Skip to content
2000
Volume 29, Issue 9
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Indoles are critical in natural amalgamation for their flexible jobs in drugs, regular items, and material science, exhibiting huge pharmacological and compound reactivity. Due to their versatility and high reactivity, nitroalkenes are essential electrophilic partners in organic synthesis. While indoles and nitroalkenes are used in both Michael addition and Friedel-Crafts alkylation for producing carbon-carbon bonds, the catalyst types and reactions involved are different. Michael addition employs conjugate addition, whereas Friedel-Crafts alkylation employs electrophilic aromatic substitution. Each technique has a different level of selectivity and distinct synthetic applications. This review aims to examine the advancements and persistent challenges in catalysis, focusing on the comparative methodologies of Friedel-Crafts alkylation and Michael addition involving indoles and nitroalkenes. Emphasizing green chemistry principles, it discusses the potential for sustainable and efficient synthetic processes through the use of innovative catalysts, including photocatalysis and biocatalysis. The integration of computational studies and interdisciplinary collaboration is essential for developing economically viable and environmentally responsible chemical synthesis, ultimately contributing to the creation of advanced materials and pharmaceuticals.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728351613240924091458
2024-10-21
2025-05-22
Loading full text...

Full text loading...

References

  1. InmanM. MoodyC.J. Indole synthesis - something old, something new.Chem. Sci. (Camb.)201341294110.1039/C2SC21185H
    [Google Scholar]
  2. Kochanowska-KaramyanA.J. HamannM.T. Marine indole alkaloids: Potential new drug leads for the control of depression and anxiety.Chem. Rev.201011084489449710.1021/cr900211p 20380420
    [Google Scholar]
  3. HumphreyG.R. KuetheJ.T. Practical methodologies for the synthesis of indoles.Chem. Rev.200610672875291110.1021/cr0505270 16836303
    [Google Scholar]
  4. ZhangM.Z. ChenQ. YangG.F. A review on recent developments of indole-containing antiviral agents.Eur. J. Med. Chem.20158942144110.1016/j.ejmech.2014.10.065 25462257
    [Google Scholar]
  5. UmerS.M. SolangiM. KhanK.M. SaleemR.S.Z. Indole-containing natural products 2019-2022: Isolations, reappraisals, syntheses, and biological activities.Molecules20222721758610.3390/molecules27217586 36364413
    [Google Scholar]
  6. StempelE. GaichT. Cyclohepta[b]indoles: A privileged structure motif in natural products and drug design.Acc. Chem. Res.201649112390240210.1021/acs.accounts.6b00265 27709885
    [Google Scholar]
  7. YounS.W. KoT.Y. Metal‐catalyzed synthesis of substituted indoles.Asian J. Org. Chem.2018781467148710.1002/ajoc.201800290
    [Google Scholar]
  8. WilkinsonM.L. GowA.J. Effects of fatty acid nitroalkanes on signal transduction pathways and airway macrophage activation.Innate Immun.202127535336410.1177/17534259211015330 34375151
    [Google Scholar]
  9. Rodriguez-DuarteJ. DapuetoR. GalliussiG. TurellL. KamaidA. KhooN.K.H. SchopferF.J. FreemanB.A. EscandeC. BatthyányC. Ferrer-SuetaG. LópezG.V. Electrophilic nitroalkene-tocopherol derivatives: Synthesis, physicochemical characterization and evaluation of anti-inflammatory signaling responses.Sci. Rep.2018811278410.1038/s41598‑018‑31218‑7 30143727
    [Google Scholar]
  10. FazzariM. TrostchanskyA. SchopferF.J. SalvatoreS.R. Sánchez-CalvoB. VitturiD. ValderramaR. BarrosoJ.B. RadiR. FreemanB.A. RubboH. Olives and olive oil are sources of electrophilic fatty acid nitroalkenes.PLoS One201491e8488410.1371/journal.pone.0084884 24454759
    [Google Scholar]
  11. VolkovaY.A. AverinaE.B. VasilenkoD.A. SedenkovaK.N. GrishinY.K. BruheimP. KuznetsovaT.S. ZefirovN.S. Unexpected heterocyclization of electrophilic alkenes by tetranitromethane in the presence of triethylamine. Synthesis of 5-nitroisoxazoles.J. Org. Chem.20198463192320010.1021/acs.joc.8b03086 30726081
    [Google Scholar]
  12. ZhangJ. LuX. ShenC. XuL. DingL. ZhongG. Recent advances in chelation-assisted site- and stereoselective alkenyl C-H functionalization.Chem. Soc. Rev.20215053263331410.1039/D0CS00447B 33491691
    [Google Scholar]
  13. AbaevV.T. AksenovN.A. AksenovD.A. AleksandrovaE.V. AkulovaA.S. KurenkovI.A. LeontievA.V. AksenovA.V. One-pot synthesis of polynuclear indole derivatives by Friedel-Crafts alkylation of γ-hydroxybutyrolactams.Molecules2023287316210.3390/molecules28073162 37049924
    [Google Scholar]
  14. HencheS. NestlB.M. HauerB. Enzymatic Friedel‐Crafts alkylation using squalene‐hopene cyclases.ChemCatChem202113153405340910.1002/cctc.202100452
    [Google Scholar]
