Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Background

Biotransformation is a powerful process for producing steroid compounds, and fungi are commonly regarded as effective biological agents for this purpose. They facilitate reactions that are difficult to perform conventional chemical methods.

Objective

In the current study, the ability of to biotransform progesterone was studied.

Methods

Forty-eight hours after the incubation of active with substrate (progesterone), the reaction medium was extracted and chromatography methods isolated metabolites. The chemical structures of the products were characterized by various spectroscopic techniques.

Results

Two main hydroxylated products, 14α-hydroxyprogesterone, and 7α,14α-dihydroxyprogesterone, were finally identified.

Conclusion

may be considered a functional biocatalyst for some biotransformation processes.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372334969240902092741
2024-09-09
2025-06-21
Loading full text...

Full text loading...

References

  1. FernandesP. CruzA. AngelovaB. PinheiroH.M. CabralJ.M. Microbial conversion of steroid compounds: Recent developments.Enzyme Microb. Technol.200332668870510.1016/S0141‑0229(03)00029‑2
    [Google Scholar]
  2. SultanaN. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation.Steroids2018136769210.1016/j.steroids.2018.01.007 29360535
    [Google Scholar]
  3. KollerovV. ShutovA. KazantsevA. DonovaM. Biotransformation of androstenedione and androstadienedione by selected Ascomycota and Zygomycota fungal strains.Phytochemistry202016911216010.1016/j.phytochem.2019.112160 31600654
    [Google Scholar]
  4. KozłowskaE. HocN. SyczJ. UrbaniakM. DymarskaM. GrzeszczukJ. Kostrzewa-SusłowE. StępieńŁ. PląskowskaE. JaneczkoT. Biotransformation of steroids by entomopathogenic strains of Isaria farinosa.Microb. Cell Fact.20181717110.1186/s12934‑018‑0920‑0 29753319
    [Google Scholar]
  5. Garzón-PosseF. Becerra-FigueroaL. Hernández-AriasJ. Gamba-SánchezD. Whole cells as biocatalysts in organic transformations.Molecules2018236126510.3390/molecules23061265 29799483
    [Google Scholar]
  6. KozłowskaE. SyczJ. JaneczkoT. Hydroxylation of progesterone and its derivatives by the entomopathogenic strain Isaria farinosa KCh KW1.1.Int. J. Mol. Sci.20222313701510.3390/ijms23137015 35806021
    [Google Scholar]
  7. Nassiri-KoopaeiN. FaramarziM.A. Recent developments in the fungal transformation of steroids.Biocatal. Biotransform.201533112810.3109/10242422.2015.1022533
    [Google Scholar]
  8. JavedS. JabeenA. ZhumagaliyevaS. AbilovZ.A. ChoudharyM.I. Fungal mediated biotransformation of melengestrol acetate, and T-cell proliferation inhibitory activity of biotransformed compounds.Bioorg. Chem.202010410431310.1016/j.bioorg.2020.104313 33142425
    [Google Scholar]
  9. Fernández-CabezónL. GalánB. GarcíaJ.L. New insights on steroid biotechnology.Front. Microbiol.2018995810.3389/fmicb.2018.00958 29867863
    [Google Scholar]
  10. HegazyM.E. MohamedT.A. ElShamyA.I. MohamedA.E. MahalelU.A. RedaE.H. ShaheenA.M. TawfikW.A. ShahatA.A. ShamsK.A. Abdel-AzimN.S. HammoudaF.M. Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: A review.J. Adv. Res.201561173310.1016/j.jare.2014.11.009 25685541
    [Google Scholar]
  11. KumarD. NarulaA.K. DeswalD. Role of fungal enzymes in the synthesis of pharmaceutically important scaffolds: A green approach.Green Chem.202325239463950010.1039/D3GC02384B
    [Google Scholar]
  12. ŚwizdorA. KołekT. PanekA. MileckaN. Selective modifications of steroids performed by oxidative enzymes.Curr. Org. Chem.201216212551258210.2174/138527212804004625
    [Google Scholar]
  13. YiD. BayerT. BadenhorstC.P. WuS. DoerrM. HöhneM. BornscheuerU.T. Recent trends in biocatalysis.Chem. Soc. Rev.202150148003804910.1039/D0CS01575J 34142684
    [Google Scholar]
  14. WangL. WuX. GaoC. WeiL. LiQ. LiA. A fungal P450 enzyme from Fusarium graminearum with unique 12β-steroid hydroxylation activity.Appl. Environ. Microbiol.2023893e0196310.1128/aem.01963‑22 36853033
    [Google Scholar]
