide for cellular imaging and drug delivery.Nano Res.20081320321210.1007/s12274‑008‑8021‑8 20216934
    [Google Scholar]
  96. BarbeeM.H. WrightZ.M. AllenB.P. TaylorH.F. PattesonE.F. KnightA.S. Protein-mimetic self-assembly with synthetic macromolecules.Macromolecules20215483585361210.1021/acs.macromol.0c02826
    [Google Scholar]
  97. ValmonteZ. BakerZ. LoorJ. SarkarA. Concurrent reduction and stabilization of graphene oxide dispersion by silk-inspired polymer.ACS Appl. Polym. Mater.2023574621462710.1021/acsapm.3c00353 37469881
    [Google Scholar]
  98. KumarM.N.V.R. MuzzarelliR.A.A. MuzzarelliC. SashiwaH. DombA.J. Chitosan chemistry and pharmaceutical perspectives.Chem. Rev.2004104126017608410.1021/cr030441b 15584695
    [Google Scholar]
  99. QianH. LiuB. JiangX. Application of nanomaterials in cancer immunotherapy.Mater. Today Chem.20187536410.1016/j.mtchem.2018.01.001
    [Google Scholar]
  100. SreeHarsha, N.; Maheshwari, R.; Dhubiab, A.B.E.; Tekade, M.; Sharma, M.C.; Venugopala, K.N.; Tekade, R.K.; Alzahrani, A.M. Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy.Int. J. Nanomedicine2019147419742910.2147/IJN.S211224 31686814
    [Google Scholar]
  101. LiJ. CaiC. LiJ. LiJ. LiJ. SunT. WangL. WuH. YuG. Chitosan-based nanomaterials for drug delivery.Molecules20182310266110.3390/molecules23102661 30332830
    [Google Scholar]
  102. ZhangG. ZengX. LiP. Nanomaterials in cancer-therapy drug delivery system.J. Biomed. Nanotechnol.20139574175010.1166/jbn.2013.1583 23802404
    [Google Scholar]
  103. KarkiN. TiwariH. TewariC. RanaA. PandeyN. BasakS. SahooN.G. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications.J. Mater. Chem. B Mater. Biol. Med.20208368116814810.1039/D0TB01149E 32966535
    [Google Scholar]
  104. DebA. AndrewsN.G. RaghavanV. Natural polymer functionalized graphene oxide for co-delivery of anticancer drugs: In-vitro and in-vivo.Int. J. Biol. Macromol.201811351552510.1016/j.ijbiomac.2018.02.153 29496437
    [Google Scholar]
  105. JinR. JiX. YangY. WangH. CaoA. Self-assembled graphene-dextran nanohybrid for killing drug-resistant cancer cells.ACS Appl. Mater. Interfaces20135157181718910.1021/am401523y 23875578
    [Google Scholar]
  106. XieM. LeiH. ZhangY. XuY. ShenS. GeY. LiH. XieJ. Non-covalent modification of graphene oxide nanocomposites with chitosan/dextran and its application in drug delivery.RSC Advances20166119328933710.1039/C5RA23823D
    [Google Scholar]
  107. ZhangF. XieM. ZhaoY. ZhangY. YangM. YangN. DengT. ZhangM. XieJ. Chitosan and dextran stabilized GO-iron oxide nanosheets with high dispersibility for chemotherapy and photothermal ablation.Ceram. Int.20194555996600310.1016/j.ceramint.2018.12.070
    [Google Scholar]
  108. KiewS.F. HoY.T. KiewL.V. KahJ.C.Y. LeeH.B. ImaeT. ChungL.Y. Preparation and characterization of an amylase-triggered dextrin-linked graphene oxide anticancer drug nanocarrier and its vascular permeability.Int. J. Pharm.20175341-229730710.1016/j.ijpharm.2017.10.045 29080707
    [Google Scholar]
  109. AslamM. KalyarM.A. RazaZ.A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites.Polym. Eng. Sci.201858122119213210.1002/pen.24855
    [Google Scholar]
