Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

Previous studies have reported various biological activities of indenopyridazine and thiazole derivatives, including antiviral activity and CoV-19 inhibition. In this paper, the authors aimed to design, synthesize, and characterize a novel series of indenopyridazinethiazoles, starting with 2-(4-cyano-3-oxo-2,3-dihydro-9-indeno[2,1-c]pyridazin-9-ylidene)-hydrazine-1-carbothioamide and available laboratory reagents.

Methods

The strategy involved the synthesis of indeno[2,1-c]pyridazincarbothioamide, followed by its reaction with various hydrazonoyl chlorides and α-halocompounds (phenacyl bromides and α-chloroketones) to obtain the desired indenopyridazinethiazole derivatives. The synthesized structures were confirmed using IR, NMR, mass spectra, elemental analysis, and alternative synthesis when possible. Docking scores and poses of thirteen synthesized compounds were examined using AutoDock4.2.6 software against multiple targets of SARS-CoV-2, including 3C-like protease (3CLpro), helicase, receptor binding domain (RBD), papain-like protease (PLpro), neuropilin-1 (NRP-1), RNA-dependent RNA polymerase (RdRp), and human angiotensin‐converting enzyme 2 (ACE2).

Results

Docking predictions revealed that compound exhibited high potency against 3CLpro and helicase, with docking scores of -10.9 and -10.5 kcal/mol, respectively. Compound showed superior docking scores against RBD and ACE2, with values of -8.7 and -11.8 kcal/mol, respectively. Compounds and demonstrated excellent docking scores against RdRp, PLpro, and NRP-1, with values of -10.3, -10.4, and -8.6 kcal/mol, respectively.

Conclusion

The authors recommend further experimental assessments of compounds and against SARS-CoV-2 multi-targets, considering their promising docking scores.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794266795231129074028
2024-02-12
2025-05-08
Loading full text...

Full text loading...

