Skip to content
2000
image of Can the Mineralization of Antibiotics from Water Bodies be a Significant Step in the Fight Against Alarming Antimicrobial Resistance?

Abstract

Introduction: The overuse and improper disposal of antibiotics may add to the continuous rise of antimicrobial resistance (AMR). In this work, we demonstrate a sequential effect of two novel catalytic systems consisting of MIL-100(Fe) MOF (Metal Organic Framework) and MnO nanosheets to degrade amoxicillin antibiotic through the destruction of β lactam group.

Method

The catalysts exhibit large surface area, excellent porosity, excellent catalytic activity, and insolubility and can be easily separable from the reaction mixture.

Results

The sequential use of MIL-100(Fe) MOF and MnO nanosheets could showcase 92% degradation of amoxicillin within 1.5 hours under ambient conditions without any significant residual bi-product as confirmed by LCMS studies.

Conclusion

Impressively, the antimicrobial susceptibility of degraded residue is lessened by 33% as compared to pure amoxicillin.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372327833240924104209
2024-10-07
2025-01-28
Loading full text...

Full text loading...

References

  1. Amann S. Neef K. Kohl S. Antimicrobial resistance (AMR). Eur. J. Hosp. Pharm. Sci. Pract. 2019 26 3 175 177 10.1136/ejhpharm‑2018‑001820 31428328
    [Google Scholar]
  2. Titchou F.E. Zazou H. Afanga H. El Gaayda J. Ait Akbour R. Nidheesh P.V. Hamdani M. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Process. 2021 169 108631 10.1016/j.cep.2021.108631
    [Google Scholar]
  3. Wang J. Wang S. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem. Eng. J. 2021 411 128392 10.1016/j.cej.2020.128392
    [Google Scholar]
  4. Pandis P.K. Kalogirou C. Kanellou E. Vaitsis C. Savvidou M.G. Sourkouni G. Zorpas A.A. Argirusis C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. Chem. Eng. 2022 6 1 8 10.3390/chemengineering6010008
    [Google Scholar]
  5. Mahamallik P. Saha S. Pal A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. Chem. Eng. J. 2015 276 155 165 10.1016/j.cej.2015.04.064
    [Google Scholar]
  6. Pal A Mahamallik P Saha S Majumdar A Degradation of tetracycline antibiotics by advanced oxidation processes : application of MnO 2 nanomaterials. Nat. Resources Eng. 2018 2 1 1 11 10.1080/23802693.2018.1434397
    [Google Scholar]
  7. Kumar H Sangwan P. Synthesis and Characterization of MnO2 Nanoparticles using Co-precipitation Technique. Int. J. Chem. Chem. Eng. 2013 3 3 155 160
    [Google Scholar]
  8. Yang S. Shobnam N. Sun Y. Löffler F.E. Im J. The relative contributions of Mn(III) and Mn(IV) in manganese dioxide polymorphs to bisphenol A degradation. J. Hazard. Mater. 2024 461 132596 10.1016/j.jhazmat.2023.132596 37757556
    [Google Scholar]
  9. Zhu M.X. Wang Z. Xu S.H. Li T. Decolorization of methylene blue by δ-MnO2-coated montmorillonite complexes: Emphasizing redox reactivity of Mn-oxide coatings. J. Hazard. Mater. 2010 181 1-3 57 64 10.1016/j.jhazmat.2010.04.080 20510506
    [Google Scholar]
