Skip to content
2000
image of Reducing Stoichiometric Excess of Base to Catalytic Amount: Revisiting Staudinger Reaction for β-lactam Synthesis

Abstract

Background

β-lactams have been primarily utilized as a leading class of effective antibiotics. They have been found to show activity against various diseases, prompting the scientific community to prioritise innovative protocols for their synthesis. The general and well-known synthetic strategy involves the classical Staudinger reaction exhibiting [2+2] cycloaddition reaction. However, the protocol utilizes stoichiometric excess of base for efficient product formation.

Objective

A smarter and more acceptable approach for the synthesis of β-lactams would be to reduce the excess base to a catalytic amount, furnishing a catalytic version of the Staudinger reaction. The modified version can eliminate the hazards arising out of excess use of the base, ultimately promoting the environmentally benign approach.

Methods

With this hypothesis, a base-catalyzed approach in dimethyl formamide (DMF) towards the synthesis of β-lactam Staudinger reaction has been endorsed under moderate reaction conditions.

Results

The scope of the substrates was explored with both electron-withdrawing and electron-releasing substitutions in the formation of β-lactam. The reduction of the base amount from stoichiometric to catalytic amount was justified by the involvement of DMF in generating the basic condition for the reaction.

Conclusion

It was hypothesized that the decomposition of DMF under the base-catalysed reaction condition can generate dimethylamine, which produces the required basic environment.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372335025241008043049
2024-10-17
2025-01-28
Loading full text...

Full text loading...