References

  1. SuS. WongG. ShiW. LiuJ. LaiA.C.K. ZhouJ. LiuW. BiY. GaoG.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses.Trends Microbiol.201624649050210.1016/j.tim.2016.03.003 27012512
    [Google Scholar]
  2. LuoC.M. WangN. YangX.L. LiuH.Z. ZhangW. LiB. HuB. PengC. GengQ.B. ZhuG.J. LiF. ShiZ.L. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus.J. Virol.20189213e00116e0011810.1128/JVI.00116‑18 29669833
    [Google Scholar]
  3. ChuH. ChanC.M. ZhangX. WangY. YuanS. ZhouJ. Au-YeungR.K.H. SzeK.H. YangD. ShuaiH. HouY. LiC. ZhaoX. PoonV.K.M. LeungS.P. YeungM.L. YanJ. LuG. JinD.Y. GaoG.F. ChanJ.F.W. YuenK.Y. Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells.J. Biol. Chem.201829330117091172610.1074/jbc.RA118.001897 29887526
    [Google Scholar]
  4. SamratS.K. TharappelA.M. LiZ. LiH. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development.Virus Res.202028819814110.1016/j.virusres.2020.198141 32846196
    [Google Scholar]
  5. NegiM. ChawlaP.A. FarukA. ChawlaV. Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic.Bioorg. Chem.202010410431510.1016/j.bioorg.2020.104315 33007742
    [Google Scholar]
  6. Abu-MelhaS. EdreesM.M. SaidM.A. RiyadhS.M. Al-KaffN.S. GomhaS.M. Potential COVID-19 drug candidates based on diazinyl-thiazol-imine moieties: Synthesis and greener pastures biological study.Molecules202227248810.3390/molecules27020488 35056802
    [Google Scholar]
  7. SaidM.A. RiyadhS.M. Al-KaffN.S. NaylA.A. KhalilK.D. Bräse, S.; Gomha, S.M. Synthesis and greener pastures biological study of bis-thiadiazoles as potential Covid-19 drug candidates.Arab. J. Chem.202215910410110.1016/j.arabjc.2022.104101 35845755
    [Google Scholar]
  8. GomhaS.M. RiyadhS.M. AbdellattifM.H. AbolibdaT.Z. Abdel-azizH.M. NaylA.A. ElgoharyA.M. ElfikyA.A. Synthesis and in silico study of some new bis-[1,3,4]thiadiazolimines and bis-thiazolimines as potential inhibitors for SARS-CoV-2 main protease.Curr. Issues Mol. Biol.202244104540455610.3390/cimb44100311 36286026
    [Google Scholar]
  9. JonesR.A. WhitmoreA. The tautomeric properties of 6-(2-pyrrolyl)pyridazin-3-one and 6-(2-pyrrolyl) pyridazin-3-thione.ARKIVOC200711114119
    [Google Scholar]
  10. Abu-MelhaS. GomhaS. AbouziedA. EdreesM. Abo DenaA. MuhammadZ. Microwave-assisted one pot three-component synthesis of novel bioactive thiazolyl-pyridazinediones as potential anti-microbial agents against antibiotic-resistant bacteria.Molecules20212614426010.3390/molecules26144260 34299535
    [Google Scholar]
  11. AkhtarW. ShaquiquzzamanM. AkhterM. VermaG. KhanM.F. AlamM.M. The therapeutic journey of pyridazinone.Eur. J. Med. Chem.201612325628110.1016/j.ejmech.2016.07.061 27484513
    [Google Scholar]
  12. SalvadeoA. VillaG. SegagniS. PiazzaV. PicardiL. RomanoM. PariniJ. Cadralazine, a new vasodilator, in addition to a beta-blocker for long-term treatment of hypertension.Arzneimittelforschung1985353623625 2859865
    [Google Scholar]
  13. ImadS. NisarS. MaqsoodZ.T. A study of redox properties of hydralazine hydrochloride, an antihypertensive drug.J. Saudi Chem. Soc.201014324124510.1016/j.jscs.2010.02.003
    [Google Scholar]
  14. FungM. ThorntonA. MybeckK. WuJ.H.H. HornbuckleK. MunizE. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999.Drug Inf. J.200135129331710.1177/009286150103500134
    [Google Scholar]
  15. AsifM. The pharmacological importance of some diazine containing drug molecules.Sop Trans. Org. Chem.2014111610.15764/STAC.2014.01001
    [Google Scholar]
  16. WangZ. WangM. YaoX. LiY. TanJ. WangL. QiaoW. GengY. LiuY. WangQ. Design, synthesis and antiviral activity of novel pyridazines.Eur. J. Med. Chem.201254334110.1016/j.ejmech.2012.04.020 22608761
    [Google Scholar]
  17. SweeneyZ.K. DunnJ.P. LiY. HeilekG. DuntenP. ElworthyT.R. HanX. HarrisS.F. HirschfeldD.R. HoggJ.H. HuberW. KaiserA.C. KerteszD.J. KimW. MirzadeganT. RoepelM.G. SaitoY.D. SilvaT.M.P.C. SwallowS. TracyJ.L. VillasenorA. VoraH. ZhouA.S. KlumppK. Discovery and optimization of pyridazinone non-nucleoside inhibitors of HIV-1 reverse transcriptase.Bioorg. Med. Chem. Lett.200818154352435410.1016/j.bmcl.2008.06.072 18632268
