Skip to content
2000
image of Zn(OTf)2-catalyzed One-Pot Cascade Reaction to Construct Benzyl-pyrazolyl Coumarin Derivatives

Abstract

Introduction

Herein, we have developed Zn(OTf)-catalysed efficient cascade reaction for the synthesis of fully functionalized benzyl-pyrazolyl coumarin compounds using 4-hydroxy coumarin, ethyl acetoacetate, aryl aldehyde(s), and phenylhydrazine under mild conditions in a single pot for the first time. The reaction exhibits excellent reactivity, broad substrate applicability, and good functional group tolerance.

Methods

This method features advantages in product isolation and purification without column chromatography with high yields and purity.

Results

Therefore, the best reaction condition for the synthesis of benzyl-pyrazolyl coumarin derivatives was the use of 10 mol% Zn(OTf) catalyst in ethanol, which afforded the best yields with minimal reaction times, providing complete conversion of the substrates in an effective way. Column chromatography-free purification led to pure products, as confirmed by HPLC and NMR spectral data.

Conclusion

In summary, we have developed a facile and novel Zn(OTf)-catalysed single pot synthetic method for the synthesis of benzyl-pyrazolyl coumarin derivatives using 4-hydroxy coumarin, ethyl acetoacetate, aryl aldehyde, and phenylhydrazine under mild conditions with high yields and high HPLC purity (97-99%). The developed protocol is straightforward and robust and requires a minimal amount of inexpensive Zn(OTf) catalyst.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372342383241003113614
2024-10-14
2025-01-28
Loading full text...

Full text loading...

