Skip to content
2000
Volume 29, Issue 9
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Heterocyclic compounds with a pyridine structure are important in organic chemistry because they are found in many pharmaceuticals, agrochemicals, and natural substances. Traditional methods to create pyridines use harsh conditions and toxic chemicals, which can be harmful to the environment and human health. Recently, there has been interest in using ionic liquids (ILs) as a sustainable alternative for these reactions. ILs have low melting points and don't evaporate easily, making them environmentally friendly. They can act as both solvents and catalysts, and their properties can be adjusted by changing their components, allowing for better control over reactions. Advancements have shown that ILs can improve the efficiency, yield, and selectivity of pyridine synthesis. They enable one-pot multicomponent responses, reducing the need for multiple steps and minimizing waste. ILs can also lead to milder reaction conditions, decreasing energy use and hazardous by-products. Their recyclability supports cost-effectiveness and green chemistry principles. This review highlights recent progress in using ILs for pyridine synthesis, showing their advantages over traditional methods. Benefits include better yields, improved efficiency, enhanced selectivity, and the ability to perform complex reactions in one step. By exploring the role of ILs in pyridine synthesis, this review contributes to the development of sustainable and eco-friendly synthetic methods.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728331797240903101654
2024-09-25
2025-05-22
Loading full text...

Full text loading...

References

  1. WintertonN. The green solvent: A critical perspective.Clean Technol. Environ. Policy20212392499252210.1007/s10098‑021‑02188‑8
    [Google Scholar]
  2. SheldonR.A. Green solvents for sustainable organic synthesis: State of the art.Green Chem.20057526727810.1039/b418069k
    [Google Scholar]
  3. CaoJ. SuE. Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry.J. Clean. Prod.202131412796510.1016/j.jclepro.2021.127965
    [Google Scholar]
  4. IvankovićA. DronjićA. BevandaA.M. TalićS. Martinović BevandaA. Review of 12 principles of green chemistry in practice.Int. J. Sustain. Green Energy2017633948
    [Google Scholar]
  5. HöferR. BigorraJ. Green chemistry-a sustainable solution for industrial specialties applications.Green Chem.20079320321210.1039/B606377B
    [Google Scholar]
  6. Cvjetko BubaloM. VidovićS. Radojčić RedovnikovićI. JokićS. Green solvents for green technologies.J. Chem. Technol. Biotechnol.20159091631163910.1002/jctb.4668
    [Google Scholar]
  7. SakhalkarM. AduriP. LandeS. ChandraS. Single-step synthesis of novel chloroaluminate ionic liquid for green Friedel–Crafts alkylation reaction.Clean Technol. Environ. Policy2020221597110.1007/s10098‑019‑01769‑y
    [Google Scholar]
  8. ZhaoH. MalhotraS.V. Applications of ionic liquids in organic synthesis.Aldrichim Acta2002
    [Google Scholar]
  9. KoreR. SrivastavaR. A simple, eco-friendly, and recyclable bi-functional acidic ionic liquid catalysts for Beckmann rearrangement.J. Mol. Catal. Chem.2013376909710.1016/j.molcata.2013.04.021
    [Google Scholar]