    [Google Scholar]
  18. LiD. ZhanP. LiuH. PannecouqueC. BalzariniJ. De ClercqE. LiuX. Synthesis and biological evaluation of pyridazine derivatives as novel HIV-1 NNRTIs.Bioorg. Med. Chem.20132172128213410.1016/j.bmc.2012.12.049 23415090
    [Google Scholar]
  19. FerroS. AgnelloS. BarrecaM.L. De LucaL. ChristF. GittoR. Synthesis of new pyridazine derivatives as potential anti‐HIV‐1 agents.J. Heterocycl. Chem.20094661420142410.1002/jhet.230
    [Google Scholar]
  20. RashadA.E. ShamroukhA.H. AliM.A. Abdel-MottiF.M. Synthesis and antiviral screening of some novel pyridazine and triazolopyridazine nucleosides.Heteroatom Chem.200718327428210.1002/hc.20296
    [Google Scholar]
  21. FlefelE. TantawyW. El-SofanyW. El-ShahatM. El-SayedA. Abd-ElshafyD. Synthesis of some new pyridazine derivatives for anti-HAV evaluation.Molecules20172211482210.3390/molecules22010148 28106751
    [Google Scholar]
  22. WangG. WanJ. HuY. WuX. PrhavcM. DyatkinaN. RajwanshiV.K. SmithD.B. JekleA. KinkadeA. SymonsJ.A. JinZ. DevalJ. ZhangQ. TamY. ChandaS. BlattL. BeigelmanL. Synthesis and anti-influenza activity of pyridine, pyridazine, and pyrimidine C -nucleosides as favipiravir (T-705) analogues.J. Med. Chem.201659104611462410.1021/acs.jmedchem.5b01933 27120583
    [Google Scholar]
  23. AsifM. Pyridazine derivatives as HCV polymerase inhibitors: A drug discovery for the treatment of hepatitis c virus infection. Modern Approach.Drug Desig.20182212010.31031/MADD.2018.02.000533
    [Google Scholar]
  24. FlefelE.M. Abdel-MageidR.E. TantawyW.A. AliM.A. AmrA.E.G.E. Heterocyclic compounds based on 3-(4-bromophenyl) azo-5-phenyl-2(3H)-furanone: Anti-avian influenza virus (H5N1) activity/Heterociklički derivati 3-(4-bromfenil) azo-5-fenil-2(3H)-furanona: Djelovanje na virus ptičje gripe (H5N1).Acta Pharm.201262459360610.2478/v10007‑012‑0037‑7 23333891
    [Google Scholar]
  25. GaltierC. MavelS. SnoeckR. AndreïG. PannecouqueC. WitvrouwM. BalzariniJ. De ClercqE. GueiffierA. Synthesis and antiviral activities of 3-aralkylthiomethylimidazo[1,2-b]pyridazine derivatives.Antivir. Chem. Chemother.200314417718210.1177/095632020301400402 14582846
    [Google Scholar]
  26. ZemekF. DrtinovaL. NepovimovaE. SepsovaV. KorabecnyJ. KlimesJ. KucaK. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine.Expert Opin. Drug Saf.2014136759774 24845946
    [Google Scholar]
  27. HuangY.S. LiuJ.Q. ZhangL-J. LuH-L. Synthesis of 1-Indanones from Benzoic Acids.Ind. Eng. Chem. Res.20125131105110910.1021/ie202369w
    [Google Scholar]
  28. MaresovaP. MohelskaH. KucaK. Social and family load of Alzheimer’s disease.Appl. Econ.201648211936194810.1080/00036846.2015.1111986
    [Google Scholar]
  29. KumarS. AggarwalR. Thiazole: A privileged motif in marine natural products.Mini Rev. Org. Chem.2018161263410.2174/1570193X15666180412152743
    [Google Scholar]
  30. SujathaK. VedulaR.R. Novel one-pot expeditious synthesis of 2,4-disubstituted thiazoles through a three-component reaction under solvent free conditions.Synth. Commun.201848330230810.1080/00397911.2017.1399422
    [Google Scholar]
  31. AbdallaM.A. GomhaS.M. AbdelazizM. SeragN. Synthesis and antiviral evaluation of some novel thiazoles and 1,3-thiazines substituted with pyrazole moiety against rabies virus.Turk. J. Chem.20164044145310.3906/kim‑1506‑13
    [Google Scholar]
  32. Al-HumaidiJ.Y. GomhaS.M. El-GhanyN.A.A. FaragB. ZakiM.E.A. AbolibdaT.Z. MohamedN.A. Green synthesis and molecular docking study of some new thiazoles using terephthalohydrazide chitosan hydrogel as ecofriendly biopolymeric catalyst.Catalysts2023139131110.3390/catal13091311
    [Google Scholar]
  33. NayakS. GaonkarS.L. A Review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives.Mini Rev. Med. Chem.201919321523810.2174/1389557518666180816112151 30112994
    [Google Scholar]
  34. HavrylyukD. ZimenkovskyB. VasylenkoO. DayC.W. SmeeD.F. GrellierP. LesykR. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones.Eur. J. Med. Chem.20136622823710.1016/j.ejmech.2013.05.044 23811085
    [Google Scholar]