References

  1. Cioc R.C. Ruijter E. Orru R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014 16 6 2958 2975 10.1039/C4GC00013G
    [Google Scholar]
  2. Singh M.S. Chowdhury S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Advances 2012 2 11 4547 4592 10.1039/c2ra01056a
    [Google Scholar]
  3. Touré B.B. Hall D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev. 2009 109 9 4439 4486 10.1021/cr800296p 19480390
    [Google Scholar]
  4. Kakuchi R. Multicomponent reactions in polymer synthesis. Angew. Chem. Int. Ed. 2014 53 1 46 48 10.1002/anie.201305538 24302633
    [Google Scholar]
  5. Moos W.H. Hurt C.R. Morales G.A. Combinatorial chemistry: Oh what a decade or two can do. Mol. Divers. 2009 13 2 241 245 10.1007/s11030‑009‑9127‑y 19255865
    [Google Scholar]
  6. Dong D. Bi X. Liu Q. Cong F. [5C + 1N] Annulation: A novel synthetic strategy for functionalized 2,3-dihydro-4-pyridones. Chem. Commun. 2005 28 28 3580 3582 10.1039/b505569e 16010330
    [Google Scholar]
  7. Jung J.C. Park O.S. Synthetic approaches and biological activities of 4-hydroxycoumarin derivatives. Molecules 2009 14 11 4790 4803 10.3390/molecules14114790
    [Google Scholar]
  8. Abdel Latif N.A. Batran R.Z. Khedr M.A. Abdalla M.M. 3-Substituted-4-hydroxycoumarin as a new scaffold with potent CDK inhibition and promising anticancer effect: Synthesis, molecular modeling and QSAR studies. Bioorg. Chem. 2016 67 116 129 10.1016/j.bioorg.2016.06.005 27372186
    [Google Scholar]
  9. a Hesse S. Kirsch G. A rapid access to coumarin derivatives (using Vilsmeier–Haack and Suzuki cross-coupling reactions). Tetrahedron Lett. 2002 43 7 1213 1215 10.1016/S0040‑4039(01)02373‑5
    [Google Scholar]
  10. b Jung J.C. Lee J.H. Oh S. Lee J.G. Park O.S. Synthesis and antitumor activity of 4-hydroxycoumarin derivatives. Bioorg. Med. Chem. Lett. 2004 14 22 5527 5531 10.1016/j.bmcl.2004.09.009 15482917
    [Google Scholar]
  11. c Melagraki G. Afantitis A. Igglessi-Markopoulou O. Detsi A. Koufaki M. Kontogiorgis C. Hadjipavlou-Litina D.J. Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur. J. Med. Chem. 2009 44 7 3020 3026 10.1016/j.ejmech.2008.12.027 19232783
    [Google Scholar]
  12. d Jung J-C. Jung Y-J. Park O-S. a convenient one-pot synthesis of 4-hydroxycoumarin, 4-hydroxythiocoumarin, and 4-hydroxyquinolin-2(1h)-ones, synth. Commun. 2001 31 1195 1200
    [Google Scholar]
  13. e Lee B.H. Clothier M.F. Dutton F.E. Conder G.A. Johnson S.S. Anthelmintic β-hydroxyketoamides (BKAs). Bioorg. Med. Chem. Lett. 1998 8 23 3317 3320 10.1016/S0960‑894X(98)00588‑5 9873726
    [Google Scholar]
  14. a Himly M. Jahn-Schmid B. Pittertschatscher K. Bohle B. Grubmayr K. Ferreira F. Ebner H. Ebner C. IgE-mediated immediate-type hypersensitivity to the pyrazolone drug propyphenazone. J. Allergy Clin. Immunol. 2003 111 4 882 888 10.1067/mai.2003.163 12704373
    [Google Scholar]
  15. b Watanabe T. Yuki S. Egawa M. Nishi H. Protective effects of MCI-186 on cerebral ischemia: possible involvement of free radical scavenging and antioxidant actions. J. Pharmacol. Exp. Ther. 1994 268 3 1597 1604 8138971
    [Google Scholar]
  16. Kulkarni R.C. Madar J.M. Shastri S.L. Shaikh F. Naik N.S. Chougale R.B. Shastri L.A. Joshi S.D. Dixit S.R. Sunagar V.A. Green synthesis of coumarin-pyrazolone hybrids: In vitro anticancer and anti-inflammatory activities and their computational study on COX-2 enzyme. Chemical Data Collections 2018 17-18 497 506 10.1016/j.cdc.2018.11.004
    [Google Scholar]
  17. Adhikari S. Singh M. Sharma P. Arora S. Pyrazolones as a potential anticancer scaffold: Recent trends and future perspectives. J. Appl. Pharm. Sci. 2021 11 026 037
    [Google Scholar]
  18. Liu X. Hao L. Lin M. Chen L. Zhan Z. One-pot highly efficient synthesis of substituted pyrroles and N-bridgehead pyrroles by zinc-catalyzed multicomponent reaction. Org. Biomol. Chem. 2010 8 13 3064 3072 10.1039/c003885g 20480096
    [Google Scholar]
  19. Mata S. González J. Vicente R. López L.A. Zinc‐catalyzed multicomponent reactions: Easy access to furyl‐substituted cyclopropane and 1,2‐dioxolane derivatives. Eur. J. Org. Chem. 2016 2016 15 2681 2687 10.1002/ejoc.201600393
    [Google Scholar]
  20. Safaei-Ghomi J. Babaei P. Shahbazi-Alavi H. Pyne S.G. Willis A.C. A concise synthesis of furo[3,2-c]coumarins catalyzed by nanocrystalline ZnZr4(PO4)6 ceramics under microwave irradiation. J. Indian Chem. Soc. 2016 13 8 1439 1448 10.1007/s13738‑016‑0859‑1
    [Google Scholar]
  21. Zhang L.J. Zhang X. You Z.S. Li H. Feng T. Wang W.L. Chem-grafted Zn-SSA as an efficient heterogeneous catalyst to synthesize 2-pyridinones. Catal. Lett. 2016 146 10 2081 2086 10.1007/s10562‑016‑1806‑6
    [Google Scholar]
  22. Siddiqui Z.N. Bis[(L)prolinato-N,O]Zn–water: A green catalytic system for the synthesis of 3,4-dihydropyrimidin-2 (1H)-ones via the Biginelli reaction. C. R. Chim. 2013 16 2 183 188 10.1016/j.crci.2012.10.008
