Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

In this study, three amine-tethered DMAP cation bromide catalysts were prepared using two different mole ratios of 4-dimethylpyridine (DMAP) and 3-bromopropylamine hydrobromide (BPA·HBr) in two different solvents, namely, acetonitrile and ethanol. Then, prepared catalysts were employed for CO cycloaddition with styrene and propylene epoxides under metal- and solvent-free conditions.

Methods

The impact of mole ratio and solvent selection to prepare the designed product using a simple and cost-effective procedure was demonstrated systematically and was discussed in detail. Moreover, the influence of amine-tethered DMAP cation catalyst structures and reaction conditions on the cycloaddition was investigated, and the CO conversion proceeded smoothly at 80°C and 0.2 MPa for the synthesis of cyclic carbonates in good to excellent yields and high selectivity.

Results

The current protocol could be a promising process at an industrial scale due to the high recyclability of the catalyst (10 cycles).

Conclusion

In summary, three catalytic systems bearing amine-tethered DMAP cation have been investigated for the chemical fixation of CO into five-membered cyclic carbonates at mild conditions.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372341092241008062213
2024-10-17
2025-07-17
Loading full text...

Full text loading...

References

  1. KurtE. QinJ. WilliamsA. ZhaoY. XieD. Perspectives for using CO2 as a feedstock for biomanufacturing of fuels and chemicals.Bioengineering (Basel)20231012135710.3390/bioengineering1012135738135948
    [Google Scholar]
  2. LiuQ. WuL. JackstellR. BellerM. Using carbon dioxide as a building block in organic synthesis.Nat. Commun.201561593310.1038/ncomms693325600683
    [Google Scholar]
  3. ArtzJ. MüllerT.E. ThenertK. KleinekorteJ. MeysR. SternbergA. BardowA. LeitnerW. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment.Chem. Rev.2018118243450410.1021/acs.chemrev.7b0043529220170
    [Google Scholar]
  4. RollinP. SoaresL.K. BarcellosA.M. AraujoD.R. LenardãoE.J. JacobR.G. PerinG. Five-membered cyclic carbonates: Versatility for applications in organic synthesis, pharmaceutical, and materials sciences.Appl. Sci. (Basel)20211111502410.3390/app11115024
    [Google Scholar]
  5. MundoF. CaillolS. LadmiralV. MeierM.A.R. On sustainability aspects of the synthesis of five-membered cyclic carbonates.ACS Sustain. Chem. Eng.202412176452646610.1021/acssuschemeng.4c01274
    [Google Scholar]
  6. HagenJ. Industrial Catalysis: A Practical ApproachWiley-VCHWeinheim, Germany20153rd ed
    [Google Scholar]
  7. ZhangJ. JiaC. DongH. WangJ. ZhangX. ZhangS. A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture.Ind. Eng. Chem. Res.201352175835584110.1021/ie4001629
    [Google Scholar]
  8. AghaieM. RezaeiN. ZendehboudiS. A systematic review on CO2 capture with ionic liquids: Current status and future prospects.Renew. Sustain. Energy Rev.20189650252510.1016/j.rser.2018.07.004
    [Google Scholar]
  9. ZhangZ. FanF. XingH. YangQ. BaoZ. RenQ. Efficient synthesis of cyclic carbonates from atmospheric CO2 using a positive charge delocalized ionic liquid catalyst.ACS Sustain. Chem. Eng.2017542841284610.1021/acssuschemeng.7b00513
    [Google Scholar]
  10. ZaharaniL. JohanR.M. TitinchiS. KhalighG. N. 4-(Dimethylamino)pyridinium chlorosulfonate: A new ionic liquid exhibiting chlorosulfonic acid action as monoprotic Brönsted acid and no sulfonating reagent.J. Mol. Liq.202234511826110.1016/j.molliq.2021.118261
    [Google Scholar]