  35. KonnoS. ThanigaimalaiP. YamamotoT. NakadaK. KakiuchiR. TakayamaK. YamazakiY. YakushijiF. AkajiK. KisoY. KawasakiY. ChenS.E. FreireE. HayashiY. Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety.Bioorg. Med. Chem.201321241242410.1016/j.bmc.2012.11.017 23245752
    [Google Scholar]
  36. KaminskyyD.V. Screening of the antiviral activity in the range of C5 and N3 substituted 4-thiazolidinone derivatives.J. Organic Pharmaceut. Chem.2015132(50)646910.24959/ophcj.15.819
    [Google Scholar]
  37. AtamanyukD. ZimenkovskyB. AtamanyukV. LesykR. 5-Ethoxymethylidene-4-thioxo- 2-thiazolidinone as versatile building block for novel biorelevant small molecules with thiopyrano[2,3-d][1,3]thiazole core.Synth. Commun.201444223724410.1080/00397911.2013.800552
    [Google Scholar]
  38. HavrylyukD. ZimenkovskyB. VasylenkoO. LesykR. Synthesis and anticancer and antiviral activities of new 2-pyrazoline-substituted 4-thiazolidinones.J. Heterocycl. Chem.201350S1E55E6210.1002/jhet.1056
    [Google Scholar]
  39. HaggamR.A. AssyM.G. MohamedE.K. MohamedA.S. Synthesis of Pyrano[2,3‐ d]pyrimidine‐2,4‐diones and Pyridino[2,3‐ d]pyrimidine‐2,4,6,8‐tetraones: Evaluation Antitumor Activity.J. Heterocycl. Chem.202057284285010.1002/jhet.3830
    [Google Scholar]
  40. GomhaS.M. AbdelhadyH.A. HassainD.Z.H. AbdelmonsefA.H. El-NaggarM. ElaasserM.M. MahmoudH.K. Thiazole based thiosemicarbazones: Synthesis, cytotoxicity evaluation and molecular docking study.Drug Des. Devel. Ther.20211565967710.2147/DDDT.S291579 33633443
    [Google Scholar]
  41. HaggamR.A. AssyM.G. SherifM.H. GalahomM.M. Facile synthesis of some condensed 1,3-thiazines and thiazoles under conventional conditions: Antitumor activity.Res. Chem. Intermed.201743116299631510.1007/s11164‑017‑2990‑8
    [Google Scholar]
  42. EdreesM. MelhaS. SaadA. KhederN. GomhaS. MuhammadZ. Eco-friendly synthesis, characterization and biological evaluation of some new pyrazolines containing thiazole moiety as potential anticancer and anti-microbial agents.Molecules20182311297010.3390/molecules23112970 30441815
    [Google Scholar]
  43. GomhaS.M. MuhammadZ.A. Abdel-azizH.M. MatarI.K. El-SayedA.A. Green synthesis, molecular docking and anticancer activity of novel 1,4-dihydropyridine-3,5-dicarbohydrazones under grind-stone chemistry.Green Chem. Lett. Rev.20201361710.1007/s11164‑021‑04501‑y
    [Google Scholar]
  44. AbbasI.M. RiyadhS.M. AbdallahM.A. GomhaS.M. A novel route to tetracyclic fused tetrazines and thiadiazines.J. Heterocycl. Chem.200643493594210.1002/jhet.5570430419
    [Google Scholar]
  45. IbrahimM.S. FaragB. Al-HumaidiJ. ZakiM.E.A. FathallaM. GomhaS.M. Mechanochemical synthesis and molecular docking studies of new azines bearing indole as anticancer agents.Molecules2023289386910.3390/molecules28093869 37175279
    [Google Scholar]
  46. HaggamR.A. El-SayedH.A. SaidS.A. AhmedM.H.M. MoustafaA.H. Abd-El-NoorR.E. O ‐glycosylation/alkylation and antimicrobial activity of 4,6‐diaryl‐2‐oxonicotinonitrile derivatives.J. Heterocycl. Chem.201754137538310.1002/jhet.2593
    [Google Scholar]
  47. GomhaS.M. EldebssT.M.A. BadreyM.G. AbdullaM.M. MayhoubA.S. Novel 4-heteroaryl-antipyrines as DPP-IV inhibitors.Chem. Biol. Drug Des.20158651292130310.1111/cbdd.12593 26032047
    [Google Scholar]
  48. GomhaS. EdreesM. MuhammadZ. El-ReedyA. 5-(Thiophen-2-yl)-1,3,4-thiadiazole derivatives: Synthesis, molecular docking and in vitro cytotoxicity evaluation as potential anticancer agents.Drug Des. Devel. Ther.2018121511152310.2147/DDDT.S165276 29881258
    [Google Scholar]
  49. GomhaS.M. AbdelhamidA.O. KandilO.M. KandeelS.M. AbdelrehemN.A. Synthesis and molecular docking of some novel thiazoles and thiadiazoles incorporating pyranochromene moiety as potent anticancer agents. Mini-Reviews.Med. Chem.20181816701682
    [Google Scholar]
  50. GomhaS. AbdallahM. Abd El-AzizM. SeragN. Ecofriendly one-pot synthesis and antiviral evaluation of novel pyrazolyl pyrazolines of medicinal interest.Turk. J. Chem.20164048449810.3906/kim‑1510‑25
    [Google Scholar]
