Skip to content
2000
image of Amine-tethered DMAP Cation Catalysts: An Efficient Organocatalytic 
System for the Chemical Fixation of CO2 to Five-Membered Cyclic

Abstract

Introduction

In this study, three amine-tethered DMAP cation bromide catalysts were prepared using two different mole ratios of 4-dimethylpyridine (DMAP) and 3-bromopropylamine hydrobromide (BPA·HBr) in two different solvents, namely, acetonitrile and ethanol. Then, prepared catalysts were employed for CO cycloaddition with styrene and propylene epoxides under metal- and solvent-free conditions.

Method

The impact of mole ratio and solvent selection to prepare the designed product using a simple and cost-effective procedure was demonstrated systematically and was discussed in detail. Moreover, the influence of amine-tethered DMAP cation catalyst structures and reaction conditions on the cycloaddition was investigated, and the CO conversion proceeded smoothly at 80°C and 0.2 MPa for the synthesis of cyclic carbonates in good to excellent yields and high selectivity.

Results

The current protocol could be a promising process at an industrial scale due to the high recyclability of the catalyst (10 cycles).

Conclusion

In summary, three catalytic systems bearing amine-tethered DMAP cation have been investigated for the chemical fixation of CO into five-membered cyclic carbonates at mild conditions.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372341092241008062213
2024-10-17
2025-01-28
Loading full text...

Full text loading...