  10. Brzęczek-SzafranA. ErfurtK. Swadźba-KwaśnyM. PiotrowskiT. ChrobokA. Beckmann rearrangement with improved atom economy, catalyzed by inexpensive, reusable, Bro̷nsted acidic ionic liquid.ACS Sustain. Chem.& Eng.20221041135681357510.1021/acssuschemeng.2c04409
    [Google Scholar]
  11. AalamM.J. DABCO-based chiral ionic liquids as a recoverable and reusable organocatalyst for asymmetric Diels–Alder reaction.Chirality2022341134146
    [Google Scholar]
  12. EarleM.J. McCormacP.B. SeddonK.R. Diels–Alder reactions in ionic liquids.Green Chem.199911232510.1039/a808052f
    [Google Scholar]
  13. VuceticN. VirtanenP. NuriA. MattssonI. AhoA. MikkolaJ.P. SalmiT. Preparation and characterization of a new bis-layered supported ionic liquid catalyst (SILCA) with an unprecedented activity in the Heck reaction.J. Catal.2019371354610.1016/j.jcat.2019.01.029
    [Google Scholar]
  14. XuL. ChenW. XiaoJ. Heck reaction in ionic liquids and the in situ identification of N-heterocyclic carbene complexes of palladium.Organometallics20001961123112710.1021/om990956m
    [Google Scholar]
  15. TaibL.A. KeshavarzM. ParhamiA. Solvent-free synthesis of 4-substituted coumarins catalyzed by novel brønsted acidic ionic liquids with perchlorate anion: A convenient and practical complementary method for pechmann condensation.React. Kinet. Mech. Catal.2021133138340310.1007/s11144‑021‑01941‑w
    [Google Scholar]
  16. GuY. ZhangJ. DuanZ. DengY. Pechmann reaction in non‐chloroaluminate acidic ionic liquids under solvent‐free conditions.Adv. Synth. Catal.2005347451251610.1002/adsc.200404316
    [Google Scholar]
  17. YaoB.J. WuW.X. DingL.G. DongY.B. Sulfonic acid and ionic liquid functionalized covalent organic framework for efficient catalysis of the biginelli reaction.J. Org. Chem.202186330243032
    [Google Scholar]
  18. YadavL.D.S. RaiA. RaiV.K. AwasthiC. Chiral ionic liquid-catalyzed Biginelli reaction: Stereoselective synthesis of polyfunctionalized perhydropyrimidines.Tetrahedron20086471420142910.1016/j.tet.2007.11.044
    [Google Scholar]
  19. TanJ. LiuX. YaoN. HuY.L. LiX.H. Novel and effective strategy of multifunctional titanium incorporated mesoporous material supported ionic liquid mediated reusable Hantzsch reaction.ChemistrySelect2019482475247910.1002/slct.201803739
    [Google Scholar]
  20. AlvimH.G.O. BataglionG.A. RamosL.M. de OliveiraA.L. de OliveiraH.C.B. EberlinM.N. de MacedoJ.L. da SilvaW.A. NetoB.A.D. Task-specific ionic liquid incorporating anionic heteropolyacid-catalyzed Hantzsch and Mannich multicomponent reactions. Ionic liquid effect probed by ESI-MS(/MS).Tetrahedron201470203306331310.1016/j.tet.2013.10.033
    [Google Scholar]
  21. TajbakhshM. AlinezhadH. NorouziM. BagheryS. AkbariM. Protic pyridinium ionic liquid as a green and highly efficient catalyst for the synthesis of polyhydroquinoline derivatives via Hantzsch condensation in water.J. Mol. Liq.2013177444810.1016/j.molliq.2012.09.017
    [Google Scholar]
  22. SinghS.K. SavoyA.W. Ionic liquids synthesis and applications: An overview.J. Mol. Liq.202029711203810.1016/j.molliq.2019.112038
    [Google Scholar]
  23. HagiwaraR. ItoY. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions.J. Fluor. Chem.2000105222122710.1016/S0022‑1139(99)00267‑5
    [Google Scholar]