  15. ZubkevichS.V. TuskaevV.A. GagievaS.C. PavlovA.A. KhrustalevV.N. WangF. PanL. LiY. SarachenoD. VikhrovA.A. ZarubinD.N. BulychevB.M. Trapping the short‐chain odd carbon number olefins using nickel(II)‐catalyzed tandem ethylene oligomerization and Friedel‐Crafts alkylation of toluene.Chin. J. Chem.202341212855286510.1002/cjoc.202300175
    [Google Scholar]
  16. Ortiz VillamizarM.C. Puerto GalvisC.E. Pedraza RodríguezS.A. ZubkovF.I. KouznetsovV.V. Synthesis, in silico and in vivo toxicity assessment of functionalized pyridophenanthridinones via sequential MW-assisted intramolecular friedel-crafts alkylation and direct C-H arylation.Molecules20222723811210.3390/molecules27238112 36500206
    [Google Scholar]
  17. XiaoL. LiB. XiaoF. FuC. WeiL. DangY. DongX.Q. WangC.J. Stereodivergent synthesis of enantioenriched azepino[3,4,5-cd]-indoles via cooperative Cu/Ir-catalyzed asymmetric allylic alkylation and intramolecular Friedel-Crafts reaction.Chem. Sci. (Camb.)202213174801481210.1039/D1SC07271D 35655885
    [Google Scholar]
  18. TangR.J. MilcentT. CrousseB. Friedel-Crafts alkylation reaction with fluorinated alcohols as hydrogen-bond donors and solvents.RSC Advances2018819103141031710.1039/C8RA01397G 35540471
    [Google Scholar]
  19. WeiX. LiuM. LuK. WuH. WuJ. Friedel-Crafts alkylation modification and hydrophilic soft finishing of meta aramid.J. Eng. Fibers Fabrics2021169906110.1177/1558925021999061
    [Google Scholar]
  20. WuH. ZhaoT. HuX. Friedel-Crafts reaction of N,N-dimethylaniline with alkenes catalyzed by cyclic diaminocarbene-gold(I) complex.Sci. Rep.2018811144910.1038/s41598‑018‑29854‑0 30061755
    [Google Scholar]
  21. Leveson-GowerR.B. RoelfesG. Biocatalytic Friedel‐Crafts reactions.ChemCatChem20221418e20220063610.1002/cctc.202200636 36606067
    [Google Scholar]
  22. ZuoY. YangN. HuangX. HuC. SuZ. Mechanism and origins of stereoinduction in an asymmetric friedel-crafts alkylation reaction of chalcone catalyzed by chiral N,N′-Dioxide-Sc(III) complex.J. Org. Chem.20188384628464010.1021/acs.joc.8b00387 29601193
    [Google Scholar]
  23. FengH. MehulkumarP. FeixiangL. CarolF. RichardM. EricG. HuixinH. MichalS. Graphene-catalyzed direct friedel-crafts alkylation reactions: Mechanism, selectivity, and synthetic utility.J. Am. Chem. Soc.201513745144731448010.1021/jacs.5b09636
    [Google Scholar]
  24. ShimJ.H. CheunS.H. KimH.S. HaD.C. Enantioselective organocatalyzed Michael addition of isobutyraldehyde to maleimides in aqueous media.Molecules2022279275910.3390/molecules27092759 35566109
    [Google Scholar]
  25. VybornyiO. MatviiukT. YegorovaT. BaltasM. VoitenkoZ. Michael addition of heteronucleophilic substances to N-Ar substituted maleimides: Green approach.French-Ukrainian J. Chem.2013113237
    [Google Scholar]
  26. PrzybylskaA. SzymańskaA. MaciejewskiH. A library of new organofunctional silanes obtained by thiol-(meth)acrylate Michael addition reaction.RSC Advances20231320140101401710.1039/D3RA01583A 37181512
    [Google Scholar]
  27. Lock Toy KiY. GarciaA. PelissierF. OlszewskiT.K. Babst-KosteckaA. LegrandY.M. GrisonC. Mechanochemistry and eco-bases for sustainable Michael addition reactions.Molecules20222710330610.3390/molecules27103306 35630783
    [Google Scholar]
  28. OlaruM. SimionescuN. DorofteiF. DavidG. Strategy based on michael addition reaction for the development of bioinspired multilayered and multiphasic 3D constructs.Polymers (Basel)2023157163510.3390/polym15071635 37050249
    [Google Scholar]
  29. DeepakR.J. SathishkumarP.N. KarvembuR. Friedel-Crafts alkylation of indoles with β-nitroalkenes using ammonium niobium oxalate as a recyclable catalyst.New J. Chem.20224648233052331110.1039/D2NJ04542G
    [Google Scholar]
  30. IbáñezI. KanekoM. KameiY. TsutsumiR. YamanakaM. AkiyamaT. Enantioselective Friedel-Crafts alkylation reaction of indoles with α-trifluoromethylated β-nitrostyrenes catalyzed by chiral binol metal phosphate.ACS Catal.2019986903690910.1021/acscatal.9b01811
    [Google Scholar]
  31. FanY. KassS.R. Enantioselective Friedel-Crafts alkylation between nitroalkenes and indoles catalyzed by charge activated thiourea organocatalysts.J. Org. Chem.20178224132881329610.1021/acs.joc.7b02411 29166016
    [Google Scholar]
  32. VilaC. Rostoll-BerenguerJ. Sánchez-GarcíaR. BlayG. FernándezI. MuñozM.C. PedroJ.R. Enantioselective synthesis of 2-amino-1, 1-diarylalkanes bearing a carbocyclic ring substituted indole through asymmetric catalytic reaction of hydroxyindoles with nitroalkenes.J. Org. Chem.201883126397640710.1021/acs.joc.8b00612 29856221
    [Google Scholar]
  33. Roca-LópezD. Marqués-LópezE. AlcaineA. MerinoP. HerreraR.P. A Friedel-Crafts alkylation mechanism using an aminoindanol-derived thiourea catalyst.Org. Biomol. Chem.201412254503451010.1039/C4OB00348A 24849715
    [Google Scholar]
  34. Zong-YiY. Jing-NanZ. FanY. Xiao-FeiT. Yu-FengW. Rose bengal as photocatalyst: Visible light-mediated Friedel-Crafts alkylation of indoles with nitroalkenes in water.RSC Advances2020104825483110.1039/C9RA09227G
