Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

The overuse and improper disposal of antibiotics may add to the continuous rise of antimicrobial resistance (AMR). In this work, we demonstrate a sequential effect of two novel catalytic systems consisting of MIL-100(Fe) MOF (Metal Organic Framework) and MnO nanosheets to degrade amoxicillin antibiotic through the destruction of β lactam group.

Methods

The catalysts were fabricated chemical method. the catalysts exhibit large surface area, excellent porosity, excellent catalytic activity, and insolubility and can be easily separable from the reaction mixture.

Results

The sequential use of MIL-100(Fe) MOF and MnO nanosheets could showcase 92% degradation of amoxicillin within 1.5 hours under ambient conditions without any significant residual bi-product as confirmed by LCMS studies.

Conclusion

Impressively, the antimicrobial susceptibility of degraded residue is lessened by 33% as compared to pure amoxicillin.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372327833240924104209
2024-10-07
2025-07-04
Loading full text...

Full text loading...

References

  1. AmannS. NeefK. KohlS. Antimicrobial resistance (AMR).Eur. J. Hosp. Pharm. Sci. Pract.201926317517710.1136/ejhpharm‑2018‑001820 31428328
    [Google Scholar]
  2. TitchouF.E. ZazouH. AfangaH. El GaaydaJ. Ait AkbourR. NidheeshP.V. HamdaniM. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes.Chem. Eng. Process.202116910863110.1016/j.cep.2021.108631
    [Google Scholar]
  3. WangJ. WangS. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants.Chem. Eng. J.202141112839210.1016/j.cej.2020.128392
    [Google Scholar]
  4. PandisP.K. KalogirouC. KanellouE. VaitsisC. SavvidouM.G. SourkouniG. ZorpasA.A. ArgirusisC. Key Points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A Mini.Rev. Chem. Eng.202261810.3390/chemengineering6010008
    [Google Scholar]
  5. MahamallikP. SahaS. PalA. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly.Chem. Eng. J.201527615516510.1016/j.cej.2015.04.064
    [Google Scholar]
  6. PalA. MahamallikP. SahaS. MajumdarA. Degradation of tetracycline antibiotics by advanced oxidation processes: Application of MnO2 nanomaterials.Nat. Resources Eng.20182111110.1080/23802693.2018.1434397
    [Google Scholar]
  7. KumarH. SangwanP. Synthesis and characterization of MnO2 nanoparticles using Co-precipitation technique.Int. J. Chem. Chem. Eng.201333155160
    [Google Scholar]
  8. YangS. ShobnamN. SunY. LöfflerF.E. ImJ. The relative contributions of Mn(III) and Mn(IV) in manganese dioxide polymorphs to bisphenol A degradation.J. Hazard. Mater.202446113259610.1016/j.jhazmat.2023.132596 37757556
    [Google Scholar]
  9. ZhuM.X. WangZ. XuS.H. LiT. Decolorization of methylene blue by δ-MnO2-coated montmorillonite complexes: Emphasizing redox reactivity of Mn-oxide coatings.J. Hazard. Mater.20101811-3576410.1016/j.jhazmat.2010.04.080 20510506
    [Google Scholar]
  10. ArumugaperumalV.K.S. Solar light driven photocatalytic degradation of methylene blue dye over Cu doped α-MnO2 nanoparticles.Chem. Phys.Impact2024810043410.1016/j.chphi.2023.100434
    [Google Scholar]
  11. MalhotraM. PooniaK. SinghP. KhanA.A.P. ThakurP. Van LeQ. HelmyE.T. AhamadT. NguyenV-H. ThakurS. RaizadaP. An overview of improving photocatalytic activity of MnO2 via the Z-scheme approach for environmental and energy applications.J. Taiwan Inst. Chem. Eng.202415810494510.1016/j.jtice.2023.104945
    [Google Scholar]
  12. ChenM. YangT. ZhaoL. ShiX. LiR. MaL. HuangY. WangY. LeeS. Manganese oxide on activated carbon with peroxymonosulfate activation for enhanced ciprofloxacin degradation: Activation mechanism and degradation pathway.Appl. Surf. Sci.202464515883510.1016/j.apsusc.2023.158835