  24. GreerA.J. JacqueminJ. HardacreC. Industrial applications of ionic liquids.Molecules20202521520710.3390/molecules25215207
    [Google Scholar]
  25. ChenY. MuT. Revisiting greenness of ionic liquids and deep eutectic solvents.Green Chem. Eng.20212217418610.1016/j.gce.2021.01.004
    [Google Scholar]
  26. KoutsoukosS. BeckerJ. DobreA. FanZ. OthmanF. PhilippiF. SmithG.J. WeltonT. Synthesis of aprotic ionic liquids.Nat. Rev. Methods Primers2022214910.1038/s43586‑022‑00129‑3
    [Google Scholar]
  27. WangY.L. LiB. SarmanS. MocciF. LuZ.Y. YuanJ. LaaksonenA. FayerM.D. Microstructural and dynamical heterogeneities in ionic liquids.Chem. Rev.2020120135798587710.1021/acs.chemrev.9b00693
    [Google Scholar]
  28. SowmiahS. SrinivasadesikanV. TsengM.C. ChuY.H. On the chemical stabilities of ionic liquids.Molecules20091493780381310.3390/molecules14093780
    [Google Scholar]
  29. TomarP. JainD. A review of green solvent ionic liquids: As a future solvent.Int. J. Adv. Sci. Res.2022130616
    [Google Scholar]
  30. DhameliyaT.M. NagarP.R. BhakharK.A. JivaniH.R. ShahB.J. PatelK.M. PatelV.S. SoniA.H. JoshiL.P. GajjarN.D. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight.J. Mol. Liq.202234811832910.1016/j.molliq.2021.118329
    [Google Scholar]
  31. ChudasamaS.J. ShahB.J. PatelK.M. DhameliyaT.M. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021.J. Mol. Liq.202236111966410.1016/j.molliq.2022.119664
    [Google Scholar]
  32. PupoG. GouverneurV. Hydrogen bonding phase-transfer catalysis with alkali metal fluorides and beyond.J. Am. Chem. Soc.2022144125200521310.1021/jacs.2c00190 35294171
    [Google Scholar]
  33. YadavN. AhmaruzzamanM. Ionic liquid-based nanocomposites for organic transformations.J. Iran Chem. Soc.202219114327434710.1007/s13738‑022‑02615‑7
    [Google Scholar]
  34. FayerM.D. Dynamics and structure of room temperature ionic liquids.Chem. Phys. Lett.2014616-61725927410.1016/j.cplett.2014.09.062
    [Google Scholar]
  35. MarshK.N. BoxallJ.A. LichtenthalerR. Room temperature ionic liquids and their mixtures-a review.Fluid Phase Equilib.20042191939810.1016/j.fluid.2004.02.003
    [Google Scholar]
  36. ThasneemaK.K. ThayyilM.S. RosalinT. ElyasK.K. DipinT. SahuP.K. KumarN.K. SaheerV.C. MessaliM. HaddaT.B. Thermal and spectroscopic investigations on three phosphonium based ionic liquids for industrial and biological applications.J. Mol. Liq.2020307112960
    [Google Scholar]
  37. MallakpourS. DinariM. Ionic liquids as green solvents: Progress and prospects. In: Green Solvents II: Properties and Applications of Ionic Liquids.DordrechtSpringer201213210.1007/978‑94‑007‑2891‑2_1
    [Google Scholar]
  38. DurgaG. KalraP. Kumar VermaV. WangdiK. MishraA. Ionic liquids: From a solvent for polymeric reactions to the monomers for poly(ionic liquids).J. Mol. Liq.202133511654010.1016/j.molliq.2021.116540
    [Google Scholar]
  39. JohnS.E. GulatiS. ShankaraiahN. Recent advances in multi-component reactions and their mechanistic insights: A triennium review.Org. Chem. Front.20218154237428710.1039/D0QO01480J
    [Google Scholar]
  40. NandiS. JamatiaR. SarkarR. SarkarF.K. AlamS. PalA.K. One‐pot multicomponent reaction: A highly versatile strategy for the construction of valuable nitrogen‐containing heterocycles.ChemistrySelect2022733e20220190110.1002/slct.202201901
    [Google Scholar]