  51. AbolibdaT.Z. FathallaM. FaragB. ZakiM.E.A. GomhaS.M. Synthesis and Molecular docking of Some Novel 3-thiazolyl-Coumarins as Inhibitors of VEGFR-2 kinase.Molecules202328268910.3390/molecules28020689 36677750
    [Google Scholar]
  52. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. PengC. DuanY. YuJ. WangL. YangK. LiuF. JiangR. YangX. YouT. LiuX. YangX. BaiF. LiuH. LiuX. GuddatL.W. XuW. XiaoG. QinC. ShiZ. JiangH. RaoZ. YangH. Structure of Mpro from COVID-19 virus and discovery of its inhibitors.Nature20205827811289293
    [Google Scholar]
  53. NewmanJ.A. DouangamathA. YazdaniS. YosaatmadjaY. AimonA. Brandão-Neto, J.; Dunnett, L.; Gorrie-stone, T.; Skyner, R.; Fearon, D.; Schapira, M.; von Delft, F.; Gileadi, O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 hel-icase.Nat. Commun.20211214848
    [Google Scholar]
  54. LanJ. GeJ. YuJ. ShanS. ZhouH. FanS. ZhangQ. ShiX. WangQ. ZhangL. WangX. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.Nature2020581780721522010.1038/s41586‑020‑2180‑5 32225176
    [Google Scholar]
  55. OsipiukJ. JedrzejczakR. TesarC. EndresM. StolsL. BabniggG. KimY. MichalskaK. JoachimiakA.J.R.P. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors.Nat. Commun.2020121743
    [Google Scholar]
  56. DalyJ.L. SimonettiB. KleinK. ChenK.E. WilliamsonM.K. Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; Greber, U.F.; Horvath, P.; Sessions, R.B.; Helenius, A.; Hiscox, J.A.; Teesalu, T.; Matthews, D.A.; Davidson, A.D.; Collins, B.M.; Cullen, P.J.; Yamauchi, Y. Neuropilin-1 is a host factor for SARS-CoV-2 infection.Science2020370651886186510.1126/science.abd3072 33082294
    [Google Scholar]
  57. GaoY. YanL. HuangY. LiuF. ZhaoY. CaoL. WangT. SunQ. MingZ. ZhangL. GeJ. ZhengL. ZhangY. WangH. ZhuY. ZhuC. HuT. HuaT. ZhangB. YangX. LiJ. YangH. LiuZ. XuW. GuddatL.W. WangQ. LouZ. RaoZ. Structure of the RNA-dependent RNA polymerase from COVID-19 virus.Science2020368649277978210.1126/science.abb7498 32277040
    [Google Scholar]
  58. Martي-Renom Martí-Renom, M. A.; Stuart, A. C.; Fiser, A.; Sánchez, R.; Melo, F.; Šali, A. J. Comparative protein structure modeling of genes and genomes.Annu. Rev. Biophys. Biomol. Struct.200029291325
    [Google Scholar]
  59. GordonJ.C. MyersJ.B. FoltaT. ShojaV. HeathL.S. OnufrievA.H++ : A server for estimating pKas and adding missing hydrogens to macromolecules.Nucleic Acids Res.200533W368W371
    [Google Scholar]
  60. HalgrenT.A. MMFF VI. MMFF94s option for energy minimization studies.J. Comput. Chem.199920772072910.1002/(SICI)1096‑987X(199905)20:7<720::AID‑JCC7>3.0.CO;2‑X 34376030
    [Google Scholar]
  61. OpenEye Scientific Software.Santa Fe, NM, USA2016
    [Google Scholar]
  62. GasteigerJ. MarsiliM. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges.Tetrahedron198036223219322810.1016/0040‑4020(80)80168‑2
    [Google Scholar]
  63. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  64. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.051 27077332
    [Google Scholar]
  65. GoodfordP.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules.J. Med. Chem.198528784985710.1021/jm00145a002 3892003
    [Google Scholar]
  66. IbrahimM.A.A. AbdelrahmanA.H.M. Jaragh-AlhadadL.A. AtiaM.A.M. AlzahraniO.R. AhmedM.N. MoustafaM.S. SolimanM.E.S. ShawkyA.M. ParéP.W. HegazyM.E.F. SidhomP.A. Exploring toxins for hunting SARS-CoV-2 main protease inhibitors: Molecular docking, molecular dynamics, pharmacokinetic properties, and reactome study.Pharmaceuticals202215215317410.3390/ph15020153 35215266
    [Google Scholar]
  67. GomhaS.M. A facile one-pot synthesis of 6,7,8,9-tetrahydrobenzo[4,5]thieno[2,3-d]-1,2,4-triazolo[4,5-a]pyrimidin-5-ones.Monatsh. Chem.2009140221322010.1007/s00706‑008‑0060‑z
    [Google Scholar]
  68. SayedA.R. GomhaS.M. AbdelrazekF.M. FarghalyM.S. HassanS.A. MetzP. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents.BMC Chem.201913111610.1186/s13065‑019‑0632‑5 31572983
    [Google Scholar]
/content/journals/cos/10.2174/0115701794266795231129074028
Loading
/content/journals/cos/10.2174/0115701794266795231129074028
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test