    [Google Scholar]
  13. HuangR. GuoQ. GuanC. ZhangB. JiangJ. New insights into the combination of permanganate and hydrogen peroxide as a novel oxidation process for enhanced removal of organic contaminants.ACS ES T Eng.20244488289110.1021/acsestengg.3c00499
    [Google Scholar]
  14. StockN. BiswasS. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites.Chem. Rev.2012112293396910.1021/cr200304e 22098087
    [Google Scholar]
  15. FengS. WangR. FengS. ZhangZ. MaoL. Synthesis of Zr-based MOF nanocomposites for efficient visible-light photocatalytic degradation of contaminants.Res. Chem. Intermed.20194531263127910.1007/s11164‑018‑3682‑8
    [Google Scholar]
  16. ZhangH. NaiJ. YuL. LouX.W.D. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications.Joule2017117710710.1016/j.joule.2017.08.008
    [Google Scholar]
  17. LiM. DincăM. On the mechanism of MOF-5 formation under cathodic bias.Chem. Mater.20152793203320610.1021/acs.chemmater.5b00899
    [Google Scholar]
  18. VikrantK. TsangD.C.W. RazaN. GiriB.S. KukkarD. KimK.H. Potential utility of metal–organic framework-based platform for sensing pesticides.ACS Appl. Mater. Interfaces201810108797881710.1021/acsami.8b00664 29465977
    [Google Scholar]
  19. WeiY.S. ZhangM. ZouR. XuQ. Metal–organic framework-based catalysts with single metal sites.Chem. Rev.202012021120891217410.1021/acs.chemrev.9b00757 32356657
    [Google Scholar]
  20. WeiY. FuZ. MengY. LiC. YinF. WangX. ZhangC. GuoL. SunS. Photocatalytic degradation of methylene blue over MIL-100(Fe)/GO composites: a performance and kinetic study.Int. J. Coal Sci. Technol.20241114210.1007/s40789‑024‑00681‑1
    [Google Scholar]
  21. HorcajadaP. SurbléS. SerreC. HongD.Y. SeoY.K. ChangJ.S. GrenècheJ.M. MargiolakiI. FéreyG. Synthesis and catalytic properties of MIL-100(Fe), an iron (III) carboxylate with large pores.Chem. Commun. (Camb.)2007100272820282210.1039/B704325B 17609787
    [Google Scholar]
  22. LiangR. ChenR. JingF. QinN. WuL. Multifunctional polyoxometalates encapsulated in MIL-100(Fe): Highly efficient photocatalysts for selective transformation under visible light.Dalton Trans.20154441182271823610.1039/C5DT02986D 26426950
    [Google Scholar]
  23. GueshK. CaiubyC.A.D. MayoralÁ. Díaz-GarcíaM. DíazI. Sanchez-SanchezM. Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water.Cryst. Growth Des.20171741806181310.1021/acs.cgd.6b01776
    [Google Scholar]
  24. ChangH. XuG. HuangX. XuW. LuoF. ZangJ. LinX. HuangR. YuH. YuB. Photocatalytic degradation of quinolones by magnetic MOFs materials and mechanism study.Molecules20242910229410.3390/molecules29102294 38792155
    [Google Scholar]
  25. HangJ. YiX.H. WangC.C. FuH. WangP. ZhaoY. Heterogeneous photo-Fenton degradation toward sulfonamide matrix over magnetic Fe3S4 derived from MIL-100(Fe).J. Hazard. Mater.2022242Pt B12741510.1016/j.jhazmat.2021.127415 34634703
    [Google Scholar]
  26. RajS. SamantaA.N. Box-behnken design for the photocatalytic degradation of sulfamethazine using MIL-100(Fe) as a photocatalyst.Chem. Eng. Trans.20239812913410.3303/CET2398022
    [Google Scholar]
  27. ZhangF. ShiJ. JinY. FuY. ZhongY. ZhuW. Facile synthesis of MIL-100 (Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols.Chem. Eng. J.201410010.1016/j.cej.2014.07.119
    [Google Scholar]
  28. HeY. DongW. LiX. WangD. YangQ. DengP. HuangJ. Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation.J. Colloid Interface Sci.202057436437610.1016/j.jcis.2020.04.075 32339819
    [Google Scholar]
  29. CaoF. YouM. HuangL. ZhuC. LiaoH. DuJ. Synthesis of C/N-TiO2@MIL-100(Fe) for highly efficient photocatalytic degradation of tetracycline under visible light irradiation.J. Photochem. Photobiol. Chem.202445111552610.1016/j.jphotochem.2024.115526