    [Google Scholar]
  35. JiaY. YangW. DuD.M. Asymmetric Friedel-Crafts alkylation of indoles with 3-nitro-2H-chromenes catalyzed by diphenylamine-linked bis(oxazoline) and bis(thiazoline) Zn(II) complexes.Org. Biomol. Chem.201210244739474610.1039/c2ob25360g 22588514
    [Google Scholar]
  36. SinghM. NeogiS. Urea-engineering mediated hydrogen-bond donating Friedel-Crafts alkylation of indoles and nitroalkenes in a dual-functionalized microporous metal-organic framework with high recyclability and pore-fitting-induced size-selectivity.Inorg. Chem. Front.2022991897191110.1039/D2QI00206J
    [Google Scholar]
  37. MulveyR.E. Benzene submits to main-group power.Science201735863671132113210.1126/science.aaq1314 29191894
    [Google Scholar]
  38. WangW. XiongW. WangJ. WangQ.A. YangW. Brønsted acid-catalyzed asymmetric friedel-crafts alkylation of indoles with benzothiazole-bearing trifluoromethyl ketone hydrates.J. Org. Chem.20208564398440710.1021/acs.joc.0c00116 32118421
    [Google Scholar]
  39. PanA. ChojnackaM. CrowleyR.III GöttemannL. HainesB.E. KouK.G.M. Synergistic Brønsted/Lewis acid catalyzed aromatic alkylation with unactivated tertiary alcohols or di-tert-butylperoxide to synthesize quaternary carbon centers.Chem. Sci. (Camb.)202213123539354810.1039/D1SC06422C 35432882
    [Google Scholar]
  40. YangC.H. ChangJ.C. WuT.Y. SunI.W. WuJ.H. HoW.Y. Novel aryl-imidazolium ionic liquids with dual Brønsted/Lewis acidity as both solvents and catalysts for Friedel-Crafts alkylation.Appl. Sci. (Basel)2019922474310.3390/app9224743
    [Google Scholar]
  41. RosseinskyM.J. Perspective: Metal-organic frameworks-opportunities and challenges.APL Mater.201421212400110.1063/1.4904880
    [Google Scholar]
  42. JamesS.L. Metal-organic frameworks.Chem. Soc. Rev.200332527628810.1039/b200393g 14518181
    [Google Scholar]
  43. GuoZ. WuH. SrinivasG. ZhouY. XiangS. ChenZ. YangY. ZhouW. O’KeeffeM. ChenB. A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature.Angew. Chem. Int. Ed.201150143178318110.1002/anie.201007583 21374770
    [Google Scholar]
  44. AhmadT. KhanS. UllahN. Recent advances in the catalytic asymmetric Friedel-Crafts reactions of indoles.ACS Omega2022740354463548510.1021/acsomega.2c05022 36249392
    [Google Scholar]
  45. MarkadD. MandalS.K. Design of a primary-amide-functionalized highly efficient and recyclable hydrogen-bond-donating heterogeneous catalyst for the Friedel-Crafts alkylation of indoles with β-nitrostyrenes.ACS Catal.2019943165317310.1021/acscatal.8b04962
    [Google Scholar]
  46. NagarajA. AmarajothiD. Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes.J. Colloid Interface Sci.201749428228910.1016/j.jcis.2017.01.091 28160712
    [Google Scholar]
  47. RaoP.C. MandalS. Friedel-Crafts alkylation of indoles with nitroalkenes through hydrogen‐bond‐donating metal-organic framework.ChemCatChem2017971172117610.1002/cctc.201601583
    [Google Scholar]
  48. WangX.J. LiJ. LiQ.Y. LiP.Z. LuH. LaoQ. NiR. ShiY. ZhaoY. A urea decorated (3,24)-connected rht-type metal-organic framework exhibiting high gas uptake capability and catalytic activity.CrystEngComm201517254632463610.1039/C5CE00625B
    [Google Scholar]
  49. VenkatannaK. Yeswanth KumarS. KarthickM. PadmanabanR. Ramaraj RamanathanC. A chiral bicyclic skeleton-tethered bipyridine-Zn(OTf)2 complex as a Lewis acid: Enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes.Org. Biomol. Chem.201917164077408610.1039/C9OB00545E 30957819
    [Google Scholar]
  50. KumarA. ShuklaR.D. YadavD. GuptaL.P. Friedel-Crafts alkylation of indoles in deep eutectic solvent.RSC Advances2015564520625206510.1039/C5RA08038J
    [Google Scholar]
  51. TranP.H. NguyenH.T. HansenP.E. LeT.N. An efficient and green method for regio- and chemo-selective Friedel-Crafts acylations using a deep eutectic solvent ([CholineCl][ZnCl2]3).RSC Advances2016643370313703810.1039/C6RA03551E
    [Google Scholar]
  52. VemulaS. KumarD. CookG. pi-Bond directed C-2 amination of indoles: Catalysis development, mechanistic investigation, and substrate scope.ChemRxiv202210.26434/chemrxiv‑2022‑hmhrz
    [Google Scholar]
  53. BuchcicA. ZawiszaA. LeśniakS. RachwalskiM. Asymmetric Friedel-Crafts alkylation of indoles catalyzed by chiral aziridine-phosphines.Catalysts202010997110.3390/catal10090971
    [Google Scholar]
  54. ChenL.Y. GuillarmeS. SaluzzoC. Dianhydrohexitols: New tools for organocatalysis. Application in enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes.ARKIVOC20132013322724410.3998/ark.5550190.0014.318
    [Google Scholar]
  55. El-AalH.A.K.A. KhalafA.A. El-EmaryT.I. Modern Friedel-Crafts chemistry. Part 35. New synthetic approach to substituted indolo[2,1-a][2]benzazepines and indolo[2,1-a]isoquinolines via Friedel-Crafts cyclialkylations.ARKIVOC20122012912213510.3998/ark.5550190.0013.911
    [Google Scholar]