  41. AggarwalR. KumarS. SinghG. Multi-component reaction to access a library of polyfunctionally substituted 4,7-dihydropyrazolo[3,4-b]pyridines.Synth. Commun.201949797398510.1080/00397911.2019.1582064
    [Google Scholar]
  42. LiK. LvY. LuZ. YunX. YanS. An environmentally benign multi-component reaction: Highly regioselective synthesis of functionalized 2-(diarylphosphoryl)-1,2-dihydro-pyridine derivatives.Green Synth. Catal.202231596810.1016/j.gresc.2021.10.008
    [Google Scholar]
  43. JindalR. SablokA. Preparation and applications of room temperature ionic liquids in organic synthesis: A review on recent efforts.Curr. Green Chem.201422135155
    [Google Scholar]
  44. SatasiaS.P. KalariaP.N. RavalD.K. Acidic ionic liquid immobilized on cellulose: An efficient and recyclable heterogeneous catalyst for the solvent-free synthesis of hydroxylated trisubstituted pyridines.RSC Advances20133103184318810.1039/c3ra23052j
    [Google Scholar]
  45. RaiguelS. DehaenW. BinnemansK. Stability of ionic liquids in Brønsted-basic media.Green Chem.202022165225525210.1039/D0GC01832E
    [Google Scholar]
  46. ChiappeC. PieracciniD. Ionic liquids: Solvent properties and organic reactivity.J. Phys. Org. Chem.200518427529710.1002/poc.863
    [Google Scholar]
  47. DasS. KashyapN. KalitaS. BoraD.B. BorahR. A brief insight into the physicochemical properties of room-temperature acidic ionic liquids and their catalytic applications in C C bond formation reactions.Adv. Phys. Org. Chem.20205419810.1016/bs.apoc.2020.07.002
    [Google Scholar]
  48. AmarasekaraA.S. Acidic ionic liquids.Chem. Rev.2016116106133618310.1021/acs.chemrev.5b00763 27175515
    [Google Scholar]
  49. Olivier-BourbigouH. MagnaL. Ionic liquids: perspectives for organic and catalytic reactions.J. Mol. Catal. Chem.2002182-18341943710.1016/S1381‑1169(01)00465‑4
    [Google Scholar]
  50. LancasterN.L. WeltonT. Nucleophilicity in ionic liquids. 3. Anion effects on halide nucleophilicity in a series of 1-butyl-3-methylimidazolium ionic liquids.J. Org. Chem.200469185986599210.1021/jo049636p 15373482
    [Google Scholar]
  51. RabideauB.D. WestK.N. DavisJ.H. Making good on a promise: Ionic liquids with genuinely high degrees of thermal stability.Chem. Commun. 201854405019503110.1039/C8CC01716F 29637207
    [Google Scholar]
  52. SamadaniM. Triazine bis[pyridinium] hydrogen sulfate ionic liquid immobillized on functionalized halloysite nanotubes as an efficient catalyst for one-pot synthesis of naphthopyranopyrimidines.RSC Advances202111201197611983
    [Google Scholar]
  53. XinB. JiaC. LiX. Supported ionic liquids: Efficient and reusable green media in organic catalytic chemistry.Curr. Org. Chem.201520561662810.2174/1385272819666150825220817
    [Google Scholar]
  54. GiacaloneF. GruttadauriaM. Covalently supported ionic liquid phases: An advanced class of recyclable catalytic systems.ChemCatChem20168466468410.1002/cctc.201501086
    [Google Scholar]
  55. KhanK.M. GillaniS.S. SaleemF. Role of pyridines as enzyme inhibitors in medicinal chemistry. In: Recent Developments in the Synthesis and Applications of Pyridines.Elsevier2022207252
    [Google Scholar]
  56. LiF. XiaC. Pd(Phen)Cl2 stabilized by ionic liquid: An efficient and reusable catalyst for biphasic oxidative cyclocarbonylation of β-aminoalcohols and 2-aminophenol.Tetrahedron Lett.200748284845484810.1016/j.tetlet.2007.05.048