  110. LiuY.L. ChiuY.C. Novel approach to the chemical modification of poly(vinyl alcohol): Phosphorylation.J. Polym. Sci. A Polym. Chem.20034181107111310.1002/pola.10654
    [Google Scholar]
  111. SahooN.G. BaoH. PanY. PalM. KakranM. ChengH.K.F. LiL. TanL.P. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study.Chem. Commun.201147185235523710.1039/c1cc00075f 21451845
    [Google Scholar]
  112. LiW. JiangT. PuY. JiaoX. TanW. QinS. Glucose biosensor using fluorescence quenching with chitosan‐modified graphene oxide.Micro & Nano Lett.201914334434810.1049/mnl.2018.5269
    [Google Scholar]
  113. ChoH.J. YoonH.Y. KooH. KoS.H. ShimJ.S. LeeJ.H. KimK. KwonC.I. KimD.D. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel.Biomaterials201132297181719010.1016/j.biomaterials.2011.06.028 21733572
    [Google Scholar]
  114. LiuY. SunJ. CaoW. YangJ. LianH. LiX. SunY. WangY. WangS. HeZ. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery.Int. J. Pharm.2011421116016910.1016/j.ijpharm.2011.09.006 21945183
    [Google Scholar]
  115. PrestwichG.D. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine.J. Control. Release2011155219319910.1016/j.jconrel.2011.04.007 21513749
    [Google Scholar]
  116. JungH.S. LeeM-Y. KongW.H. DoI.H. HahnS.K. Nano graphene oxide–hyaluronic acid conjugate for target specific cancer drug delivery.RSC Advances2014427141971420010.1039/c4ra00605d
    [Google Scholar]
  117. SongE. HanW. LiC. ChengD. LiL. LiuL. ZhuG. SongY. TanW. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery.ACS Appl. Mater. Interfaces2014615118821189010.1021/am502423r 25000539
    [Google Scholar]
  118. LiuJ. ZhangD. LianS. ZhengJ. LiB. LiT. JiaL. Redox-responsive hyaluronic acid-functionalized graphene oxide nanosheets for targeted delivery of water-insoluble cancer drugs.Int. J. Nanomedicine2018137457747210.2147/IJN.S173889 30532533
    [Google Scholar]
  119. WuH. ShiH. WangY. JiaX. TangC. ZhangJ. YangS. Hyaluronic acid conjugated graphene oxide for targeted drug delivery.Carbon20146937938910.1016/j.carbon.2013.12.039
    [Google Scholar]
  120. GuoY. XuH. LiY. WuF. LiY. BaoY. YanX. HuangZ. XuP. Hyaluronic acid and Arg-Gly-Asp peptide modified Graphene oxide with dual receptor-targeting function for cancer therapy.J. Biomater. Appl.2017321546510.1177/0885328217712110 28554233
    [Google Scholar]
  121. SousaL.R. DiogoD.M.D. AlvesC.G. CostaE.C. FerreiraP. LouroR.O. CorreiaI.J. Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy.Carbohydr. Polym.2018200939910.1016/j.carbpol.2018.07.066 30177213
    [Google Scholar]
  122. PramanikN. RanganathanS. RaoS. SuneetK. JainS. RangarajanA. JhunjhunwalaS. A composite of hyaluronic acid-modified graphene oxide and iron oxide nanoparticles for targeted drug delivery and magnetothermal therapy.ACS Omega2019459284929310.1021/acsomega.9b00870 31460017
    [Google Scholar]
  123. MunicoyS. Echazú, A.M.I.; Antezana, P.E.; Galdopórpora, J.M.; Olivetti, C.; Mebert, A.M.; Foglia, M.L.; Tuttolomondo, M.V.; Alvarez, G.S.; Hardy, J.G.; Desimone, M.F. Stimuli-responsive materials for tissue engineering and drug delivery.Int. J. Mol. Sci.20202113472410.3390/ijms21134724 32630690
    [Google Scholar]
  124. ScaffaroR. BottaL. MaioA. GalloG. PLA graphene nanoplatelets nanocomposites: Physical properties and release kinetics of an antimicrobial agent.Compos., Part B Eng.201710913814610.1016/j.compositesb.2016.10.058