  56. ZhuY. Sustainable strategies for site-selective C-H functionalizations of N-heterocycles Dissertation thesis, Georg-August Universität Göttingen201510.53846/goediss‑4957
    [Google Scholar]
  57. GaoR.D. XuQ.L. DaiL.X. YouS.L. Pd-catalyzed cascade allylic alkylation and dearomatization reactions of indoles with vinyloxirane.Org. Biomol. Chem.201614348044804610.1039/C6OB01523A 27511802
    [Google Scholar]
  58. RoseT.E. CurtinB.H. LawsonK.V. SimonA. HoukK.N. HarranP.G. On the prevalence of bridged macrocyclic pyrroloindolines formed in regiodivergent alkylations of tryptophan.Chem. Sci. (Camb.)2016774158416610.1039/C5SC04612B 30155060
    [Google Scholar]
  59. LiL. RenJ. ZhouJ. WuX. ShaoZ. YangX. QianD. Enantioselective synthesis of N-alkylindoles enabled by nickel-catalyzed C-C coupling.Nat. Commun.2022131686110.1038/s41467‑022‑34615‑9 36369422
    [Google Scholar]
  60. RoseT.E. LawsonK.V. HarranP.G. Large ring-forming alkylations provide facile access to composite macrocycles.Chem. Sci. (Camb.)2015642219222310.1039/C4SC03848G 28694951
    [Google Scholar]
  61. PovieG. SuravarapuS.R. BircherM.P. MojzesM.M. RiederS. RenaudP. Radical chain repair: The hydroalkylation of polysubstituted unactivated alkenes.Sci. Adv.201847eaat603110.1126/sciadv.aat6031 30035230
    [Google Scholar]
  62. WengJ.Q. FanR.J. DengQ.M. LiuR.R. GaoJ.R. JiaY.X. ChemInform abstract: Enantioselective Friedel-Crafts alkylation reactions of 3‐substituted indoles with electron‐deficient alkenes. ChemInform, 20164732chin.201632124.10.1002/chin.201632124
    [Google Scholar]
  63. WengJ.Q. FanR.J. DengQ.M. LiuR.R. GaoJ.R. JiaY.X. Enantioselective Friedel-Crafts alkylation reactions of 3-substituted indoles with electron-deficient alkenes.J. Org. Chem.20168173023303010.1021/acs.joc.6b00123 26959867
    [Google Scholar]
  64. VilluendasP. RuizS. UrriolabeitiaE.P. Functionalization of heteroaromatic substrates using groups 9 and 10 catalysts. Catalytic Hydroarylation of Carbon‐Carbon Multiple Bonds.New York, United StatesWiley201754710.1002/9783527697649.ch1
    [Google Scholar]
  65. MohamadiF. SpeesM.M. StatenG.S. MarderP. KipkaJ.K. JohnsonD.A. BogerD.L. ZarrinmayehH. Total synthesis and biological properties of novel antineoplastic (chloromethyl)furanoindolines: An asymmetric hydroboration mediated synthesis of the alkylation subunits.J. Med. Chem.199437223223910.1021/jm00028a005 8295210
    [Google Scholar]
  66. SunilD. Anil KumarN.V. Use of supercritical carbon dioxide in alkylation reactions. Green Sustainable Process for Chemical and Environmental Engineering and Science: Supercritical Carbon Dioxide as Green Solvent.AmsterdamElsevier201910513110.1016/B978‑0‑12‑817388‑6.00006‑4
    [Google Scholar]
  67. WrightN.E. ElSohlyA.M. SnyderS.A. Syntheses of cyclotriveratrylene analogues and their long elusive triketone congeners.Org. Lett.201416143644364710.1021/ol501284s 24987807
    [Google Scholar]
  68. CeraG. BalestriD. BazzoniM. MarchiòL. SecchiA. ArduiniA. Trisulfonamide calix[6]arene-catalysed Michael addition to nitroalkenes.Org. Biomol. Chem.202018326241624610.1039/D0OB01319F 32735000
    [Google Scholar]
  69. JiangH. ZhaoH. ZhangM. LiuH. HuangX. Theoretical investigation on mechanism of asymmetric Michael addition of trans-1-nitro-2-phenylethylene to 2-methylpropionaldehyde catalyzed by a Cinchona alkaloid-derived primary amine.Struct. Chem.20142551343135710.1007/s11224‑014‑0409‑3
    [Google Scholar]
  70. WangZ. YueG. JiX. SongH. YanP. ZhaoJ. JiaX. Tandem Michael addition-cyclization of nitroalkenes with 1,3-dicarbonyl compounds accompanied by removal of nitro group.J. Org. Chem.20218620141311414310.1021/acs.joc.1c01586 34494850
    [Google Scholar]
  71. Patora-KomisarskaK. BenohoudM. IshikawaH. SeebachD. HayashiY. Organocatalyzed michael addition of aldehydes to nitro alkenes - Generally accepted mechanism revisited and revised.Helv. Chim. Acta201194571974510.1002/hlca.201100122
    [Google Scholar]
  72. Al MajidA.M.A. IslamM.S. BarakatA. Al-AgamyM.H.M. NaushadM. Facile and promising method for michael addition of indole and pyrrole to electron-deficient trans-β-nitroolefins catalyzed by a hydrogen bond donor catalyst Feist’s acid and preliminary study of antimicrobial activity.ScientificWorldJournal2014201411510.1155/2014/649197 24574906
    [Google Scholar]
  73. JiangZ.Y. YangH.M. JuY.D. LiL. LuoM.X. LaiG.Q. JiangJ.X. XuL.W. Organocatalytic Michael addition of 1,3-dicarbonyl indane compounds to nitrostyrenes.Molecules20101542551256310.3390/molecules15042551 20428063
    [Google Scholar]
  74. ShimJ.H. CheunS.H. KimH.S. HaD.C. Organocatalysis for the asymmetric michael addition of aldehydes and α,β-unsaturated nitroalkenes.Catalysts202212212110.3390/catal12020121
    [Google Scholar]
  75. RoseliR.B. KetoA.B. KrenskeE.H. Mechanistic aspects of thiol additions to Michael acceptors: Insights from computations.Wiley Interdiscip. Rev. Comput. Mol. Sci.2023132e163610.1002/wcms.1636