  10. Arumugaperumal V.K.S. Solar light driven photocatalytic degradation of methylene blue dye over Cu doped α-MnO2 nanoparticles. Chem. Phys.Impact 2024 8 100434 10.1016/j.chphi.2023.100434
    [Google Scholar]
  11. Malhotra M. Poonia K. Singh P. Khan A.A.P. Thakur P. Van Le Q. Helmy E.T. Ahamad T. Nguyen V-H. Thakur S. Raizada P. An overview of improving photocatalytic activity of MnO2 via the Z-scheme approach for environmental and energy applications. J. Taiwan Inst. Chem. Eng. 2024 158 104945 10.1016/j.jtice.2023.104945
    [Google Scholar]
  12. Chen M. Yang T. Zhao L. Shi X. Li R. Ma L. Huang Y. Wang Y. Lee S. Manganese oxide on activated carbon with peroxymonosulfate activation for enhanced ciprofloxacin degradation: Activation mechanism and degradation pathway. Appl. Surf. Sci. 2024 645 158835 10.1016/j.apsusc.2023.158835
    [Google Scholar]
  13. Huang R Guo Q Guan C Zhang B Jiang J. New insights into the combination of permanganate and hydrogen peroxide as a novel oxidation process for enhanced removal of organic contaminants. ACS ES&T Eng. 2024 4 4 882 891 10.1021/acsestengg.3c00499
    [Google Scholar]
  14. Stock N. Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012 112 2 933 969 10.1021/cr200304e 22098087
    [Google Scholar]
  15. Feng S. Wang R. Feng S. Zhang Z. Mao L. Synthesis of Zr-based MOF nanocomposites for efficient visible-light photocatalytic degradation of contaminants. Res. Chem. Intermed. 2019 45 3 1263 1279 10.1007/s11164‑018‑3682‑8
    [Google Scholar]
  16. Zhang H. Nai J. Yu L. Lou X.W.D. Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications. Joule 2017 1 1 77 107 10.1016/j.joule.2017.08.008
    [Google Scholar]
  17. Li M. Dincă M. On the mechanism of MOF-5 formation under cathodic bias. Chem. Mater. 2015 27 9 3203 3206 10.1021/acs.chemmater.5b00899
    [Google Scholar]
  18. Vikrant K. Tsang D.C.W. Raza N. Giri B.S. Kukkar D. Kim K.H. Potential Utility of Metal–Organic Framework-Based Platform for Sensing Pesticides. ACS Appl. Mater. Interfaces 2018 10 10 8797 8817 10.1021/acsami.8b00664 29465977
    [Google Scholar]
  19. Wei Y.S. Zhang M. Zou R. Xu Q. Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chem. Rev. 2020 120 21 12089 12174 10.1021/acs.chemrev.9b00757 32356657
    [Google Scholar]
  20. Wei Y. Fu Z. Meng Y. Li C. Yin F. Wang X. Zhang C. Guo L. Sun S. Photocatalytic degradation of methylene blue over MIL-100(Fe)/GO composites: a performance and kinetic study. Int. J. Coal Sci. Technol. 2024 11 1 42 10.1007/s40789‑024‑00681‑1
    [Google Scholar]
  21. Horcajada P. Surblé S. Serre C. Hong D.Y. Seo Y.K. Chang J.S. Grenèche J.M. Margiolaki I. Férey G. Synthesis and catalytic properties of MIL-100(Fe), an iron( iii ) carboxylate with large pores. Chem. Commun. (Camb.) 2007 100 27 2820 2822 10.1039/B704325B 17609787
    [Google Scholar]
  22. Liang R. Chen R. Jing F. Qin N. Wu L. Multifunctional polyoxometalates encapsulated in MIL-100(Fe): highly efficient photocatalysts for selective transformation under visible light. Dalton Trans. 2015 44 41 18227 18236 10.1039/C5DT02986D 26426950
    [Google Scholar]