    [Google Scholar]
  57. LingY. HaoZ.Y. LiangD. ZhangC.L. LiuY.F. WangY. The expanding role of pyridine and dihydropyridine scaffolds in drug design.Drug Des. Devel. Ther.2021154289433810.2147/DDDT.S329547
    [Google Scholar]
  58. DeS. KumarS.K. A.; Shah, S.K.; Kazi, S.; Sarkar, N.; Banerjee, S.; Dey, S. Pyridine: The scaffolds with significant clinical diversity.RSC Advances20221224153851540610.1039/D2RA01571D 35693235
    [Google Scholar]
  59. VarshneyS. MishraN. Pyridine-based polymers and derivatives: Synthesis and applications.In: Recent Developments in the Synthesis and Applications of Pyridines.Elsevier20234369
    [Google Scholar]
  60. MaY. WangK. LiuH. TangS. TianY. ZhangH. Novel polymeric metal complexes of pyridine derivatives for being used as dye sensitizers.Dyes Pigments2022208110771
    [Google Scholar]
  61. AjaniO.O. IyayeK.T. AdemosunO.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – A review.RSC Advances20221229185941861410.1039/D2RA02896D 35873320
    [Google Scholar]
  62. MatadaB.S. PattanashettarR. YernaleN.G. A comprehensive review on the biological interest of quinoline and its derivatives.Bioorg. Med. Chem.20213211597310.1016/j.bmc.2020.115973 33444846
    [Google Scholar]
  63. AlhamzaniK. El-HamsharyH. AlteraryS. ThamerB.M. AbdulhameedM.M. El-NewehyM. Synthesis of pyridine-quaternized chloroethyl vinyl ether copolymers as adsorbents for Eosin dye removal from wastewater.J. Mol. Struct.20251319139468
    [Google Scholar]
  64. WangY. WuY. CongH. WangS. ShenY. YuB. Preparation of pyridine polyionic liquid porous microspheres and their application in organic dye adsorption.J. Polym. Environ.202230138540010.1007/s10924‑021‑02203‑5
    [Google Scholar]
  65. AbdallahA.E.M. Recent green synthesis of pyridines and their fused systems catalyzed by nanocatalysts. In: Recent Developments in the Synthesis and Applications of Pyridines.Elsevier2022331375
    [Google Scholar]
  66. NaushadE. ThangarajS. Naturally isolated pyridine compounds having pharmaceutical applications. In: Exploring Chemistry with Pyridine Derivatives.IntechOpen202310.5772/intechopen.106663
    [Google Scholar]
  67. YanZ. YangZ. QiuL. ChenY. LiA. ChangT. NiuX. ZhuJ. WuS. JinF. Discovery of novel pyridine carboxamides with antifungal activity as potential succinate dehydrogenase inhibitors.J. Pestic. Sci.202247311812410.1584/jpestics.D22‑017 36479455
    [Google Scholar]
  68. TighadouiniS. RadiS. BenabbesR. YoussoufiM.H. ShityakovS. El MassaoudiM. GarciaY. Synthesis, biochemical characterization, and theoretical studies of novel β-keto-enol pyridine and furan derivatives as potent antifungal agents.ACS Omega2020528177431775210.1021/acsomega.0c02365 32715261
    [Google Scholar]
  69. BibikI.V. BibikE.Y. FrolovK.A. KrivokolyskoS.G. DotsenkoV.V. PankovA.A. Empirical determination of the degree of analgesic activity of some new 3-aminothieno[2,3-b]pyridines and 1,4-dihydropyridines based on a complex criterion.Res. Results Pharmacol.2023926774
    [Google Scholar]
  70. MykhailiukY. BilaiI. Analgesic activity of 4-R-5-pyridine-1,2,4-triazole-3-thiol derivatives in the experiment.Baltija Publishing2022
    [Google Scholar]