References

  1. Leite T.H.O. Saraiva M.F. Pinheiro A.C. de Souza M.V.N. Monocyclic β-lactam: A review on synthesis and potential biological activities of a multitarget core. Mini Rev. Med. Chem. 2020 20 16 1653 1682 10.2174/1389557520666200619114820 32560602
    [Google Scholar]
  2. Fisher J.F. Meroueh S.O. Mobashery S. Bacterial resistance to β-lactam antibiotics: Compelling opportunism, compelling opportunity. Chem. Rev. 2005 105 2 395 424 10.1021/cr030102i 15700950
    [Google Scholar]
  3. Andreotti D.B. Di Modugno E. Drug Discovery and Development 2003 607 736
    [Google Scholar]
  4. Banik B.K. β-Lactams: Unique Structures of Distinction for Novel Molecules Berlin, New York Springer 2013
    [Google Scholar]
  5. Georg G.I. The Organic Chemistry of β-Lactams. New York VCH Publishers 1993 197 255
    [Google Scholar]
  6. Fleming A. Classics in infectious diseases: On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. Rev. Infect. Dis. 1980 2 1 129 139 6994200
    [Google Scholar]
  7. Lobanovska M. Pilla G. Penicillin’s discovery and antibiotic resistance: Lessons for the future? Biol. Med. (Aligarh) 2017 90 1 135 145 28356901
    [Google Scholar]
  8. Gaynes R. The discovery of penicillin — New insights after more than 75 years of clinical use. Emerg. Infect. Dis. 2017 23 5 849 853 10.3201/eid2305.161556
    [Google Scholar]
  9. Mascaretti O.A. Boschetti C.E. Danelon G.O. Mata E.G. Roveri O.A. β-Lactam compounds. Inhibitors of transpeptidases, β-lactamases and elastases: A review. Curr. Med. Chem. 1995 1 6 441 470 10.2174/092986730106220216112824
    [Google Scholar]
  10. Edwards P.D. Bernstein P.R. Synthetic inhibitors of elastase. Med. Res. Rev. 1994 14 2 127 194 10.1002/med.2610140202 8189835
    [Google Scholar]
  11. Sandanayaka V.P. Prashad A.S. Yang Y. Williamson R.T. Lin Y.I. Mansour T.S. Spirocyclopropyl β-lactams as mechanism-based inhibitors of serine β-lactamases. Synthesis by rhodium-catalyzed cyclopropanation of 6-diazopenicillanate sulfone. J. Med. Chem. 2003 46 13 2569 2571 10.1021/jm034056q 12801220
    [Google Scholar]
  12. Buynak J.D. Rao A.S. Fod G.P. Carver C. Carver C. Adam G. Geng B. Bachmann B. Shobassy S. Lackey S. Inhibition of human leukocyte elastase. 4. Selection of a substituted cephalosporin (L-658,758) as a topical aerosol. J. Med. Chem. 1997 40 3423 3433 10.1021/jm970351x 9341917
    [Google Scholar]
  13. Bonneau P.R. Hasani F. Plouffe C. Malenfant E. LaPlante S.R. Guse I. Ogilvie W.W. Plante R. Davidson W.C. Hopkins J.L. Morelock M.M. Cordingley M.G. Déziel R. Inhibition of human cytomegalovirus protease by monocyclic β-lactam derivatives: Kinetic characterization using a fluorescent probe. J. Am. Chem. Soc. 1999 121 13 2965 2973 10.1021/ja983905+
    [Google Scholar]
  14. Gould I.M. Bal A.M. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence 2013 4 2 185 191 10.4161/viru.22507 23302792
    [Google Scholar]
  15. Laxminarayan R. Heymann D.L. Challenges of drug resistance in the developing world. BMJ 2012 344 apr03 2 e1567 10.1136/bmj.e1567 22491075
    [Google Scholar]
  16. Brackett C.M. Melander R.J. An I.H. Krishnamurthy A. Thompson R.J. Cavanagh J. Melander C. Small-molecule suppression of β-lactam resistance in multidrug-resistant gram-negative pathogens. J. Med. Chem. 2014 57 17 7450 7458 10.1021/jm501050e 25137478
    [Google Scholar]
  17. Lee M. Hesek D. Blázquez B. Lastochkin E. Boggess B. Fisher J.F. Mobashery S. Catalytic spectrum of the penicillin-binding protein 4 of Pseudomonas aeruginosa, a nexus for the induction of β-lactam antibiotic resistance. J. Am. Chem. Soc. 2015 137 1 190 200 10.1021/ja5111706 25495032