    [Google Scholar]
  30. LiuY. MaS. ZhangS. LiuF. WangY. SunX. LiY. XueY. TangC. ZhangJ. Enhanced water oxidation stability and activity in MnO2 nanosheet arrays through Ti doping.Fuel202437413242410.1016/j.fuel.2024.132424
    [Google Scholar]
  31. XiaoY. PengT. LuoY. JiaoL. HuangT. LiH. Facile, green and scalable synthesis of single-layer manganese dioxide nanosheets and its application for GSH and cTnI colorimetric detection.Analyst (Lond.)2024149153961397010.1039/D4AN00689E 38980709
    [Google Scholar]
  32. YecheskelY. ShreimL. YingZ. YasharO. HeY. ZuckerI. Catalytic ozonation using MnO2 -enabled membranes: toward direct delivery of hydroxyl radicals.Environ. Sci. Technol. Lett.202411217918410.1021/acs.estlett.4c00020
    [Google Scholar]
  33. HuangC.W. ZhouS.R. HsiaoW.C. Multifunctional TiO2/MIL-100(Fe) to conduct adsorption, photocatalytic, and heterogeneous photo-Fenton reactions for removing organic dyes.J. Taiwan Inst. Chem. Eng.202415810485010.1016/j.jtice.2023.104850
    [Google Scholar]
  34. WangZ. BaoJ. DuJ. LuoL. XiaoG. ZhouT. Sulfamethoxazole degradation by alpha-MnO2/periodate oxidative system: Role of MnO2 crystalline and reactive oxygen species.Environ. Sci. Pollut. Res. Int.20222929447324474510.1007/s11356‑022‑18901‑z 35138534
    [Google Scholar]
  35. ZhaoJ. WangY. LiN. WangS. YuJ. LiX. Efficient degradation of ciprofloxacin by magnetic γ-Fe2O3–MnO2 with oxygen vacancy in visible-light/peroxymonosulfate system.Chemosphere202127613025710.1016/j.chemosphere.2021.130257 34088104
    [Google Scholar]
  36. AbbasiS. NezafatZ. JavanshirS. AghabarariB. Bionanocomposite MIL-100(Fe)/Cellulose as a high-performance adsorbent for the adsorption of methylene blue.Sci. Rep.20241411449710.1038/s41598‑024‑65531‑1 38914657
    [Google Scholar]
  37. RattanakitP. ChutimasakulT. DarakaiV. NurerkP. PutninT. Gamma irradiation-assisted synthesis of ultrafine AgNPs incorporated in MIL-100(Fe) for efficient catalytic reduction of dye.S. Afr. J. Chem. Eng.20244727027810.1016/j.sajce.2023.12.004
    [Google Scholar]
  38. NingJ. HuG. WuT. ZhaoY. NieY. ZhouY. Dual biomarkers-activatable hollow MnO2-Based theranostic nanoplatform for efficient breast cancer-specific multisite fluorescence imaging and synergistic therapy.Anal. Chim. Acta2024130334252110.1016/j.aca.2024.342521 38609263
    [Google Scholar]
  39. AdewinbiS.A.M. MaphiriV. AnimasahunL.O. AjayeobaY.A. AlayyafA.A. MosaS.K. Microstructural, optical, photoluminescence and electrical studies of electrosynthesized S@MnO2 composite film for photosensing and optoelectronic applications.Opt. Mater.2024149114988
    [Google Scholar]
  40. IbrahimM. SaidM.I. Mesoporous MnO2 polymorphs as sorbent materials for removal of cationic dyes from water.Int. J. Environ. Anal. Chem.202410471459147710.1080/03067319.2022.2039646
    [Google Scholar]
  41. LiuY. SunX. WangY. ZhangS. LiuF. MaS. ZhangJ. LiY. XueY. TangC. Activating MnO2 nanosheet arrays for accelerated water oxidation through the synergic effect of Ni loading and O vacancies.Chem. Eng. J.202449315264410.1016/j.cej.2024.152644
    [Google Scholar]
  42. ZhaoH. GaoY. ZhangB. WangQ. XiZ. Synthesis and adsorption performances of MIL-100(Fe) composites for air water intake.J. Solid State Chem.202432912435010.1016/j.jssc.2023.124350
    [Google Scholar]
  43. VaikosenE.N. BunuS.J. FridayD. EbeshiB.U. Spectroscopic in-vitro drug-drug interaction studies of amoxicillin and paracetamol solid dosage forms.Scholars Acad. J. Biosci.2024123566410.36347/sajb.2024.v12i03.004
    [Google Scholar]
  44. MirizadehS. SolisioC. ConvertiA. CasazzaA.A. Efficient removal of tetracycline, ciprofloxacin, and amoxicillin by novel magnetic chitosan/microalgae biocomposites.Separ. Purif. Tech.2024329125115