References

  1. Kurt E. Qin J. Williams A. Zhao Y. Xie D. Perspectives for using CO2 as a feedstock for biomanufacturing of fuels and chemicals. Bioengineering (Basel) 2023 10 12 1357 10.3390/bioengineering10121357 38135948
    [Google Scholar]
  2. Liu Q. Wu L. Jackstell R. Beller M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2015 6 1 5933 10.1038/ncomms6933 25600683
    [Google Scholar]
  3. Artz J. Müller T.E. Thenert K. Kleinekorte J. Meys R. Sternberg A. Bardow A. Leitner W. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 2018 118 2 434 504 10.1021/acs.chemrev.7b00435 29220170
    [Google Scholar]
  4. Rollin P. Soares L.K. Barcellos A.M. Araujo D.R. Lenardão E.J. Jacob R.G. Perin G. Five-membered cyclic carbonates: Versatility for applications in organic synthesis, pharmaceutical, and materials sciences. Appl. Sci. (Basel) 2021 11 11 5024 10.3390/app11115024
    [Google Scholar]
  5. Mundo F. Caillol S. Ladmiral V. Meier M.A.R. On sustainability aspects of the synthesis of five-membered cyclic carbonates. ACS Sustain. Chem. Eng. 2024 12 17 6452 6466 10.1021/acssuschemeng.4c01274
    [Google Scholar]
  6. Hagen J. Industrial Catalysis: A Practical Approach Wiley-VCH Weinheim, Germany 2015 3rd ed
    [Google Scholar]
  7. Zhang J. Jia C. Dong H. Wang J. Zhang X. Zhang S. A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture. Ind. Eng. Chem. Res. 2013 52 17 5835 5841 10.1021/ie4001629
    [Google Scholar]
  8. Aghaie M. Rezaei N. Zendehboudi S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew. Sustain. Energy Rev. 2018 96 502 525 10.1016/j.rser.2018.07.004
    [Google Scholar]
  9. Zhang Z. Fan F. Xing H. Yang Q. Bao Z. Ren Q. Efficient synthesis of cyclic carbonates from atmospheric CO2 using a positive charge delocalized ionic liquid catalyst. ACS Sustain. Chem. Eng. 2017 5 4 2841 2846 10.1021/acssuschemeng.7b00513
    [Google Scholar]
  10. Zaharani L. Rafie Johan M. Titinchi S. Ghaffari Khaligh N. 4-(Dimethylamino)pyridinium chlorosulfonate: A new ionic liquid exhibiting chlorosulfonic acid action as monoprotic Brönsted acid and no sulfonating reagent. J. Mol. Liq. 2022 345 118261 10.1016/j.molliq.2021.118261
    [Google Scholar]
  11. Khaligh N.G. Mihankhah T. Johan M.R. Efficient chemical fixation of CO 2 into cyclic carbonates using poly(4‐vinylpyridine) supported iodine as an eco‐friendly and reusable heterogeneous catalyst. Heteroatom Chem. 2018 29 4 e21440 10.1002/hc.21440
    [Google Scholar]
  12. Chakrabarty M.R. Handloser C.S. Mosher M.W. Thermodynamics of protonation of substituted pyridines in aqeous solutions. J. Chem. Soc., Perkin Trans. 2 1973 7 938 942 10.1039/p29730000938
    [Google Scholar]
  13. Hall H.K. Correlation of the Base strengths of amines. J. Am. Chem. Soc. 1957 79 20 5441 5444 10.1021/ja01577a030
    [Google Scholar]
  14. Yamada Y. Furukawa K. Sodeyama K. Kikuchi K. Yaegashi M. Tateyama Y. Yamada A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014 136 13 5039 5046 10.1021/ja412807w 24654781
    [Google Scholar]
  15. Janz G.J. Danyluk S.S. Hydrogen halides in acetonitrile. I. Ionization processes. J. Am. Chem. Soc. 1959 81 15 3846 3850 10.1021/ja01524a013
    [Google Scholar]
  16. Miessler G.L. Fischer P.J. Tarr D.A. Inorganic Chemistry. 5th ed London, UK Pearson Education 2013
    [Google Scholar]
  17. Mulliken R.S. Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J. Phys. Chem. 1952 56 7 801 822 10.1021/j150499a001
    [Google Scholar]
  18. Xiao L. Su D. Yue C. Wu W. Protic ionic liquids: A highly efficient catalyst for synthesis of cyclic carbonate from carbon dioxide and epoxides. J. CO2 Util. 2014 6 1 6 10.1016/j.jcou.2014.01.004
    [Google Scholar]
  19. Cokoja M. Wilhelm M.E. Anthofer M.H. Herrmann W.A. Kühn F.E. Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. ChemSusChem 2015 8 15 2436 2454 10.1002/cssc.201500161 26119776
    [Google Scholar]
  20. Kohrt C. Werner T. Recyclable bifunctional polystyrene and silica gel-supported organocatalyst for the coupling of CO2 with epoxides. ChemSusChem 2015 8 12 2031 2034 10.1002/cssc.201500128 25872906
    [Google Scholar]
  21. Aprile C. Giacalone F. Agrigento P. Liotta L.F. Martens J.A. Pescarmona P.P. Gruttadauria M. Multilayered supported ionic liquids as catalysts for chemical fixation of carbon dioxide: A high-throughput study in supercritical conditions. ChemSusChem 2011 4 12 1830 1837 10.1002/cssc.201100446 22110020
    [Google Scholar]
  22. Zhao Y. Tian J.S. Qi X.H. Han Z.N. Zhuang Y.Y. He L.N. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. Chem. 2007 271 1-2 284 289 10.1016/j.molcata.2007.03.047
    [Google Scholar]
  23. Lan D.H. Gong Y.X. Tan N.Y. Wu S.S. Shen J. Yao K.C. Yi B. Au C.T. Yin S.F. Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions. Carbon 2018 127 245 254 10.1016/j.carbon.2017.11.007
    [Google Scholar]
  24. Taheri M. Ghiaci M. Shchukarev A. Cross-linked chitosan with a dicationic ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of carbon dioxide with epoxides into cyclic carbonates. New J. Chem. 2018 42 1 587 597 10.1039/C7NJ03665E
    [Google Scholar]
  25. Udayakumar S. Lee M.K. Shim H.L. Park S.W. Park D.W. Imidazolium derivatives functionalized MCM-41 for catalytic conversion of carbon dioxide to cyclic carbonate. Catal. Commun. 2009 10 5 659 664 10.1016/j.catcom.2008.11.017
    [Google Scholar]
  26. Han L. Choi H.J. Choi S.J. Liu B. Park D.W. Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem. 2011 13 4 1023 1028 10.1039/c0gc00612b
    [Google Scholar]
  27. Wang J. Wei Yang J.G. Yi G. Zhang Y. Phosphonium salt incorporated hypercrosslinked porous polymers for CO 2 capture and conversion. Chem. Commun. (Camb.) 2015 51 86 15708 15711 10.1039/C5CC06295K 26365361
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372341092241008062213
Loading
/content/journals/cocat/10.2174/0122133372341092241008062213
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Solvent effects ; Waste prevention ; Organocatalysis ; Carbon dioxide fixation ; Cycloaddition
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test