  71. AlbrattyM. AlhazmiH.A. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review.Arab. J. Chem.202215610384610.1016/j.arabjc.2022.103846
    [Google Scholar]
  72. AshmawyF.O. GomhaS.M. AbdallahM.A. ZakiM.E.A. Al-HussainS.A. El-desoukyM.A. Synthesis, in vitro evaluation and molecular docking studies of novel thiophenyl thiazolyl-pyridine hybrids as potential anticancer agents.Molecules20232811427010.3390/molecules28114270 37298747
    [Google Scholar]
  73. KarpinaV.R. KovalenkoS.S. KovalenkoS.M. DrushlyakO.G. BunyatyanN.D. GeorgiyantsV.A. IvanovV.V. LangerT. MaesL. A novel series of [1,2,4]triazolo[4,3-a]pyridine sulfonamides as potential antimalarial agents: In silico studies, synthesis and in vitro evaluation.Molecules20202519448510.3390/molecules25194485 33007887
    [Google Scholar]
  74. MishraN.P. MohapatraS. DasT. NayakS. Imidazo[1,2‐a]pyridine as a promising scaffold for the development of antibacterial agents.J. Heterocycl. Chem.202259122051207510.1002/jhet.4534
    [Google Scholar]
  75. JoY.W. ImW.B. RheeJ.K. ShimM.J. KimW.B. ChoiE.C. Synthesis and antibacterial activity of oxazolidinones containing pyridine substituted with heteroaromatic ring.Bioorg. Med. Chem.200412225909591510.1016/j.bmc.2004.08.025 15498667
    [Google Scholar]
  76. Martinez-GualdaB. PuS.Y. FroeyenM. HerdewijnP. EinavS. De JongheS. Structure-activity relationship study of the pyridine moiety of isothiazolo[4,3-b]pyridines as antiviral agents targeting cyclin G-associated kinase.Bioorg. Med. Chem.202028111518810.1016/j.bmc.2019.115188 31757682
    [Google Scholar]
  77. LhassaniM. ChavignonO. ChezalJ.M. TeuladeJ.C. ChapatJ.P. SnoeckR. AndreiG. BalzariniJ. De ClercqE. GueiffierA. Synthesis and antiviral activity of imidazo[1,2-a]pyridines.Eur. J. Med. Chem.199934327127410.1016/S0223‑5234(99)80061‑0
    [Google Scholar]
  78. KamatV. SantoshR. PoojaryB. NayakS.P. KumarB.K. SankaranarayananM. Faheem; Khanapure, S.; Barretto, D.A.; Vootla, S.K. Pyridine- and thiazole-based hydrazides with promising anti-inflammatory and antimicrobial activities along with their in silico studies.ACS Omega2020539252282523910.1021/acsomega.0c03386 33043201
    [Google Scholar]
  79. HelalM.H. El-AwdanS.A. SalemM.A. Abd-elazizT.A. MoahamedY.A. El-SherifA.A. MohamedG.A.M. Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513576477310.1016/j.saa.2014.06.145 25150427
    [Google Scholar]
  80. Abd El-LateefH.M. AbdelhamidA.A. KhalafM.M. GoudaM. ElkanziN.A.A. El-ShamyH. AliA.M. Green synthesis of novel pyridines via one-pot multicomponent reaction and their anti-inflammatory evaluation.ACS Omega2023812113261133410.1021/acsomega.3c00066 37008112
    [Google Scholar]
  81. SapkalA.V. DinoreJ.M. YelwandeA.A. PalveM.P. MadjeB.R. Ultrasound promoted one-pot multicomponent synthesis of highly functionalized tetrahydropyridine derivatives.Polycycl. Aromat. Compd.202444639643974
    [Google Scholar]
  82. SahibaN. SethiyaA. TeliP. AgarwalS. Tandem protocol of hexahydroquinoline synthesis using [H2-DABCO][HSO4]2 ionic liquid as a green catalyst at room temperature.ACS Omega2023865877588410.1021/acsomega.2c07672 36816668
    [Google Scholar]