  15. SuiL. ChangF. WangQ. ChangZ. XiaH. Functional reconstitution of a steroidal hydroxylase from the fungus Thanatephorus cucumeris in Mycolicibacterium neoaurum for 15α-hydroxylation of progesterone.Biochem. Eng. J.202319310885910.1016/j.bej.2023.108859
    [Google Scholar]
  16. BabotE.D. del RíoJ.C. CañellasM. SanchoF. LucasF. GuallarV. KalumL. LundH. GröbeG. ScheibnerK. UllrichR. HofrichterM. MartínezA.T. GutiérrezA. Steroid hydroxylation by basidiomycete peroxygenases: A combined experimental and computational study.Appl. Environ. Microbiol.201581124130414210.1128/AEM.00660‑15 25862224
    [Google Scholar]
  17. Felpeto-SanteroC. GalánB. GarcíaJ.L. Production of 11α‐hydroxysteroids from sterols in a single fermentation step by Mycolicibacterium smegmatis.Microb. Biotechnol.20211462514252410.1111/1751‑7915.13735 33660943
    [Google Scholar]
  18. TongW.Y. DongX. Microbial biotransformation: Recent developments on steroid drugs.Recent Pat. Biotechnol.20093214115310.2174/187220809788700157 19519569
    [Google Scholar]
  19. ChoudharyM. GuptaS. DharM.K. KaulS. Endophytic fungi-mediated biocatalysis and biotransformations paving the way toward green chemistry.Front. Bioeng. Biotechnol.2021966470510.3389/fbioe.2021.664705 34222213
    [Google Scholar]
  20. VisagieC.M. HoubrakenJ. FrisvadJ.C. HongS.B. KlaassenC.H. PerroneG. SeifertK.A. VargaJ. YaguchiT. SamsonR.A. Identification and nomenclature of the genus Penicillium.Stud. Mycol.201478134337110.1016/j.simyco.2014.09.001 25505353
    [Google Scholar]
  21. ToghueoR.M. BoyomF.F. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications.BioTech202010310710.1007/s13205‑020‑2081‑1
    [Google Scholar]
  22. ParkM.S. LeeJ.W. KimS.H. ParkJ.H. YouY.H. LimY.W. Penicillium from rhizosphere soil in terrestrial and coastal environments in South Korea.Mycobiology202048643144210.1080/12298093.2020.1823611 33312010
    [Google Scholar]
  23. HeoI. HongK. YangH. LeeH.B. ChoiY.J. HongS.B. Diversity of Aspergillus, Penicillium, and Talaromyces species isolated from freshwater environments in Korea.Mycobiology2019471121910.1080/12298093.2019.1572262 30988987
    [Google Scholar]
  24. ParkM.S. OhS.Y. FongJ.J. HoubrakenJ. LimY.W. The diversity and ecological roles of Penicillium in intertidal zones.Sci. Rep.2019911354010.1038/s41598‑019‑49966‑5 31537866
    [Google Scholar]
  25. NicolettiR. TrinconeA. Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin.Mar. Drugs20161423710.3390/md14020037 26901206
    [Google Scholar]
  26. Gómez-MuñozB. EfthymiouA. DubeyM. SølveJ. NicolaisenM. JensenD.F. NybroeO. LarsenJ. Cellulose amendment promotes P solubilization by Penicillium aculeatum in non-sterilized soil.Fungal Biol.2022126535636510.1016/j.funbio.2022.03.003 35501031
    [Google Scholar]
  27. HuangH. LiuT. WuX. GuoJ. LanX. ZhuQ. ZhengX. ZhangK. A new antibacterial chromone derivative from mangrove-derived fungus Penicillium aculeatum.Nat. Prod. Res.201731222593259810.1080/14786419.2017.1283498 28147702
    [Google Scholar]
  28. LiX.D. LiX.M. XuG.M. ZhangP. WangB.G. Antimicrobial phenolic bisabolanes and related derivatives from Penicillium aculeatum SD-321, a deep sea sediment-derived fungus.J. Nat. Prod.201578484484910.1021/acs.jnatprod.5b00004 25763602
    [Google Scholar]
  29. DaengrotC. RukachaisirikulV. TadpetchK. PhongpaichitS. BowornwiriyapanK. SakayarojJ. ShenX. Penicillanthone and penicillidic acids A–C from the soil-derived fungus Penicillium aculeatum PSU-RSPG105.RSC Advances2016646397003970910.1039/C6RA04401H
    [Google Scholar]
  30. HawasU.W.T. Abou El-KassemT. L.; Ahmed, E.F.; Alghamdi, R.A. Bioactive sulfonyl metabolites from the Red Sea endophytic fungus Penicillium aculeatum.Nat. Prod. Res.202236112713272110.1080/14786419.2021.1917571 33926314
    [Google Scholar]
  31. KrishnamurthyS. Narasimha MurthyK. ThirumaleS. Characterization of ankaflavin from Penicillium aculeatum and its cytotoxic properties.Nat. Prod. Res.202034111630163510.1080/14786419.2018.1522633 30587035
    [Google Scholar]