    [Google Scholar]
  76. GuoC. SaifuddinM. SaravananT. SharifiM. PoelarendsG.J. Biocatalytic asymmetric michael additions of nitromethane to α,β-unsaturated aldehydes via enzyme-bound iminium ion intermediates.ACS Catal.2019954369437310.1021/acscatal.9b00780 31080691
    [Google Scholar]
  77. AycockR.A. WangH. JuiN.T. A mild catalytic system for radical conjugate addition of nitrogen heterocycles.Chem. Sci. (Camb.)2017843121312510.1039/C7SC00243B 28507687
    [Google Scholar]
  78. MartínezJ.I. UriaU. MuñizM. ReyesE. CarrilloL. VicarioJ.L. Organocatalytic and enantioselective Michael reaction between α-nitroesters and nitroalkenes. Syn/anti-selectivity control using catalysts with the same absolute backbone chirality.Beilstein J. Org. Chem.2015112577258310.3762/bjoc.11.277 26734103
    [Google Scholar]
  79. FernandesT.A. Vizcaíno-MillaP. RavascoJ.M.J.M. Ortega-MartínezA. SansanoJ.M. NájeraC. CostaP.R.R. FiserB. Gómez-BengoaE. Bifunctional primary amine 2-aminobenzimidazole organocatalyst anchored to trans-cyclohexane-1,2-diamine in enantioselective conjugate additions of aldehydes.Tetrahedron Asymmetry2016272-311812210.1016/j.tetasy.2015.12.004
    [Google Scholar]
  80. LanzaF. PérezJ. JumdeR. HarutyunyanS. Lewis acid promoted trapping of chiral aza-enolates.Synthesis20195151253126210.1055/s‑0037‑1611657
    [Google Scholar]
  81. BenziA. LopesS.M.M. NunesS.C.C. GiorgiG. BianchiL. TavaniC. PaisA.A.C.C. PetrilloG. Pinho e MeloT.M.V.D. Reactivity of ethyl nitrosoacrylate toward pyrrole, indole and pyrrolo[3,2-c]carbazole: An experimental and theoretical study.Front Chem.202311122966910.3389/fchem.2023.1229669 37614704
    [Google Scholar]
  82. DreslerE. WróblewskaA. JasińskiR. Understanding the regioselectivity and the molecular mechanism of [3 + 2] cycloaddition reactions between nitrous oxide and conjugated nitroalkenes: A DFT computational study.Molecules20222723844110.3390/molecules27238441 36500530
    [Google Scholar]
  83. IgushkinaA.V. GolovanovA.A. VasilyevA.V. Michael addition of 3-oxo-3-phenylpropanenitrile to linear conjugated enynones: Approach to polyfunctional δ-diketones as precursors for heterocycle synthesis.Molecules2022274125610.3390/molecules27041256 35209045
    [Google Scholar]
  84. QuintavallaA. LanzaF. MontroniE. LombardoM. TrombiniC. Organocatalytic conjugate addition of nitroalkanes to 3-ylidene oxindoles: A stereocontrolled diversity oriented route to oxindole derivatives.J. Org. Chem.20137823120491206410.1021/jo402099p 24168398
    [Google Scholar]
  85. JeganathanM. KanagarajK. DhakshinamoorthyA. PitchumaniK. Michael addition of indoles to β-nitrostyrenes catalyzed by HY zeolite under solvent-free conditions.Tetrahedron Lett.201455132061206410.1016/j.tetlet.2014.01.112
    [Google Scholar]
  86. YangX.J. JingY. Cyanuric chloride‐catalyzed Michael addition of indoles to nitroolefins under solvent‐free conditions.J. Chem.20132013142923510.1155/2013/429235
    [Google Scholar]
  87. ZhuY. MalerichJ.P. RawalV.H. Squaramide-catalyzed enantioselective Michael addition of diphenyl phosphite to nitroalkenes.Angew. Chem. Int. Ed.201049115315610.1002/anie.200904779 19950156
    [Google Scholar]
  88. AngeliniT. BalleriniE. BonolloS. CuriniM. LanariD. A new sustainable protocol for the synthesis of nitroaldol derivatives via Henry reaction under solvent-free conditions.Green Chem. Lett. Rev.201471111710.1080/17518253.2014.893028
    [Google Scholar]
  89. AziziN. Khajeh-AmiriA. GhafuriH. BolourtchianM. A highly efficient, operationally simple and selective thia-Michael addition under solvent-free condition.Green Chem. Lett. Rev.200921434610.1080/17518250902998103
    [Google Scholar]
  90. MéndezI. RodríguezR. PoloV. PassarelliV. LahozF.J. García-OrduñaP. CarmonaD. Temperature dual enantioselective control in a rhodium‐catalyzed michael‐type Friedel-Crafts reaction: A mechanistic explanation.Chemistry20162231110641108310.1002/chem.201601301 27345293
    [Google Scholar]
  91. Castro-AlvarezA. CarnerosH. CalafatJ. CostaA.M. MarcoC. VilarrasaJ. NMR and computational studies on the reactions of enamines with nitroalkenes that may pass through cyclobutanes.ACS Omega2019419181671819410.1021/acsomega.9b02074 31720519
    [Google Scholar]
  92. MoghaddamF.M. SaberiV. KarimiA. Highly diastereoselective cascade [5 + 1] double Michael reaction, a route for the synthesis of spiro(thio)oxindoles.Sci. Rep.20211112283410.1038/s41598‑021‑01766‑6 34819540
    [Google Scholar]
  93. MortezaeiS. CatarineuN.R. DuanX. HuC. CanaryJ.W. Redox-configurable ambidextrous catalysis: Structural and mechanistic insight.Chem. Sci. (Camb.)20156105904591210.1039/C5SC02144H 29861915
    [Google Scholar]
  94. AntonovaY.A. NelyubinaY.V. IoffeS.L. TabolinA.A. [3+3]-annulation of cyclic nitronates with vinyl diazoacetates: Diastereoselective synthesis of partially saturated [1,2]oxazino[2,3-b][1,2]oxazines and their base-promoted ring contraction to pyrrolo[1,2-b][1,2]oxazine derivatives.Molecules2023287302510.3390/molecules28073025 37049788