  11. KhalighN.G. MihankhahT. JohanM.R. Efficient chemical fixation of CO 2 into cyclic carbonates using poly(4‐vinylpyridine) supported iodine as an eco‐friendly and reusable heterogeneous catalyst.Heteroatom Chem.2018294e2144010.1002/hc.21440
    [Google Scholar]
  12. ChakrabartyM.R. HandloserC.S. MosherM.W. Thermodynamics of protonation of substituted pyridines in aqeous solutions.J. Chem. Soc., Perkin Trans. 21973793894210.1039/p29730000938
    [Google Scholar]
  13. HallH.K. Correlation of the base strengths of amines.J. Am. Chem. Soc.195779205441544410.1021/ja01577a030
    [Google Scholar]
  14. YamadaY. FurukawaK. SodeyamaK. KikuchiK. YaegashiM. TateyamaY. YamadaA. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries.J. Am. Chem. Soc.2014136135039504610.1021/ja412807w24654781
    [Google Scholar]
  15. JanzG.J. DanylukS.S. Hydrogen halides in acetonitrile. I. Ionization processes.J. Am. Chem. Soc.195981153846385010.1021/ja01524a013
    [Google Scholar]
  16. MiesslerG.L. FischerP.J. TarrD.A. Inorganic Chemistry.5th edLondon, UKPearson Education2013
    [Google Scholar]
  17. MullikenR.S. Molecular compounds and their spectra. III. The interaction of electron donors and acceptors.J. Phys. Chem.195256780182210.1021/j150499a001
    [Google Scholar]
  18. XiaoL. SuD. YueC. WuW. Protic ionic liquids: A highly efficient catalyst for synthesis of cyclic carbonate from carbon dioxide and epoxides.J. CO2 Util.201461610.1016/j.jcou.2014.01.004
    [Google Scholar]
  19. CokojaM. WilhelmM.E. AnthoferM.H. HerrmannW.A. KühnF.E. Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts.ChemSusChem20158152436245410.1002/cssc.20150016126119776
    [Google Scholar]
  20. KohrtC. WernerT. Recyclable bifunctional polystyrene and silica gel-supported organocatalyst for the coupling of CO2 with epoxides.ChemSusChem20158122031203410.1002/cssc.20150012825872906
    [Google Scholar]
  21. AprileC. GiacaloneF. AgrigentoP. LiottaL.F. MartensJ.A. PescarmonaP.P. GruttadauriaM. Multilayered supported ionic liquids as catalysts for chemical fixation of carbon dioxide: A high-throughput study in supercritical conditions.ChemSusChem20114121830183710.1002/cssc.20110044622110020
    [Google Scholar]
  22. ZhaoY. TianJ.S. QiX.H. HanZ.N. ZhuangY.Y. HeL.N. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide.J. Mol. Catal. Chem.20072711-228428910.1016/j.molcata.2007.03.047
    [Google Scholar]
  23. LanD.H. GongY.X. TanN.Y. WuS.S. ShenJ. YaoK.C. YiB. AuC.T. YinS.F. Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions.Carbon201812724525410.1016/j.carbon.2017.11.007
    [Google Scholar]
  24. TaheriM. GhiaciM. ShchukarevA. Cross-linked chitosan with a dicationic ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of carbon dioxide with epoxides into cyclic carbonates.New J. Chem.201842158759710.1039/C7NJ03665E
    [Google Scholar]
  25. UdayakumarS. LeeM.K. ShimH.L. ParkS.W. ParkD.W. Imidazolium derivatives functionalized MCM-41 for catalytic conversion of carbon dioxide to cyclic carbonate.Catal. Commun.200910565966410.1016/j.catcom.2008.11.017
    [Google Scholar]
  26. HanL. ChoiH.J. ChoiS.J. LiuB. ParkD.W. Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide.Green Chem.20111341023102810.1039/c0gc00612b
    [Google Scholar]
  27. WangJ. Wei YangJ.G. YiG. ZhangY. Phosphonium salt incorporated hypercrosslinked porous polymers for CO 2 capture and conversion.Chem. Commun. (Camb.)20155186157081571110.1039/C5CC06295K26365361
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372341092241008062213
Loading
/content/journals/cocat/10.2174/0122133372341092241008062213
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test