  23. Guesh K. Caiuby C.A.D. Mayoral Á. Díaz-García M. Díaz I. Sanchez-Sanchez M. Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Cryst. Growth Des. 2017 17 4 1806 1813 10.1021/acs.cgd.6b01776
    [Google Scholar]
  24. Chang H. Xu G. Huang X. Xu W. Luo F. Zang J. Lin X. Huang R. Yu H. Yu B. Photocatalytic Degradation of Quinolones by Magnetic MOFs Materials and Mechanism Study. Molecules 2024 29 10 2294 10.3390/molecules29102294 38792155
    [Google Scholar]
  25. Hang J. Yi X.H. Wang C.C. Fu H. Wang P. Zhao Y. Heterogeneous photo-Fenton degradation toward sulfonamide matrix over magnetic Fe3S4 derived from MIL-100(Fe). J. Hazard. Mater. 2022 424 Pt B 127415 10.1016/j.jhazmat.2021.127415 34634703
    [Google Scholar]
  26. Raj S. Samanta A.N. Box-Behnken Design for the Photocatalytic Degradation of Sulfamethazine using MIL-100(Fe) as a Photocatalyst. Chem. Eng. Trans. 2023 98 129 134 10.3303/CET2398022
    [Google Scholar]
  27. Zhang F. Shi J. Jin Y. Fu Y. Zhong Y. Zhu W. Facile synthesis of MIL-100 (Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem. Eng. J. 2014 100 10.1016/j.cej.2014.07.119
    [Google Scholar]
  28. He Y. Dong W. Li X. Wang D. Yang Q. Deng P. Huang J. Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. J. Colloid Interface Sci. 2020 574 364 376 10.1016/j.jcis.2020.04.075 32339819
    [Google Scholar]
  29. Cao F. You M. Huang L. Zhu C. Liao H. Du J. Synthesis of C/N-TiO2@MIL-100(Fe) for highly efficient photocatalytic degradation of tetracycline under visible light irradiation. J. Photochem. Photobiol. Chem. 2024 451 115526 10.1016/j.jphotochem.2024.115526
    [Google Scholar]
  30. Liu Y. Ma S. Zhang S. Liu F. Wang Y. Sun X. Li Y. Xue Y. Tang C. Zhang J. Enhanced water oxidation stability and activity in MnO2 nanosheet arrays through Ti doping. Fuel 2024 374 132424 10.1016/j.fuel.2024.132424
    [Google Scholar]
  31. Xiao Y. Peng T. Luo Y. Jiao L. Huang T. Li H. Facile, green and scalable synthesis of single-layer manganese dioxide nanosheets and its application for GSH and cTnI colorimetric detection. Analyst (Lond.) 2024 149 15 3961 3970 10.1039/D4AN00689E 38980709
    [Google Scholar]
  32. Yecheskel Y. Shreim L. Ying Z. Yashar O. He Y. Zucker I. Catalytic Ozonation Using MnO 2 -Enabled Membranes: Toward Direct Delivery of Hydroxyl Radicals. Environ. Sci. Technol. Lett. 2024 11 2 179 184 10.1021/acs.estlett.4c00020
    [Google Scholar]
  33. Huang C.W. Zhou S.R. Hsiao W.C. Multifunctional TiO2/MIL-100(Fe) to conduct adsorption, photocatalytic, and heterogeneous photo-Fenton reactions for removing organic dyes. J. Taiwan Inst. Chem. Eng. 2024 158 104850 10.1016/j.jtice.2023.104850
    [Google Scholar]
  34. Wang Z. Bao J. Du J. Luo L. Xiao G. Zhou T. Sulfamethoxazole degradation by alpha-MnO2/periodate oxidative system: Role of MnO2 crystalline and reactive oxygen species. Environ. Sci. Pollut. Res. Int. 2022 29 29 44732 44745 10.1007/s11356‑022‑18901‑z 35138534
    [Google Scholar]
  35. Zhao J. Wang Y. Li N. Wang S. Yu J. Li X. Efficient degradation of ciprofloxacin by magnetic γ-Fe2O3–MnO2 with oxygen vacancy in visible-light/peroxymonosulfate system. Chemosphere 2021 276 130257 10.1016/j.chemosphere.2021.130257 34088104