    [Google Scholar]
  125. LiC. LiF. WangK. WangQ. LiuH. SunX. XieD. Synthesis, characterizations, and release mechanisms of carboxymethyl chitosan-graphene oxide-gelatin composite hydrogel for controlled delivery of drug.Inorg. Chem. Commun.202315511096510.1016/j.inoche.2023.110965
    [Google Scholar]
  126. OuL. SunT. LiuM. ZhangY. ZhouZ. ZhanX. LuL. ZhaoQ. LaiR. ShaoL. Efficient miRNA inhibitor delivery with graphene oxide-polyethylenimine to inhibit oral squamous cell carcinoma.Int. J. Nanomedicine2020151569158310.2147/IJN.S220057 32210552
    [Google Scholar]
  127. SolimanM. SadekA.A. AbdelhamidH.N. HusseinK. Graphene oxide-cellulose nanocomposite accelerates skin wound healing.Res. Vet. Sci.202113726227310.1016/j.rvsc.2021.05.013 34052571
    [Google Scholar]
  128. AlyA.A. AhmedM.K. Nanofibers of cellulose acetate containing ZnO nanoparticles/graphene oxide for wound healing applications.Int. J. Pharm.2021598120325 10.1016/j.ijpharm.2021.120325 33539995
    [Google Scholar]
  129. LiY. LiuX. TanL. CuiZ. YangX. ZhengY. YeungK.W.K. ChuP.K. WuS. Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g‐C3N4 under dual light irradiation.Adv. Funct. Mater.20182830180029910.1002/adfm.201800299
    [Google Scholar]
  130. RehmanS.R. AugustineR. ZahidA.A. AhmedR. TariqM. HasanA. Reduced graphene oxide incorporated GelMA hydrogel promotes angiogenesis for wound healing applications.Int. J. Nanomedicine2019149603961710.2147/IJN.S218120 31824154
    [Google Scholar]
  131. AhmedS. IkramS. Chitosan and gelatin based biodegradable packaging films with UV-light protection.J. Photochem. Photobiol. B201616311512410.1016/j.jphotobiol.2016.08.023 27560490
    [Google Scholar]
  132. MaZ. LiS. WangH. ChengW. LiY. PanL. ShiY. Advanced electronic skin devices for healthcare applications.J. Mater. Chem. B Mater. Biol. Med.20197217319710.1039/C8TB02862A 32254546
    [Google Scholar]
  133. WuJ. WangM. PanY. PangY. TangY. SongC. ZhuJ. ZhangX. HuangQ. Synthesis of manganese-oxide and palladium nanoparticles co-decorated polypyrrole/graphene oxide (MnO 2 @Pd@PPy/GO) nanocomposites for anti-cancer treatment.RSC Advances20221237237862379510.1039/D2RA03860A 36093248
    [Google Scholar]
  134. GuoX. MeiN. Aloe vera: A review of toxicity and adverse clinical effects.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.2016342779610.1080/10590501.2016.1166826 26986231
    [Google Scholar]
  135. LiuJ. CuiL. LosicD. Graphene and graphene oxide as new nanocarriers for drug delivery applications.Acta Biomater.20139129243925710.1016/j.actbio.2013.08.016 23958782
    [Google Scholar]
  136. QinX.C. GuoZ.Y. LiuZ.M. ZhangW. WanM.M. YangB.W. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy.J. Photochem. Photobiol. B201312015616210.1016/j.jphotobiol.2012.12.005 23357205
    [Google Scholar]
  137. WeiG. YanM. DongR. WangD. ZhouX. ChenJ. HaoJ. Covalent modification of reduced graphene oxide by means of diazonium chemistry and use as a drug-delivery system.Chem20121846147081471610.1002/chem.201200843 23018420
    [Google Scholar]
  138. WangY. ZhangP. LiuC.F. HuangC.Z. A facile and green method to fabricate graphene-based multifunctional hydrogels for miniature-scale water purification.RSC Advances20133249240924610.1039/c3ra22687e 23930219