  83. ChudasamaD.D. PatelM.S. ParekhJ.N. PatelH.C. RajputC.V. ChikhaliyaN.P. RamK.R. Ultrasound-promoted convenient and ionic liquid [BMIM]BF4 assisted green synthesis of diversely functionalized pyrazolo quinoline core via one-pot multicomponent reaction, DFT study and pharmacological evaluation.Mol. Divers.20232731409142510.1007/s11030‑022‑10498‑2 35915391
    [Google Scholar]
  84. Jalali-MolaS. TorabiM. YarieM. ZolfigolM.A. Acidic tributyl phosphonium-based ionic liquid: An efficient catalyst for preparation of diverse pyridine systems via a cooperative vinylogous anomeric-based oxidation.RSC Advances20221253347303473910.1039/D2RA04631H 36540275
    [Google Scholar]
  85. AmbatiS.R. PatelJ.L. ChandrakarK. SarkarU. PentaS. BanerjeeS. VarmaR.S. One-pot, three-component synthesis of novel coumarinyl-pyrazolo[3,4-b]pyridine-3-carboxylate derivatives using [AcMIm]FeCl4 as recyclable catalyst.J. Mol. Struct.2022126813362310.1016/j.molstruc.2022.133623
    [Google Scholar]
  86. IshtiaqM. KhanM.A. AhmedS. AliS. al-RashidaM. IftikharS. MoinS.T. HameedA. Probing new DABCO-F based ionic liquids as catalyst in organic synthesis.J. Mol. Struct.2022126813363810.1016/j.molstruc.2022.133638
    [Google Scholar]
  87. PatilP. KadamS. PatilD. MoreP. A green approach for the multicomponent synthesis of polyhydroquinolines and 6-unsubstituted dihydropyrimidinones using novel highly proficient acidic ionic liquid [CEMIM][MSA] as a reusable catalyst.Catal. Commun.202217010650010.1016/j.catcom.2022.106500
    [Google Scholar]
  88. AnjosN.S. ChapinaA.I. SantosA.R. LicenceP. LongoL.S. Groebke-Blackburn-Bienaymé multicomponent reaction catalysed by reusable Brønsted-acidic ionic liquids.Eur. J. Org. Chem.2022202240e20220061510.1002/ejoc.202200615
    [Google Scholar]
  89. JadhavC.K. NipateA.S. ChateA.V. KulkarniM.V. DofeV.S. GillC.H. Rapid multicomponent tandem annulation in ionic liquids: convergent access to 3-amino-1-alkylpyridin-2(1H)-one derivatives as potential anticancer scaffolds.Polycycl. Aromat. Compd.202242106946696510.1080/10406638.2021.1994427
    [Google Scholar]
  90. JadhavC. NipateA. ChateA. GillC. Triethylammonium hydrogen sulfate [Et3NH][HSO4]-catalyzed rapid and efficient multicomponent synthesis of pyrido[2,3-d]pyrimidine and Pyrazolo[3,4-b]pyridine hybrids.ACS Omega2021628182151822510.1021/acsomega.1c02093 34308052
    [Google Scholar]
  91. TorabiM. YarieM. ZolfigolM.A. RouhaniS. AziziS. OlomolaT.O. MaazaM. MsagatiT.A.M. Synthesis of new pyridines with sulfonamide moiety via a cooperative vinylogous anomeric-based oxidation mechanism in the presence of a novel quinoline-based dendrimer-like ionic liquid.RSC Advances20211153143315210.1039/D0RA09400E 35424257
    [Google Scholar]
  92. SameriF. BodaghifardM.A. MobinikhalediA. Ionic liquid-coated nanoparticles (CaO@SiO2@BAIL): A bi-functional and environmentally benign catalyst for green synthesis of pyridine, pyrimidine, and pyrazoline derivatives.Polycycl. Aromat. Compd.20224274700471610.1080/10406638.2021.1903954
    [Google Scholar]
  93. JadhavC.K. NipateA.S. ChateA.V. PatilA.P. GillC.H. Ionic liquid catalyzed one‐pot multi‐component synthesis of fused pyridine derivatives: A strategy for green and sustainable chemistry.J. Heterocycl. Chem.202057124291430310.1002/jhet.4135
    [Google Scholar]
  94. NguyenH.T. TruongV.A. TranP.H. Synthesis of polyhydroquinolines and propargylamines through one-pot multicomponent reactions using an acidic ionic liquid immobilized onto magnetic Fe3O4 as an efficient heterogeneous catalyst under solvent-free sonication.RSC Advances202010422535825363