    [Google Scholar]
  36. Abbasi S. Nezafat Z. Javanshir S. Aghabarari B. Bionanocomposite MIL-100(Fe)/Cellulose as a high-performance adsorbent for the adsorption of methylene blue. Sci. Rep. 2024 14 1 14497 10.1038/s41598‑024‑65531‑1 38914657
    [Google Scholar]
  37. Rattanakit P. Chutimasakul T. Darakai V. Nurerk P. Putnin T. Gamma irradiation-assisted synthesis of ultrafine AgNPs incorporated in MIL-100(Fe) for efficient catalytic reduction of dye. S. Afr. J. Chem. Eng. 2024 47 270 278 10.1016/j.sajce.2023.12.004
    [Google Scholar]
  38. Ning J. Hu G. Wu T. Zhao Y. Nie Y. Zhou Y. Dual biomarkers-activatable hollow MnO2-Based theranostic nanoplatform for efficient breast cancer-specific multisite fluorescence imaging and synergistic therapy. Anal. Chim. Acta 2024 1303 342521 10.1016/j.aca.2024.342521 38609263
    [Google Scholar]
  39. Adewinbi S.A.M. Maphiri V. Animasahun L.O. Ajayeoba Y.A. Alayyaf A.A. Mosa S.K. Microstructural, optical, photoluminescence and electrical studies of electrosynthesized S@MnO2 composite film for photosensing and optoelectronic applications. Opt. Mater. 2024 149 114988
    [Google Scholar]
  40. Ibrahim M. Said M.I. Mesoporous MnO 2 polymorphs as sorbent materials for removal of cationic dyes from water. Int. J. Environ. Anal. Chem. 2024 104 7 1459 1477 10.1080/03067319.2022.2039646
    [Google Scholar]
  41. Liu Y. Sun X. Wang Y. Zhang S. Liu F. Ma S. Zhang J. Li Y. Xue Y. Tang C. Activating MnO2 nanosheet arrays for accelerated water oxidation through the synergic effect of Ni loading and O vacancies. Chem. Eng. J. 2024 493 152644 10.1016/j.cej.2024.152644
    [Google Scholar]
  42. Zhao H. Gao Y. Zhang B. Wang Q. Xi Z. Synthesis and adsorption performances of MIL-100(Fe) composites for air water intake. J. Solid State Chem. 2024 329 124350 10.1016/j.jssc.2023.124350
    [Google Scholar]
  43. Vaikosen E.N. Bunu S.J. Friday D. Ebeshi B.U. Spectroscopic In-Vitro Drug-Drug Interaction Studies of Amoxicillin and Paracetamol Solid Dosage Forms. Scholars Acad. J. Biosci. 2024 12 3 56 64 10.36347/sajb.2024.v12i03.004
    [Google Scholar]
  44. Mirizadeh S. Solisio C. Converti A. Casazza A.A. Efficient removal of tetracycline, ciprofloxacin, and amoxicillin by novel magnetic chitosan/microalgae biocomposites. Separation and Purific. Technol. 2024 329 125115
    [Google Scholar]
  45. Gozlan I. Rotstein A. Avisar D. Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment. Chemosphere 2013 91 7 985 992 10.1016/j.chemosphere.2013.01.095 23466086
    [Google Scholar]
  46. Douša M. Hosmanová R. Rapid determination of amoxicillin in premixes by HPLC. J. Pharm. Biomed. Anal. 2005 37 2 373 377 10.1016/j.jpba.2004.10.010 15708680
    [Google Scholar]
  47. Busto R.V. Roberts J. Hunter C. Escudero A. Helwig K. Coelho L.H.G. Mechanistic and ecotoxicological studies of amoxicillin removal through anaerobic degradation systems. Ecotoxicol. Environ. Saf. 2020 192 110207 10.1016/j.ecoenv.2020.110207 32032860
    [Google Scholar]