    [Google Scholar]
  139. ScaffaroR. MaioA. LoprestiF. Effect of graphene and fabrication technique on the release kinetics of carvacrol from polylactic acid.Compos. Sci. Technol.2019169606910.1016/j.compscitech.2018.11.003
    [Google Scholar]
  140. LowY.Z. LiL. TanL.P. Investigating the behavior of mucoadhesive polysaccharide-functionalized graphene oxide in bladder environment.ACS Appl. Bio Mater.20214163063910.1021/acsabm.0c01187
    [Google Scholar]
  141. WeiQ. FuT. YueQ. LiuH. MaS. CaiM. ZhouF. Graphene oxide/brush-like polysaccharide copolymer nanohybrids as eco-friendly additives for water-based lubrication.Tribol. Int.202115710689510.1016/j.triboint.2021.106895
    [Google Scholar]
  142. LitewkaD.J. DykasK. FelkleD. KarnasK. KhachatryanG. KarewiczA. Hyaluronic acid-silver nanocomposites and their biomedical applications: A review.Materials202115123410.3390/ma15010234 35009380
    [Google Scholar]
  143. Martínez, A.M.; Benito, M.; Pérez, E.; Teijón, M.J.; Blanco, D.M. The role of anionic polysaccharides in the preparation of nanomedicines with anticancer applications.Curr. Pharm. Des.201622223364337910.2174/1381612822666160128145125 26818877
    [Google Scholar]
  144. FolentarskaA. ŁagiewkaJ. KrystyjanM. CiesielskiW. Biodegradable binary and ternary complexes from renewable raw materials.Polymers20211317292510.3390/polym13172925 34502965
    [Google Scholar]
  145. NowakN. GrzebieniarzW. KhachatryanG. KhachatryanK. MolendaK.A. KrzanM. GrzybJ. Synthesis of silver and gold nanoparticles in sodium alginate matrix enriched with graphene oxide and investigation of properties of the obtained thin films.Appl. Sci.2021119385710.3390/app11093857
    [Google Scholar]
  146. KrystyjanM. KhachatryanG. GrabackaM. KrzanM. WitczakM. GrzybJ. WoszczakL. Physicochemical, bacteriostatic, and biological properties of starch/chitosan polymer composites modified by graphene oxide, designed as new bionanomaterials.Polymers20211314232710.3390/polym13142327 34301083
    [Google Scholar]
  147. AnjaliJ. JoseV.K. LeeJ.M. Carbon-based hydrogels: Synthesis and their recent energy applications.J. Mater. Chem. A Mater. Energy Sustain.2019726154911551810.1039/C9TA02525A
    [Google Scholar]
  148. PalmeseL.L. ThapaR.K. SullivanM.O. KiickK.L. Hybrid hydrogels for biomedical applications.Curr. Opin. Chem. Eng.20192414315710.1016/j.coche.2019.02.01031844607
    [Google Scholar]
  149. EhtesabiH. RoshaniS. BagheriZ. AviniY.M. Carbon dots—Sodium alginate hydrogel: A novel tetracycline fluorescent sensor and adsorber.J. Environ. Chem. Eng.20197510341910.1016/j.jece.2019.103419
    [Google Scholar]
  150. JavanbakhtS. NazariN. RakhshaeiR. NamaziH. Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery.Carbohydr. Polym.201819545345910.1016/j.carbpol.2018.04.103 29804999
    [Google Scholar]
  151. SaeedniaL. YaoL. CluffK. AsmatuluR. Sustained releasing of methotrexate from injectable and thermosensitive chitosan–carbon nanotube hybrid hydrogels effectively controls tumor cell growth.ACS Omega2019424040404810.1021/acsomega.8b03212 30842986
    [Google Scholar]