    [Google Scholar]
  45. GozlanI. RotsteinA. AvisarD. Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment.Chemosphere201391798599210.1016/j.chemosphere.2013.01.095 23466086
    [Google Scholar]
  46. DoušaM. HosmanováR. Rapid determination of amoxicillin in premixes by HPLC.J. Pharm. Biomed. Anal.200537237337710.1016/j.jpba.2004.10.010 15708680
    [Google Scholar]
  47. BustoR.V. RobertsJ. HunterC. EscuderoA. HelwigK. CoelhoL.H.G. Mechanistic and ecotoxicological studies of amoxicillin removal through anaerobic degradation systems.Ecotoxicol. Environ. Saf.202019211020710.1016/j.ecoenv.2020.110207 32032860
    [Google Scholar]
  48. TrovóA.G. Pupo NogueiraR.F. AgüeraA. Fernandez-AlbaA.R. MalatoS. Degradation of the antibiotic amoxicillin by photo-Fenton process – Chemical and toxicological assessment.Water Res.20114531394140210.1016/j.watres.2010.10.029 21093887
    [Google Scholar]
  49. WengX. ChenZ. ChenZ. MegharajM. NaiduR. Clay supported bimetallic Fe/Ni nanoparticles used for reductive degradation of amoxicillin in aqueous solution: Characterization and kinetics.Colloids Surf. A Physicochem. Eng. Asp.201444340440910.1016/j.colsurfa.2013.11.047
    [Google Scholar]
  50. GülfenM. CanbazY. ÖzdemirA. Simultaneous determination of amoxicillin, lansoprazole, and levofloxacin in pharmaceuticals by HPLC with UV–Vis Detector.J. Anal. Test.202041455310.1007/s41664‑020‑00121‑4
    [Google Scholar]
  51. LiuY. LiuH. ZhouZ. WangT. OngC.N. VecitisC.D. Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter.Environ. Sci. Technol.201549137974798010.1021/acs.est.5b00870
    [Google Scholar]
  52. ArsandJ.B. HoffR.B. JankL. MeirellesL.N. Silvia Díaz-CruzM. PizzolatoT.M. BarcelóD. Transformation products of amoxicillin and ampicillin after photolysis in aqueous matrices: Identification and kinetics.Sci. Total Environ.201864295496710.1016/j.scitotenv.2018.06.122 29929147
    [Google Scholar]
  53. YangS. LiuX. HeS. JiaC. ZhongH. Amoxicillin degradation in persulfate activation system induced by concrete-based hydrotalcites: Efficiency, mechanism, and degradation pathway.J. Mol. Liq.202439412368810.1016/j.molliq.2023.123688
    [Google Scholar]
  54. SilvaB.S. de Castro PeixotoA.L. Amoxicillin degradation by reactive oxygen species on H2O2-alone process.Braz. J. Chem. Eng.202441114916110.1007/s43153‑023‑00364‑5
    [Google Scholar]
  55. Al-MusawiT.J. YilmazM. Ramírez-CoronelA.A. Al-AwsiG.R.L. AlwailyE.R. AsghariA. BalarakD. Degradation of amoxicillin under a UV or visible light photocatalytic treatment process using Fe2O3/bentonite/TiO2: Performance, kinetic, degradation pathway, energy consumption, and toxicology studies.Optik (Stuttg.)202327217023010.1016/j.ijleo.2022.170230
    [Google Scholar]
  56. WahyuniE.T. CahyonoR.N. NoraM. AlharissaE.Z. KunartiE.S. Degradation of amoxicillin residue under visible light over TiO2 doped with Cr prepared from tannery wastewater.Results Chem.2024710130210.1016/j.rechem.2023.101302
    [Google Scholar]
  57. Hinojosa GuerraM.M. Oller AlberolaI. Malato RodriguezS. Agüera LópezA. Acevedo MerinoA. Quiroga AlonsoJ.M. Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process.Water Res.201915623224010.1016/j.watres.2019.02.055 30921539
    [Google Scholar]
  58. LiX. ShenT. WangD. YueX. LiuX. YangQ. CaoJ. ZhengW. ZengG. Photodegradation of amoxicillin by catalyzed Fe3+/H2O2 process.J. Environ. Sci. (China)201224226927510.1016/S1001‑0742(11)60765‑1 22655387
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372327833240924104209
Loading
/content/journals/cocat/10.2174/0122133372327833240924104209
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test