  32. KolatorovaL. VitkuJ. SuchoparJ. HillM. ParizekA. Progesterone: A steroid with wide range of effects in physiology as well as human medicine.Int. J. Mol. Sci.20222314798910.3390/ijms23147989 35887338
    [Google Scholar]
  33. DoğruE.K. GüralpG. UyarA. SurmeliN.B. Rational design of thermophilic CYP119 for progesterone hydroxylation by in silico mutagenesis and docking screening.J. Mol. Graph. Model.202311810832310.1016/j.jmgm.2022.108323 36137435
    [Google Scholar]
  34. LiuH.M. LiH. ShanL. WuJ. Synthesis of steroidal lactone by Penicillium citreo-viride.Steroids20067111-1293193410.1016/j.steroids.2006.06.005 16970967
    [Google Scholar]
  35. EshratG.F. AroonaC. Biotransformation of progesterone by Penicillium aurantiogriseum.Res. J. Microbiol.2011619810410.3923/jm.2011.98.104
    [Google Scholar]
  36. BartmańskaA. Dmochowska-GładyszJ. HuszczaE. Steroids’ transformations in Penicillium notatum culture.Steroids200570319319810.1016/j.steroids.2004.11.011 15763598
    [Google Scholar]
  37. CarlströmK. SieversG. SimonetJ. KraneJ. TaticchiA. MannervikB. Transformation of steroids by cell-free preparations of Penicillium lilacinum NRRL 895. V. Properties of 20-oxopregnane side chain cleavage and 20(α+β)-oxidoreductase activities.Acta Chem. Scand. 197428b883284010.3891/acta.chem.scand.28b‑0832 4440355
    [Google Scholar]
  38. dos SantosV.H. AndreR.S. dos AnjosJ.P. MercanteL.A. CorreaD.S. SilvaE.O. Biotransformation of progesterone by endophytic fungal cells immobilized on electrospun nanofibrous membrane.Folia Microbiol.202469240741410.1007/s12223‑023‑01113‑4 37979123
    [Google Scholar]
  39. de PaulaS.F. RossetI.G. PortoA.L. Hydroxylated steroids in C-7 and C-15 positions from progesterone bio-oxidation by the marine-derived fungus Penicillium oxalicum CBMAI 1996.Biocatal. Agric. Biotechnol.20213710216710.1016/j.bcab.2021.102167
    [Google Scholar]
  40. YangB. WangY. ChenX. FengJ. WuQ. ZhuD. MaY. Biotransformations of steroids to testololactone by a multifunctional strain Penicillium simplicissimum WY134-2.Tetrahedron2014701414610.1016/j.tet.2013.11.039
    [Google Scholar]
  41. PanekA. ŁyczkoP. ŚwizdorA. Microbial modifications of androstane and androstene steroids by Penicillium vinaceum.Molecules20202518422610.3390/molecules25184226 32942593
    [Google Scholar]
  42. KołekT. SzpineterA. ŚwizdorA. Studies on Baeyer–Villiger oxidation of steroids: DHEA and pregnenolone d-lactonization pathways in Penicillium camemberti AM83.Steroids20097410-1185986210.1016/j.steroids.2009.05.007 19481558
    [Google Scholar]
  43. JavidM. NickavarB. VahidiH. FaramarziM.A. Baeyer-Villiger oxidation of progesterone by Aspergillus sojae PTCC 5196.Steroids2018140525710.1016/j.steroids.2018.07.008 30055193
    [Google Scholar]
  44. MehmannavazM. NickavarB. Biotransformation of testosterone by the filamentous fungus. Penicillium pinophilum.Arch. Microbiol.2022204957010.1007/s00203‑022‑03191‑3 35994127
    [Google Scholar]
  45. HuS. GenainG. AzeradR. Microbial transformation of steroids: Contribution to 14α-hydroxylations.Steroids199560433735210.1016/0039‑128X(95)00006‑C 8539788
    [Google Scholar]
  46. TempletonJ.F. KumarV.P. MaratK. KimR.S. LabellaF.S. CoteD. New hydroxylation products of progesterone with Mucor griseocyanus.J. Nat. Prod.198750346346710.1021/np50051a019
    [Google Scholar]
  47. YousefiM. MohammadiM. HabibiZ. ShafieeA. Biotransformation of Progesterone by Acremonium chrysogenum and Absidia griseolla var. igachii.Biocatal. Biotransform.201028425425810.3109/10242422.2010.500723
    [Google Scholar]
  48. YildirimK. KuruA. Biotransformation of some steroids by Aspergillus candidus.J. Chem. Res.201539954654910.3184/174751915X14403454824263
    [Google Scholar]
  49. HabibiZ. YousefiM. GhanianS. MohammadiM. GhasemiS. Biotransformation of progesterone by Absidia griseolla var. igachii and Rhizomucor pusillus.Steroids201277131446144910.1016/j.steroids.2012.08.010 22974825
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372334969240902092741
Loading
/content/journals/cocat/10.2174/0122133372334969240902092741
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test