    [Google Scholar]
  95. SunK. LiuS. BecP.M. DriverT.G. Rhodium-catalyzed synthesis of 2,3-disubstituted indoles from β,β-disubstituted stryryl azides.Angew. Chem. Int. Ed.20115071702170610.1002/anie.201006917 21308937
    [Google Scholar]
  96. BalliniR. ClementeR.R. PalmieriA. PetriniM. Conjugate addition of indoles to nitroalkenes promoted by basic alumina in solventless conditions.Adv. Synth. Catal.20063481-219119610.1002/adsc.200505339
    [Google Scholar]
  97. HuangH. PalmasJ. KangJ.Y. A reagent-controlled phospha-michael addition reaction of nitroalkenes with bifunctional N-Heterocyclic Phosphine (NHP)-.Thioureas. J. Org. Chem.20168123119321193910.1021/acs.joc.6b02490 27934454
    [Google Scholar]
  98. PalmieriA. GabrielliS. BalliniR. Michael reaction of nitroalkanes with β-nitroacrylates under a solid promoter: Advanced regio-and diastereoselective synthesis of nitro-functionalized ββ-unsaturated esters and 1,3-butadiene-2-carboxylates.Adv. Synth. Catal.201035291485149210.1002/adsc.201000142
    [Google Scholar]
  99. BartoliG. BoscoM. GiuliS. GiulianiA. LucarelliL. MarcantoniE. SambriL. TorregianiE. Efficient preparation of 2-indolyl-1-nitroalkane derivatives employing nitroalkenes as versatile Michael acceptors: New practical linear approach to alkyl 9h-β-carboline-4-carboxylate.J. Org. Chem.20057051941194410.1021/jo048776w 15730329
    [Google Scholar]
  100. ManeV. BaijuT.V. NamboothiriI.N.N. Synthesis of functionalized thieno[2,3-b]indoles via one-pot reaction of indoline-2-thiones with Morita-Baylis-Hillman and Rauhut-Currier adducts of nitroalkenes.ACS Omega2018312176171762810.1021/acsomega.8b02147 31458362
    [Google Scholar]
  101. WooS.B. KimD.Y. Enantioselective Michael addition of 2-hydroxy-1,4-naphthoquinones to nitroalkenes catalyzed by binaphthyl-derived organocatalysts.Beilstein J. Org. Chem.2012869970410.3762/bjoc.8.78 23015816
    [Google Scholar]
  102. RabalakosC. WulffW.D. Enantioselective organocatalytic direct Michael addition of nitroalkanes to nitroalkenes promoted by a unique bifunctional DMAP-thiourea.J. Am. Chem. Soc.200813041135241352510.1021/ja805390k 18808117
    [Google Scholar]
  103. WangB. RenH. CaoH.J. LuC. YanH. A switchable redox annulation of 2-nitroarylethanols affording N-heterocycles: Photoexcited nitro as a multifunctional handle.Chem. Sci. (Camb.)20221337110741108210.1039/D2SC03590A 36320483
    [Google Scholar]
  104. ReznikovA.N. SibiryakovaA.E. BaimuratovM.R. GolovinE.V. RybakovV.B. KlimochkinY.N. Synthesis of non-racemic 4-nitro-2-sulfonylbutan-1-ones via Ni(II)-catalyzed asymmetric Michael reaction of β-ketosulfones.Beilstein J. Org. Chem.2019151289129710.3762/bjoc.15.127 31293677
    [Google Scholar]
  105. LiL. MatsuoB. LevitreG. McClainE.J. VoightE.A. CraneE.A. MolanderG.A. Dearomative intermolecular [2+2] photocycloaddition for construction of C(sp3)-rich heterospirocycles on-DNA.Chem. Sci. (Camb.)202314102713272010.1039/D3SC00144J 36908969
    [Google Scholar]
  106. BoyceG.R. JohnsonJ.S. Three-component coupling reactions of silyl glyoxylates, vinyl Grignard reagent, and nitroalkenes: An efficient, highly diastereoselective approach to nitrocyclopentanols.Angew. Chem. Int. Ed.201049478930893310.1002/anie.201003470 20949578
    [Google Scholar]
  107. van der MeerJ.Y. PoddarH. BaasB.J. MiaoY. RahimiM. KunzendorfA. van MerkerkR. TepperP.G. GeertsemaE.M. ThunnissenA.M.W.H. QuaxW.J. PoelarendsG.J. Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases.Nat. Commun.2016711091110.1038/ncomms10911 26952338
    [Google Scholar]
  108. ChenJ. GengZ.C. LiN. HuangX.F. PanF.F. WangX.W. Organocatalytic asymmetric Michael addition of aliphatic aldehydes to indolylnitroalkenes: Access to contiguous stereogenic tryptamine precursors.J. Org. Chem.20137862362237210.1021/jo3024945 23409784
    [Google Scholar]
  109. WangC. YangX. EndersD. Asymmetric Michael addition of N-boc-protected oxindoles to nitroalkenes catalyzed by a chiral secondary amine.Chemistry201218164832483510.1002/chem.201200079 22434659
    [Google Scholar]
  110. KwiatkowskiJ. LuY. ChemInform abstract: Highly enantioselective preparation of fluorinated phosphonates by michael addition of α‐fluoro‐β‐ ketophosphonates to nitroalkenes. ChemInform, 20144545chin.201445030.10.1002/chin.201445030
    [Google Scholar]
  111. YoshidaM. SatoA. HaraS. Michael addition of aldehydes to nitroalkenes using a primary amino acid lithium salt.Org. Biomol. Chem.201081330313036
    [Google Scholar]
  112. DongW. XuD. XieJ. Aqueous-mediated michael addition of active methylene compounds with nitroalkenes.Chin. J. Chem.20123081771177410.1002/cjoc.201200228
    [Google Scholar]