    [Google Scholar]
  18. Hu X.L. Li D. Shao L. Dong X. He X.P. Chen G.R. Chen D. Triazole-linked glycolipids enhance the susceptibility of MRSA to β-lactam antibiotics. ACS Med. Chem. Lett. 2015 6 7 793 797 10.1021/acsmedchemlett.5b00142 26191368
    [Google Scholar]
  19. Chen J. Sun P. Zhang Y. Huang C.H. Multiple roles of Cu(II) in catalyzing hydrolysis and oxidation of β-lactam antibiotics. Environ. Sci. Technol. 2016 50 22 12156 12165 10.1021/acs.est.6b02702 27934235
    [Google Scholar]
  20. Yadav S. Hazra R. Singh A. Ramasastry S.S.V. Substituent-guided palladium-ene reaction for the synthesis of carbazoles and cyclopenta[ b ]indoles. Org. Lett. 2019 21 9 2983 2987 10.1021/acs.orglett.9b00410 30985137
    [Google Scholar]
  21. Karlesa A. De Vera G.A.D. Dodd M.C. Park J. Espino M.P.B. Lee Y. Ferrate(VI) oxidation of β-lactam antibiotics: Reaction kinetics, antibacterial activity changes, and transformation products. Environ. Sci. Technol. 2014 48 17 10380 10389 10.1021/es5028426 25073066
    [Google Scholar]
  22. Esmaeilpour M. Sardarian A.R. Jarrahpour A. Ebrahimi E. Javidi J. Synthesis and characterization of β-lactam functionalized superparamagnetic Fe3O4@SiO2 nanoparticles as an approach for improvement of antibacterial activity of β-lactams. RSC Adv. 2016 6 43376 43387 10.1039/C6RA03634A
    [Google Scholar]
  23. Yang K.W. Zhou Y. Ge Y. Zhang Y. Real-time activity monitoring of New Delhi metallo-β-lactamase-1 in living bacterial cells by UV-Vis spectroscopy. Chem. Commun. (Camb.) 2017 53 57 8014 8017 10.1039/c7cc02774e 28664213
    [Google Scholar]
  24. Yadav S. Jayaraman N. Gradation control in the hydrodynamic diameters of mixed glycan-aglycan glycovesicles. Pure Appl. Chem. 2023 95 9 1001 1008 10.1515/pac‑2023‑0216
    [Google Scholar]
  25. Yadav S. Naresh K. Jayaraman N. Surface density of ligands controls in‐plane and aggregative modes of multivalent glycovesicle‐lectin recognitions. ChemBioChem 2021 22 21 3075 3081 10.1002/cbic.202100321 34375491
    [Google Scholar]
  26. Yadav S. Ramasastry S.S.V. Palladium-catalysed annulative allylic alkylation for the synthesis of benzannulated heteroarenes. Chem. Commun. (Camb.) 2021 57 1 77 80 10.1039/D0CC06695H 33245742
    [Google Scholar]
  27. Su I.H. Ko W.C. Shih C.H. Yeh F.H. Sun Y.N. Chen J.C. Chen P.L. Chang H.C. Dielectrophoresis system for testing antimicrobial susceptibility of gram-negative bacteria to β-lactam antibiotics. Anal. Chem. 2017 89 8 4635 4641 10.1021/acs.analchem.7b00220 28314101
    [Google Scholar]
  28. Ramasastry S.S.V. Kumar K. Vivekanand T. Singh B. C(sp3)–H activation enabled by (η3-indolylmethyl)palladium complexes: Synthesis of monosubstituted tetrahydrocarbazoles. Synthesis 2022 54 4 943 952 10.1055/a‑1516‑7960
    [Google Scholar]
  29. Jiao L. Liang Y. Xu J. Origin of the relative stereoselectivity of the β-lactam formation in the Staudinger reaction. J. Am. Chem. Soc. 2006 128 18 6060 6069 10.1021/ja056711k 16669675
    [Google Scholar]
  30. Cossío F.P. Arrieta A. Sierra M.A. The mechanism of the ketene-imine (staudinger) reaction in its centennial: Still an unsolved problem? Acc. Chem. Res. 2008 41 8 925 936 10.1021/ar800033j 18662024
    [Google Scholar]
  31. Drury W.J. Ferraris D. Cox C. Young B. Lectka T. A novel synthesis of α-amino acid derivatives through catalytic, enantioselective ene reactions of α-imino esters. J. Am. Chem. Soc. 1998 120 42 11006 11007 10.1021/ja982257r
    [Google Scholar]