  152. KosowskaK. PyzikD.P. StryjewskaS.M. NogaS. JagiełłoJ. BaranM. LipińskaL. SurmaZ.E. ChłopekJ. Gradient chitosan hydrogels modified with graphene derivatives and hydroxyapatite: Physiochemical properties and initial cytocompatibility evaluation.Int. J. Mol. Sci.20202114488810.3390/ijms21144888 32664452
    [Google Scholar]
  153. GangulyS. DasP. ItzhakiE. HadadE. GedankenA. MargelS. Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels.ACS Appl. Mater. Interfaces20201246519405195110.1021/acsami.0c14527 33156599
    [Google Scholar]
  154. SerafinA. MurphyC. RubioM.C. CollinsM.N. Printable alginate/ gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Mater. Sci. Eng. C2021122111927 10.1016/j.msec.2021.111927 33641920
    [Google Scholar]
  155. WangH. BiswasS.K. ZhuS. LuY. YueY. HanJ. XuX. WuQ. XiaoH. Self-healable electro-conductive hydrogels based on core-shell structured nanocellulose/carbon nanotubes hybrids for use as flexible supercapacitors.Nanomaterials202010111210.3390/nano10010112 31935929
    [Google Scholar]
  156. NayakS. PrasadS.R. MandalD. DasP. Carbon dot crosslinked polyvinylpyrrolidone hybrid hydrogel for simultaneous dye adsorption, photodegradation and bacterial elimination from waste water.J. Hazard. Mater.2020392122287 10.1016/j.jhazmat.2020.122287 32066019
    [Google Scholar]
  157. JlassiK. EidK. SliemM.H. AbdullahA.M. ChehimiM.M. KrupaI. Rational synthesis, characterization, and application of environmentally friendly (polymer–carbon dot) hybrid composite film for fast and efficient UV-assisted Cd2+ removal from water.Environ. Sci. Eur.20203211210.1186/s12302‑020‑0292‑z
    [Google Scholar]
  158. SudhakarK. SuneethaM. RaoK.M. HanS.S. Antibacterial reduced graphene oxide reinforces polyelectrolyte hydrogels with polysaccharides via a green method.Colloids Surf. A Physicochem. Eng. Asp.202162812734010.1016/j.colsurfa.2021.127340
    [Google Scholar]
  159. KrzanM. Pióro, K.A.; Tyliszczak, B. Foams stabilized by particles.Foam films and foams.1st EditionCRC Press201810.1201/9781351117746‑15
    [Google Scholar]
  160. ZhangY. ZhuJ-Y. RenH-B. BiY-T. ZhangL. Facile synthesis of nitrogen-doped graphene aerogels functionalized with chitosan for supercapacitors with excellent electrochemical performance.Chin. Chem. Lett.201728593594210.1016/j.cclet.2017.01.023
    [Google Scholar]
  161. ZhaoZ. WangE.F. YanH. KonoY. WenB. BaiL. ShiF. ZhangJ. BensonK.C. ParkC. WangY. ShenG. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties.Nat. Commun.201561621210.1038/ncomms7212 25648723
    [Google Scholar]
  162. ThangaveluG.S.A. MukherjeeM. LayanaK. KumarD.C. SulthanaY.R. KumarR.R. AnanthanA. MuthulakshmiV. MandalA.B. Biodegradable polyurethanes foam and foam fullerenes nanocomposite strips by one-shot moulding: Physicochemical and mechanical properties.Mater. Sci. Semicond. Process.202011210501810.1016/j.mssp.2020.105018
    [Google Scholar]
  163. KrystyjanM. KhachatryanG. KhachatryanK. KrzanM. CiesielskiW. ŻarskaS. SzczepankowskaJ. Polysaccharides composite materials as carbon nanoparticles carrier.Polymers202214594810.3390/polym14050948 35267771
    [Google Scholar]
  164. ChenP. XieF. TangF. McNallyT. Structure and properties of thermomechanically processed chitosan/carboxymethyl cellulose/graphene oxide polyelectrolyte complexed bionanocomposites.Int. J. Biol. Macromol.202015842042910.1016/j.ijbiomac.2020.04.259 32376251