  113. ParkS. Arginine- or lysine-catalyzed Michael addition of nitromethane to α,β-unsaturated ketones in aqueous media.Bull. Korean Chem. Soc.201435123671367410.5012/bkcs.2014.35.12.3671
    [Google Scholar]
  114. CarusoL. PuglisiA. GillonE. BenagliaM. Organocatalytic Michael addition to (D)-mannitol-derived enantiopure nitroalkenes: A valuable strategy for the synthesis of densely functionalized chiral molecules.Molecules20192424458810.3390/molecules24244588 31847419
    [Google Scholar]
  115. VieiraD.P.P. BrunaG.N.V. Vera LúciaP.P. Non-racemic diastereoselective synthesis of gamma-lactams via Michael addition of 1, 3-dicarbonyl compounds to chiral nitroalkenes.Blucher Chem. Proceed.201311138138
    [Google Scholar]
  116. García-MonzónI. Borges-GonzálezJ. MartínT. Solid‐supported tetrahydropyran‐based hybrid dipeptide catalysts for Michael addition of aldehydes to nitrostyrenes.Adv. Synth. Catal.2022364162822282910.1002/adsc.202200477
    [Google Scholar]
  117. JiangX. YeW. SongX. MaW. LaoX. ShenR. Novel ionic liquid with both Lewis and Brønsted acid sites for Michael addition.Int. J. Mol. Sci.201112117438744410.3390/ijms12117438 22174608
    [Google Scholar]
  118. ReisenbauerO. Late-stage diversification of indole skeletons through nitrogen atom insertion.Science1979377661010.3929/ethz‑b‑000568748
    [Google Scholar]
  119. ReddyR.J. KuanH.H. ChouT.Y. ChenK. Novel prolinamide-camphor-containing organocatalysts for direct asymmetric Michael addition of unmodified aldehydes to nitroalkenes.Chemistry200915379294929810.1002/chem.200901254 19681077
    [Google Scholar]
  120. BartoliG. BartolacciM. BoscoM. FogliaG. GiulianiA. MarcantoniE. SambriL. TorregianiE. The Michael addition of indoles to α,β-unsaturated ketones catalyzed by CeCl3.7H2O-nai combination supported on silica gel.J. Org. Chem.200368114594459710.1021/jo034303y 12762781
    [Google Scholar]
  121. AmetsetorE. FarthingS. BunceR.A. Domino Aza-Michael-SNAr-heteroaromatization route to C5-substituted 1-alkyl-1H-indole-3-carboxylic esters.Molecules20222720699810.3390/molecules27206998 36296590
    [Google Scholar]
  122. KunzendorfA. XuG. van der VeldeJ.J.H. RozeboomH.J. ThunnissenA.M.W.H. PoelarendsG.J. Unlocking asymmetric Michael additions in an archetypical class I aldolase by directed evolution.ACS Catal.20211121132361324310.1021/acscatal.1c03911 34765282
    [Google Scholar]
  123. OlahG.A. Friedel-Crafts chemistry. Across Conventional Lines.SingaporeWorld Scientific Publishing2003Vol. 111912110.1142/9789812791405_0030
    [Google Scholar]
  124. WróbelZ. Ma̧koszaM. Synthesis of 1-hydroxyindoles and indoles from ortho-nitroarylethanes.Tetrahedron199753155501551410.1016/S0040‑4020(97)00208‑1
    [Google Scholar]
  125. BagleyM.C. DaleJ.W. BowerJ. A new one-pot three-component condensation reaction for the synthesis of 2,3,4,6-tetrasubstituted pyridines.Chem. Commun. (Camb.)20022161682168310.1039/b203900a 12196948
    [Google Scholar]
  126. ConnonR. CarrollL. GuiryP.J. A base-promoted one-pot asymmetric Friedel-Crafts alkylation/Michael addition of 4-substituted indoles.Synthesis20205281215122210.1055/s‑0039‑1690241
    [Google Scholar]
  127. GambaroS. De RosaM. SorienteA. TalottaC. FlorestaG. RescifinaA. GaetaC. NeriP. A hexameric resorcinarene capsule as a hydrogen bonding catalyst in the conjugate addition of pyrroles and indoles to nitroalkenes.Org. Chem. Front.20196142339234710.1039/C9QO00224C
    [Google Scholar]
  128. JungE. JeongY. KimH. KimI. C3 functionalization of indolizines via HFIP-promoted Friedel-Crafts reactions with (hetero)arylglyoxals.ACS Omega2023818161311614410.1021/acsomega.3c00236 37179639
    [Google Scholar]
  129. CiberL. RičkoS. GregorcJ. PožganF. SveteJ. BrodnikH. ŠtefaneB. GrošeljU. Mechanistic insights into annulation of arylidene‐Δ2‐pyrrolin‐4‐ones by cinchona squaramide‐based organocatalysts.Adv. Synth. Catal.2022364598099310.1002/adsc.202101369
    [Google Scholar]
  130. IslamM.S. AliM. Al-MajidA.M. AlamaryA.S. AlshahraniS. YousufS. ChoudharyM.I. BarakatA. Bimetallic iron-palladium catalyst system as a Lewis-acid for the synthesis of novel pharmacophores based indole scaffold as anticancer agents.Molecules2021268221210.3390/molecules26082212 33921334
    [Google Scholar]
  131. KallitsakisM.G. TanciniP.D. DixitM. MpourmpakisG. LykakisI.N. Mechanistic studies on the Michael addition of amines and hydrazines to nitrostyrenes: Nitroalkane elimination via a retro-aza-henry-type process.J. Org. Chem.20188331176118410.1021/acs.joc.7b02637 29272119
    [Google Scholar]
  132. KolagkisP.X. GalathriE.M. KokotosC.G. Light-driven Michael addition of indoles to β-nitroolefins in aqueous medium.Catal. Today202444111486810.1016/j.cattod.2024.114868
    [Google Scholar]
  133. KolagkisP.X. GalathriE.M. KokotosC.G. Green and sustainable approaches for the Friedel-Crafts reaction between aldehydes and indoles.Beilstein J. Org. Chem.20242037942610.3762/bjoc.20.36 38410780
    [Google Scholar]