  32. Ferraris D. Dudding T. Young B. Drury W.J. Lectka T. Catalytic, enantioselective alkylations of N, O -acetals. J. Org. Chem. 1999 64 7 2168 2169 10.1021/jo982421t
    [Google Scholar]
  33. Taggi A.E. Hafez A.M. Wack H. Young B. Drury W.J. Lectka T. Catalytic, asymmetric synthesis of β-lactams. J. Am. Chem. Soc. 2000 122 32 7831 7832 10.1021/ja001754g 12047183
    [Google Scholar]
  34. Nelson S.G. Peelen T.J. Wan Z. Catalytic asymmetric acyl halide−aldehyde cyclocondensations. A strategy for enantioselective catalyzed cross aldol reactions. J. Am. Chem. Soc. 1999 121 41 9742 9743 10.1021/ja992369y
    [Google Scholar]
  35. Tidwell T.T. Ketenes. New York John Wiley & Sons 1995
    [Google Scholar]
  36. Kinugasa M. Hashimoto S. The reactions of copper(I) phenylacetylide with nitrones. J. Chem. Soc. Chem. Commun. 1972 8 466 10.1039/c39720000466
    [Google Scholar]
  37. Ding L.K. Irwin W.J. Cis- and trans-Azetidin-2-ones from nitrones and copper acetylide. J. Chem. Soc., Perkin Trans. 1 1976 22 2382 2386 10.1039/p19760002382
    [Google Scholar]
  38. Okuro K. Enna M. Miura M. Nomura M. Copper-catalysed reaction of arylacetylenes with C,N-diarylnitrones. J. Chem. Soc. Chem. Commun. 1993 13 1107 10.1039/c39930001107
    [Google Scholar]
  39. Marco-Contelles J. β-lactam synthesis by the Kinugasa reaction. Angew. Chem. Int. Ed. 2004 43 17 2198 2200 10.1002/anie.200301730 15108126
    [Google Scholar]
  40. Zimmerman H.E. Traxler M.D. The stereochemistry of the Ivanov and Reformatsky Reactions. I. J. Am. Chem. Soc. 1957 79 8 1920 1923 10.1021/ja01565a041
    [Google Scholar]
  41. Denmark S.E. Henke B.R. Investigations on transition-state geometry in the aldol condensation. J. Am. Chem. Soc. 1991 113 6 2177 2194 10.1021/ja00006a042
    [Google Scholar]
  42. Ruhland B. Bhandari A. Gordon E.M. Gallop M.A. Solid-supported combinatorial synthesis of structurally diverse β-lactams. J. Am. Chem. Soc. 1996 118 1 253 254 10.1021/ja953322p
    [Google Scholar]
  43. Furman B. Thürmer R. Kałuża Z. Łysek R. Voelter W. Chmielewski M. Stereoselective solid-phase synthesis of -lactams — A novel cyclization/cleavage step towards 1-oxacephams. Angew. Chem. Int. Ed. 1999 38 8 1121 1123 25138516
    [Google Scholar]
  44. Gordon K. Bolger M. Khan N. Balasubramanian S. A stereoselective synthesis of 1,3,4-substituted β-lactams from polymer-supported chiral oxazolidine aldehyde. Tetrahedron Lett. 2000 41 44 8621 8625 10.1016/S0040‑4039(00)01516‑1
    [Google Scholar]
  45. Schunk S. Enders D. Solid-phase synthesis of β-lactams via the ester enolate-imine condensation route. Org. Lett. 2000 2 7 907 910 10.1021/ol0055465 10768183
    [Google Scholar]
  46. Annunziata R. Benaglia M. Cinquini M. Cozzi F. Soluble-polymer-supported synthesis ofβ-lactams on a modified poly(ethylene glycol). Chemistry 2000 6 1 133 138 10747397
    [Google Scholar]
  47. Gordon K.H. Balasubramanian S. Exploring a benzyloxyaniline linker utilizing ceric ammonium nitrate (CAN) as a cleavage reagent: Solid-phase synthesis of N-unsubstituted beta-lactams and secondary amides. Org. Lett. 2001 3 1 53 56 10.1021/ol006766l 11429870
    [Google Scholar]
  48. Schunk S. Enders D. Solid-phase synthesis of monocyclic β-lactam derivatives. J. Org. Chem. 2002 67 23 8034 8042 10.1021/jo0261552 12423130
    [Google Scholar]
  49. Delpiccolo C.M.L. Mata E.G. Stereoselective solid-phase synthesis of 3,4-substituted azetidinones as key intermediates for mono- and multicyclic β-lactam antibiotics and enzyme inhibitors. Tetrahedron Asymmetry 2002 13 9 905 910 10.1016/S0957‑4166(02)00214‑8