    [Google Scholar]
  165. Triviño, Z.D.G.; Prokhorov, E.; Bárcenas, L.G.; Nonell, M.J.; Campos, G.J.B.; Peña, E.E.; Morales, M.J.D.; Jacinto, S.P.; Terrones, M.; Salazar, G.S.; Donlucas, N.S.M.; Sanchez, I.C. The effect of CNT functionalization on electrical and relaxation phenomena in MWCNT/chitosan composites.Mater. Chem. Phys.201515525226110.1016/j.matchemphys.2015.02.041
    [Google Scholar]
  166. AlshahraniA.A. AlsohaimiI.H. AlshehriS. AlawadyA.R. AassarE.M.R. NghiemL.D. PanhuisM. Nanofiltration membranes prepared from pristine and functionalised multiwall carbon nanotubes/biopolymer composites for water treatment applications.J. Mater. Res. Technol.2020949080909210.1016/j.jmrt.2020.06.055
    [Google Scholar]
  167. YamakawaA. SuzukiS. OkuT. EnomotoK. IkedaM. RodrigueJ. TateiwaK. TeradaY. YanoH. KitamuraS. Nanostructure and physical properties of cellulose nanofiber-carbon nanotube composite films.Carbohydr. Polym.201717112913510.1016/j.carbpol.2017.05.012 28578946
    [Google Scholar]
  168. JamrózE. KhachatryanG. KopelP. JuszczakL. KaweckaA. KrzyściakP. KucharekM. BębenekZ. ZimowskaM. Furcellaran nanocomposite films: The effect of nanofillers on the structural, thermal, mechanical and antimicrobial properties of biopolymer films.Carbohydr. Polym.202024011624410.1016/j.carbpol.2020.116244 32475550
    [Google Scholar]
  169. KhachatryanK. KhachatryanL. KrzanM. KrystyjanM. FiedorowiczK.L. BorońL.A. KoronowiczA. DrozdowskaM. KhachatryanG. Formation and investigation of physicochemical, biological and bacteriostatic properties of nanocomposite foils containing silver nanoparticles and graphene oxide in hyaluronic acid matrix.Materials20211412337710.3390/ma14123377 34207190
    [Google Scholar]
  170. YuJ. ZhaoZ. SunJ. GengC. BuQ. WuD. XiaY. Electrospinning highly concentrated sodium alginate nanofibres without surfactants by adding fluorescent carbon dots.Nanomaterials202010356510.3390/nano10030565 32245023
    [Google Scholar]
  171. FujisawaS. TogawaE. KurodaK. Facile route to transparent, strong, and thermally stable nanocellulose/polymer nanocomposites from an aqueous Pickering emulsion.Biomacromol.201718126627110.1021/acs.biomac.6b01615 27958712
    [Google Scholar]
  172. TangZ. HeC. TianH. DingJ. HsiaoB.S. ChuB. ChenX. Polymeric nanostructured materials for biomedical applications.Prog. Polym. Sci.2016608612810.1016/j.progpolymsci.2016.05.005
    [Google Scholar]
  173. ChandrasekaranR. KrishnanM. BupeshG. ChackoS. GawadeO. HasanS. GeorgeE. VijayakumarT.S. SundaramM. SagadevanS. Prospective features of functional 2D nanomaterial graphene oxide in the wound healing process.J. Drug Deliv. Sci. Technol.20238210435210.1016/j.jddst.2023.104352
    [Google Scholar]
  174. PutroJ.N. SoetaredjoF.E. LunardiV.B. IrawatyW. YulianaM. SantosoS.P. PuspitasariN. WentenI.G. IsmadjiS. Polysaccharides gums in drug delivery systems: A review.Int. J. Biol. Macromol.2023253Pt 412702010.1016/j.ijbiomac.2023.12702037741484
    [Google Scholar]
/content/journals/cos/10.2174/0115701794298435240324175513
Loading
/content/journals/cos/10.2174/0115701794298435240324175513
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test