  134. AdamD.H. HasibuanM.N.S. SyahputraR. Green chemistry: The economic impact perspective.Preprint202010.31219/osf.io/gqe63
    [Google Scholar]
  135. TanL. RahmanA. An economical, sustainable pathway to indole-containing oxindoles: Iron-catalyzed 1,6-conjugate addition in glycerol.Sustainability (Basel)2018108292210.3390/su10082922
    [Google Scholar]
  136. Çınarİ.T. Korkmazİ. ŞişmanM.Y. Green complexity, economic fitness, and environmental degradation: Evidence from US state-level data.Environ. Sci. Pollut. Res. Int.20223015430134302310.1007/s11356‑022‑19859‑8 35352225
    [Google Scholar]
  137. MatusK.J.M. ClarkW.C. AnastasP.T. ZimmermanJ.B. Barriers to the implementation of green chemistry in the United States.Environ. Sci. Technol.20124620108921089910.1021/es3021777 22963612
    [Google Scholar]
  138. EdmundsS. Environmental impacts.Calif. Manage. Rev.197719351110.2307/41164706
    [Google Scholar]
  139. IlesA. MulvihillM.J. Collaboration across disciplines for sustainability: Green chemistry as an emerging multistakeholder community.Environ. Sci. Technol.201246115643564910.1021/es300803t 22574828
    [Google Scholar]
  140. MatsevO.V. BeletskayaI.P. ZlotinS.G. Organocatalytic Michael and Friedel-Crafts reactions in enantioselective synthesis of biologically active compounds.Russ. Chem. Rev.201180111067111310.1070/RC2011v080n11ABEH004249
    [Google Scholar]
  141. RekhaK. ThiruvengadamM. Production and biomedical applications of bioactive compounds.Processes (Basel)2022109183010.3390/pr10091830
    [Google Scholar]
  142. MudunuruS. GurubilliC.S. Synthesis of biologically active compounds derived from natural products.Int. J. Pharmacogn. Chem.2023May1610.46796/ijpc.v4i2.444
    [Google Scholar]
  143. HarelO. JbaraM. Chemical synthesis of bioactive proteins.Angew. Chem. Int. Ed.20236213e20221771610.1002/anie.202217716 36661212
    [Google Scholar]
  144. WuS. SnajdrovaR. MooreJ.C. BaldeniusK. BornscheuerU.T. Biocatalysis: Enzymatic synthesis for industrial applications.Angew. Chem. Int. Ed.20216018811910.1002/anie.202006648 32558088
    [Google Scholar]
  145. LiY. LiuT. SunJ. Recent advances in N-heterocyclic small molecules for synthesis and application in direct fluorescence cell imaging.Molecules202328273310.3390/molecules28020733 36677792
    [Google Scholar]
  146. LanP. YeS. BanwellM.G. The application of dioxygenase‐based chemoenzymatic processes to the total synthesis of natural products.Chem. Asian J.201914224001401210.1002/asia.201900988 31609526
    [Google Scholar]
  147. ZhangC. SultanS.A. T, R.; Chen, X. Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification.Bioresour. Bioprocess.2021817210.1186/s40643‑021‑00425‑y 38650197
    [Google Scholar]
  148. NakayamaA. Studies on comprehensive total synthesis of natural and pseudo-natural products for drug discovery.Chem. Pharm. Bull. (Tokyo)202472542243110.1248/cpb.c24‑00056 38692857
    [Google Scholar]
  149. FuwaH. Pursuing Step Economy in Total Synthesis of Complex Marine Macrolide Natural Products. Modern Natural Product Synthesis.Berlin, HeidelbergSpringer Link202410.1007/978‑981‑97‑1619‑7_15
    [Google Scholar]
  150. WinandL. SesterA. NettM. Bioengineering of anti‐inflammatory natural products.ChemMedChem202116576777610.1002/cmdc.202000771 33210441
    [Google Scholar]
  151. LiuM. WangY. JiangH. HanY. XiaJ. Synthetic multienzyme assemblies for natural product biosynthesis.ChemBioChem2023246e20220051810.1002/cbic.202200518 36625563
    [Google Scholar]
  152. WatanabeK. Discovery and investigation of natural Diels-Alderases.J. Nat. Med.202175343444710.1007/s11418‑021‑01502‑4 33683566
    [Google Scholar]
  153. VanableE.P. HabgoodL.G. PatroneJ.D. Current progress in the chemoenzymatic synthesis of natural products.Molecules20222719637310.3390/molecules27196373 36234909
    [Google Scholar]
  154. KimT. HaM.W. KimJ. Recent advances in divergent synthetic strategies for indole-based natural product libraries.Molecules2022277217110.3390/molecules27072171 35408569
    [Google Scholar]
  155. TomoharaK. OhashiN. UchidaT. NoseT. Synthesis of natural product hybrids by the Ugi reaction in complex media containing plant extracts.Sci. Rep.20221211556810.1038/s41598‑022‑19579‑6 36114212
    [Google Scholar]
  156. QayyumF. KimD.H. BongS.J. ChiS.Y. ChoiY.H. A survey of datasets, preprocessing, modeling mechanisms, and simulation tools based on AI for material analysis and discovery.Materials (Basel)2022154142810.3390/ma15041428 35207968
    [Google Scholar]
  157. ChoudhuryR. AykolM. GratzlS. MontoyaJ. HummelshøjJ. MaterialNet: A web-based graph explorer for materials science data.J. Open Source Softw.2020547210510.21105/joss.02105
    [Google Scholar]
/content/journals/coc/10.2174/0113852728351613240924091458
Loading
/content/journals/coc/10.2174/0113852728351613240924091458
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test