    [Google Scholar]
  50. Pitts C.R. Lectka T. Chemical synthesis of β-lactams: Asymmetric catalysis and other recent advances. Chem. Rev. 2014 114 16 7930 7953 10.1021/cr4005549 24555548
    [Google Scholar]
  51. Ghatak A. Becker F.F. Banik B.K. Indium-mediated facile synthesis of 3-unsubstituted ferrocenyl β-lactams. Heterocycles 2000 53 2769 2772 10.3987/COM‑00‑9019
    [Google Scholar]
  52. Banik B.K. Ghatak A. Becker F.F. Indium-mediated facile synthesis of 3-unsubstituted β-lactams. J. Chem. Soc., Perkin Trans. 1 2000 14 2179 2181 10.1039/b002833i
    [Google Scholar]
  53. Banik B.K. Becker F.F. Unprecedented stereoselectivity in the Staudinger reaction with polycyclic aromatic imines. Tetrahedron Lett. 2000 41 34 6551 6554 10.1016/S0040‑4039(00)01126‑6
    [Google Scholar]
  54. Dasgupta S.K. Banik B.K. A new entry to N-unsubstituted β-lactams through a solid-phase approach. Tetrahedron Lett. 2002 43 51 9445 9447 10.1016/S0040‑4039(02)02236‑0
    [Google Scholar]
  55. Banik B.K. Samajdar S. Banik I. A facile synthesis of oxazines by indium-induced reduction-rearrangement of the nitro β-lactams. Tetrahedron Lett. 2003 44 8 1699 1701 10.1016/S0040‑4039(02)02823‑X
    [Google Scholar]
  56. Banik B.K. Banik I. Hackfeld L. Cycloaddition of naphthalenyl and anthracenyl imines: Interesting aspects of the staudinger reaction. Heterocycles 2003 59 505 508 10.3987/COM‑02‑S76
    [Google Scholar]
  57. Banik B.K. Adler D. Nguyen P. Srivastava N. A new bismuth nitrate-induced stereospecific glycosylation of alcohols. Heterocycles 2003 61 101 104 10.3987/COM‑03‑S63
    [Google Scholar]
  58. Banik B.K. Banik I. Samajdar S. Wilson M. Facile synthesis of biologically active heterocycles by indium-induced reactions of aromatic nitro compounds in aqueous ethanol. Heterocycles 2003 63 283 296 10.3987/COM‑03‑9914
    [Google Scholar]
  59. Banik I. Becker F.F. Banik B.K. Stereoselective synthesis of β-lactams with polyaromatic imines: Entry to new and novel anticancer agents. J. Med. Chem. 2003 46 1 12 15 10.1021/jm0255825 12502355
    [Google Scholar]
  60. Banik B.K. Becker F.F. Banik I. Synthesis of anticancer β-lactams: Mechanism of action. Bioorg. Med. Chem. 2004 12 10 2523 2528 10.1016/j.bmc.2004.03.033 15110834
    [Google Scholar]
  61. Majee S. Shilpa Sarav M. Banik B.K. Ray D. Recent Advances in the green synthesis of active N-heterocycles and their biological activities. Pharmaceuticals (Basel) 2023 16 6 873 10.3390/ph16060873 37375820
    [Google Scholar]
  62. Kumar V. Sachdeva C. Waidha K. Sharma S. Ray D. Kumar Kaushik N. Saha B. In vitro and in silico anti‐plasmodial evaluation of newly synthesized β‐carboline derivatives. ChemistrySelect 2021 6 21 5338 5342 10.1002/slct.202101355
    [Google Scholar]
  63. Noel N.K. Congiu M. Ramadan A.J. Fearn S. McMeekin D.P. Patel J.B. Johnston M.B. Wenger B. Snaith H.J. Unveiling the influence of ph on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule 2017 1 2 328 343 10.1016/j.joule.2017.09.009
    [Google Scholar]
  64. Banik B.K. Suhendra M. Banik I. Becker F.F. Indium/ammonium chloride mediated selective reduction of aromatic nitro compounds: Practical synthesis of 6-aminochrysene. Synth. Commun. 2000 30 20 3745 3754 10.1080/00397910008087002
    [Google Scholar]
  65. Banik B.K. Banik I. Becker F.F. Indium/ammonim chloride-mediated selective reduction of aromatic nitro compounds: Ethyl 4-aminobenzoate. Org. Synth. 2005 81 188 10.15227/orgsyn.081.0188
    [Google Scholar]
  66. Banik B.K. Samajdar S. Banik B.K. Zegrocka O. Becker F.F. Heterocycles 2001 55 227 230 10.3987/COM‑00‑9100