  48. Trovó A.G. Pupo Nogueira R.F. Agüera A. Fernandez-Alba A.R. Malato S. Degradation of the antibiotic amoxicillin by photo-Fenton process – Chemical and toxicological assessment. Water Res. 2011 45 3 1394 1402 10.1016/j.watres.2010.10.029 21093887
    [Google Scholar]
  49. Weng X. Chen Z. Chen Z. Megharaj M. Naidu R. Clay supported bimetallic Fe/Ni nanoparticles used for reductive degradation of amoxicillin in aqueous solution: Characterization and kinetics. Colloids Surf. A Physicochem. Eng. Asp. 2014 443 404 409 10.1016/j.colsurfa.2013.11.047
    [Google Scholar]
  50. Gülfen M. Canbaz Y. Özdemir A. Simultaneous Determination of Amoxicillin, Lansoprazole, and Levofloxacin in Pharmaceuticals by HPLC with UV–Vis Detector. J. Anal. Test. 2020 4 1 45 53 10.1007/s41664‑020‑00121‑4
    [Google Scholar]
  51. Liu Y Liu H Zhou Z Wang T Ong CN Vecitis CD Degradation of the Common Aqueous Antibiotic Tetracycline using a Carbon Nanotube Electrochemical Filter. Environ. Sci. Technol. 2015 49 13 7974 80 10.1021/acs.est.5b00870
    [Google Scholar]
  52. Arsand J.B. Hoff R.B. Jank L. Meirelles L.N. Silvia Díaz-Cruz M. Pizzolato T.M. Barceló D. Transformation products of amoxicillin and ampicillin after photolysis in aqueous matrices: Identification and kinetics. Sci. Total Environ. 2018 642 954 967 10.1016/j.scitotenv.2018.06.122 29929147
    [Google Scholar]
  53. Yang S. Liu X. He S. Jia C. Zhong H. Amoxicillin degradation in persulfate activation system induced by concrete-based hydrotalcites: Efficiency, mechanism, and degradation pathway. J. Mol. Liq. 2024 394 123688 10.1016/j.molliq.2023.123688
    [Google Scholar]
  54. Silva B.S. de Castro Peixoto A.L. Amoxicillin Degradation by Reactive Oxygen Species on H2O2-Alone Process. Braz. J. Chem. Eng. 2024 41 1 149 161 10.1007/s43153‑023‑00364‑5
    [Google Scholar]
  55. Al-Musawi T.J. Yilmaz M. Ramírez-Coronel A.A. Al-Awsi G.R.L. Alwaily E.R. Asghari A. Balarak D. Degradation of amoxicillin under a UV or visible light photocatalytic treatment process using Fe2O3/bentonite/TiO2: Performance, kinetic, degradation pathway, energy consumption, and toxicology studies. Optik (Stuttg.) 2023 272 170230 10.1016/j.ijleo.2022.170230
    [Google Scholar]
  56. Wahyuni E.T. Cahyono R.N. Nora M. Alharissa E.Z. Kunarti E.S. Degradation of amoxicillin residue under visible light over TiO2 doped with Cr prepared from tannery wastewater. Results Chem. 2024 7 101302 10.1016/j.rechem.2023.101302
    [Google Scholar]
  57. Hinojosa Guerra M.M. Oller Alberola I. Malato Rodriguez S. Agüera López A. Acevedo Merino A. Quiroga Alonso J.M. Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Res. 2019 156 232 240 10.1016/j.watres.2019.02.055 30921539
    [Google Scholar]
  58. Li X. Shen T. Wang D. Yue X. Liu X. Yang Q. Cao J. Zheng W. Zeng G. Photodegradation of amoxicillin by catalyzed Fe3+/H2O2 process. J. Environ. Sci. (China) 2012 24 2 269 275 10.1016/S1001‑0742(11)60765‑1 22655387
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372327833240924104209
Loading
/content/journals/cocat/10.2174/0122133372327833240924104209
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test