    [Google Scholar]
  95. AlishahiN. Mohammadpoor-BaltorkI. TangestaninejadS. MirkhaniV. MoghadamM. KiaR. Calixarene based ionic liquid as an efficient and reusable catalyst for one‐pot multicomponent synthesis of polysubstituted pyridines and bis‐pyridines.ChemistrySelect20194195903591010.1002/slct.201900902
    [Google Scholar]
  96. PoloE. Arce-ParadaV. López-CortésX.A. Sánchez-MárquezJ. Morales-BayueloA. Forero-DoriaO. GutiérrezM. Synthesis of pyrazolo-fused 4-azafluorenones in an ionic liquid. mechanistic insights by joint studies using DFT analysis and mass spectrometry.Catalysts201991082010.3390/catal9100820
    [Google Scholar]
  97. AlinezhadH. TajbakhshM. MalekiB. Pourshaban OushibiF. Acidic ionic liquid [H-NP]HSO4 promoted one-pot synthesis of dihydro-1H-indeno[1,2-b]pyridines and polysubstituted imidazoles.Polycycl. Aromat. Compd.20204051485150010.1080/10406638.2018.1557707
    [Google Scholar]
  98. ShojaeiR. ZahedifarM. MohammadiP. SaidiK. SheibaniH. Novel magnetic nanoparticle supported ionic liquid as an efficient catalyst for the synthesis of spiro [pyrazole-pyrazolo[3,4-b]pyridine]-dione derivatives under solvent free conditions.J. Mol. Struct.2019117840140710.1016/j.molstruc.2018.10.052
    [Google Scholar]
  99. TamaddonF. AzadiD. Nicotinium methane sulfonate (NMS): A bio-renewable protic ionic liquid and bi-functional catalyst for synthesis of 2-amino-3-cyano pyridines.J. Mol. Liq.201824978979410.1016/j.molliq.2017.10.153
    [Google Scholar]
  100. SagirH. YadavV.B. ShamimS. KumarA. YadavN. AnsariM.D. SiddiquiI.R. An eco‐compatible synthesis of substituted hexahydro‐furo[3,2‐c]pyridine analogues with the chitosan/ionic liquid coupled catalytic system.ChemistrySelect2018338107991080410.1002/slct.201802336
    [Google Scholar]
  101. KhandebharadA.U. SardaS.R. FarooquiM.N. Arif Khan PathanM. AgrawalB.R. Solvent in solute system for the synthesis of highly substituted pyridine by using choline hydroxide and water.Polycycl. Aromat. Compd.202040383283910.1080/10406638.2018.1485713
    [Google Scholar]
  102. BhattJ.D. PatelT.S. ChudasamaC.J. PatelK.D. Microwave‐assisted synthesis of novel pyrazole clubbed polyhydroquinolines in an ionic‐liquid and their biological perspective.ChemistrySelect20183133632364010.1002/slct.201702285
    [Google Scholar]
  103. AlvimH.G.O. CorreaJ.R. AssumpçãoJ.A.F. da SilvaW.A. RodriguesM.O. de MacedoJ.L. FioramonteM. GozzoF.C. GattoC.C. NetoB.A.D. Heteropolyacid-containing ionic liquid-catalyzed multicomponent synthesis of bridgehead nitrogen heterocycles: Mechanisms and mitochondrial staining.J. Org. Chem.20188374044405310.1021/acs.joc.8b00472 29547280
    [Google Scholar]
  104. AziziM. Nasr-EsfahaniM. Mohammadpoor-BaltorkI. MoghadamM. MirkhaniV. TangestaninejadS. KiaR. Synthesis of quinolines and pyrido[3,2-g or 2,3-g]quinolines catalyzed by heterogeneous propylphosphonium tetrachloroindate ionic liquid.J. Org. Chem.20188323147431475010.1021/acs.joc.8b02261 30398359
    [Google Scholar]
/content/journals/coc/10.2174/0113852728331797240903101654
Loading
/content/journals/coc/10.2174/0113852728331797240903101654
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test