    [Google Scholar]
  67. Banik B.K. Banik I. Hackfeld L. Becker F.F. Indium-mediated reductive cyclizations in aqueous ethanol: Highly efficient synthesis of heterocyclic compounds of biological interests. Heterocycles 2001 56 467 470 10.3987/COM‑00‑S(K)3
    [Google Scholar]
  68. Banik B.K. Hackfeld L. Becker F.F. Studies on the indium-mediated reduction of imines. Synth. Commun. 2001 31 10 1581 1586 10.1081/SCC‑100104072
    [Google Scholar]
  69. Banik B.K. Mukhopadhyay C. Venkatraman M.S. Becker F.F. A convenient reduction of alkylated tosylmethyl isocyanides: Applications for the synthesis of natural products. Tetrahedron Lett. 1998 39 7243 7247 10.1016/S0040‑4039(98)01555‑X
    [Google Scholar]
  70. Banik B.K. Zegrocka O. Banik I. Hackfeld L. Becker F.F. Samarium-induced iodine-catalyzed reduction of imines: Synthesis of amine derivatives. Tetrahedron Lett. 1999 40 37 6731 6734 10.1016/S0040‑4039(99)01395‑7
    [Google Scholar]
  71. Banik B.K. Zegrocka O. Becker F.F.J. Samarium-mediated iodine-catalysed reductive amination of the adamantyl methyl ketone. J. Chem. Res. 2000 2000 7 321 323 10.3184/030823400103167697
    [Google Scholar]
  72. Ghatak A. Becker F.F. Banik B.K. Samarium-induced alkyl halide mediated reductive coupling of ketones. Tetrahedron Lett. 2000 41 20 3793 3796 10.1016/S0040‑4039(00)00510‑4
    [Google Scholar]
  73. Basu M.K. Becker F.F. Banik B.K. An efficient synthesis of 2-substituted 3,3- dimethylcyclohexane-1-ones. A simple synthetic route to podocarpa-8,11,13-triene intermediates. J. Chem. Res. 2000 406 407 10.3184/030823400103167877
    [Google Scholar]
  74. Basu M.K. Banik B.K. Samarium-mediated Barbier reaction of carbonyl compounds. Tetrahedron Lett. 2001 42 2 187 189 10.1016/S0040‑4039(00)01961‑4
    [Google Scholar]
  75. Banik B.K. Samarium metal in organic synthesis. Eur. J. Org. Chem. 2002 2002 15 2431 2444
    [Google Scholar]
  76. Samajdar S. Banik B.K. Samarium-induced reductive dimerization of ketimines. Chem. Indian J. 2003 1 230
    [Google Scholar]
  77. Banik B.K. Samarium-induced reductive dimerization of aryl. Ketones in aqueous alcohol. Chem. Indian J. 2003 1 149
    [Google Scholar]
  78. Banik B.K. Venkatraman M.S. Banik I. Basu M.K. Samarium-induced reductive dimerization of methyl cinnamate: Synthesis of 2,8-diamino chrysene. Tetrahedron Lett. 2004 45 24 4737 4739 10.1016/j.tetlet.2004.04.087
    [Google Scholar]
  79. Banik B.K. Banik I. Samajdar S. Cuellar R. Samarium/N-bromosuccinimide-induced reductive dimerization of carbonyl compounds. Tetrahedron Lett. 2005 46 13 2319 2322 10.1016/j.tetlet.2005.01.170
    [Google Scholar]
  80. Bair K.W. Andrews C.W. Tuttle R.L. Knick V.C. Cory M. McKee D.D. 2-[(Arylmethyl)amino]-2-methyl-1,3-propanediol DNA intercalators. An examination of the effects of aromatic ring variation on antitumor activity and DNA binding. J. Med. Chem. 1991 34 7 1983 1990 10.1021/jm00111a010 2066971
    [Google Scholar]
  81. Harvey R.G. Pataki J. Cortez C. Di Raddo P. Yang C.X. A new general synthesis of polycyclic aromatic compounds based on enamine chemistry. J. Org. Chem. 1991 56 3 1210 1217 10.1021/jo00003a050
    [Google Scholar]
  82. Hosseyni S. Jarrahpour A. Recent advances in β-lactam synthesis. Org. Biomol. Chem. 2018 16 38 6840 6852 10.1039/C8OB01833B 30209477
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372335025241008043049
Loading
/content/journals/cocat/10.2174/0122133372335025241008043049
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test