    [Google Scholar]
  23. Safaei-Ghomi J. Ghasemzadeh M.A. Zinc oxide nanoparticles: A highly efficient and readily recyclable catalyst for the synthesis of xanthenes. Chin. Chem. Lett. 2012 23 11 1225 1229 10.1016/j.cclet.2012.09.016
    [Google Scholar]
  24. Sachdeva H. Saroj R. The Scientific World Journal Hindawi Publishing Corporation 2013 1 8
    [Google Scholar]
  25. Tekale S.U. Kauthale S.S. Jadhav K.M. Pawar R.P. Nano-ZnO catalyzed green and efficient one-pot four-component synthesis of pyranopyrazoles. J. Chem. 2013 2013 1 840954 10.1155/2013/840954
    [Google Scholar]
  26. Ghosh P.P. Pal G. Paul S. Das A.R. Design and synthesis of benzylpyrazolyl coumarin derivatives via a four-component reaction in water: investigation of the weak interactions accumulating in the crystal structure of a signified compound. Green Chem. 2012 14 10 2691 2698 10.1039/c2gc36021g
    [Google Scholar]
  27. Karami B. Eskandari K. Khodabakhshi S. Hoseini S.J. Hashemian F. Green synthesis of three substituted methane derivatives by employing ZnO nanoparticles as a powerful and recyclable catalyst. RSC Advances 2013 3 45 23335 23342 10.1039/c3ra42993h
    [Google Scholar]
  28. Saha A. Payra S. Banerjee S. One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives using ZrO 2 nanoparticles as a reusable catalyst. Green Chem. 2015 17 5 2859 2866 10.1039/C4GC02420F
    [Google Scholar]
  29. Saha A. Payra S. Verma S.K. Mandal M. Thareja S. Banerjee S. In silico binding affinity to cyclooxygenase-II and green synthesis of benzylpyrazolyl coumarin derivatives. RSC Advances 2015 5 122 100978 100983 10.1039/C5RA16643H
    [Google Scholar]
  30. Eskandari K. Karami B. Khodabakhshi S. Farahi M. Farahi M.A. A highly efficient tandem knoevenagel/michael reaction using mohr’s salt hexahydrate as a green and powerful catalyst: Selective synthesis of benzylpyrazolocoumarins on water. J. Chin. Chem. Soc. 2015 62 6 473 478 10.1002/jccs.201400283
    [Google Scholar]
  31. Yaragorla S. Pareek A. Dada R. Ca(II)-catalyzed, one-pot four component synthesis of functionally embellished benzylpyrazolyl coumarins in water. Tetrahedron Lett. 2015 56 33 4770 4774 10.1016/j.tetlet.2015.06.049
    [Google Scholar]
  32. Jadhav S.A. Shioorkar M.G. Chavan O.M. Sarkate A.P. Shinde D.B. Pardeshi R.K. An alum [KAl (SO4)2.12H2O] catalyzed microwave assisted multicomponent synthesis of bioactive functionalized benzylpyrazolyl coumarin and quinolinone derivatives in PEG. Chem. Mat. Res 2015 7 105 111
    [Google Scholar]
  33. Piruzmand Z. Safaei-Ghomi J. Ghasemzadeh M.A. A facile solvent-free route for the one-pot multicomponent synthesis of benzylpyrazolyl coumarins catalyzed by FeCl3.SiO2 nanoparticles. Izv. Him. 2016 48 619 623
    [Google Scholar]
  34. Shaikh I.R. Maldar N.M.N. Lee C.S. Pawar R.C. Park H-H. Bangi U.K-H. MWCNT incorporated silica aerogel prepared by ambient pressure drying: A recyclable catalyst for multicomponent synthesis of benzylpyrazolyl coumarin at room temperature. Iran. Chem. Commun 2018 6 19 29
    [Google Scholar]
  35. Siddiqui T.A.J. Ghule B.G. Shaikh S. Shinde P.V. Gunturu K.C. Zubaidha P.K. Yun J.M. O’Dwyer C. Mane R.S. Kim K.H. Metal-free heterogeneous and mesoporous biogenic graphene-oxide nanoparticle-catalyzed synthesis of bioactive benzylpyrazolyl coumarin derivatives. RSC Advances 2018 8 31 17373 17379 10.1039/C7RA12550J 35539260
    [Google Scholar]
  36. Chate A.V. Shaikh B.A. Bondle G.M. Sangle S.M. Efficient atom-economic one-pot multicomponent synthesis of benzylpyrazolyl coumarins and novel pyrano[2,3-c]pyrazoles catalysed by 2-aminoethanesulfonic acid (taurine) as a bio-organic catalyst. Synth. Commun. 2019 49 17 2244 2257 10.1080/00397911.2019.1619772
    [Google Scholar]
  37. Valiey E. Dekamin M.G. Alirezvani Z. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives. Int. J. Biol. Macromol. 2019 129 407 421 10.1016/j.ijbiomac.2019.01.027 30658146
    [Google Scholar]
  38. Kamble N.R. Kamble V.T. A facile solvent-free route for one-pot multicomponent synthesis of benzylpyrazolyl coumarins derivatives in presence of effective synergetic catalytic system. Asian J. Chem. 2019 31 6 1357 1361 10.14233/ajchem.2019.21986
    [Google Scholar]
  39. Jelali H. Chakchouk-Mtiba A. Baklouti L. Bilel H. Bathich Y. Mellouli L. Hamdi N. Development of new multicomponent reactions in eco-friendly media—greener reaction and expeditious synthesis of novel bioactive benzylpyranocoumarins. J. Chem. 2019 2019 10.1155/2019/8693614
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372342383241003113614
Loading
/content/journals/cocat/10.2174/0122133372342383241003113614
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: phenylhydrazine ; coumarines ; single pot ; aldehydes ; multicomponent ; Zn(OTf)2 ; catalysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test