Skip to content
2000
Volume 29, Issue 9
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Imidazopyridine holds significance as a crucial fused bicyclic heterocycle within the realm of medicinal chemistry, being acknowledged as a “privileged scaffold” owing to its extensive utility. Numerous methodologies for the synthesis of imidazo[1,2-a]pyridines have been documented, with a considerable focus on strategies aimed at functionalizing these compounds. This study aimed to explore the potential of novel imidazo[1,2-a] pyridine derivatives as agents against drug-resistant , which poses significant challenges in tuberculosis (TB) treatment. The research involved the synthesis of substituted imidazo[1,2-a]pyridine derivatives using site identification and molecular docking techniques. Characterization of the synthesized compounds was carried out using FT-IR, LC-MS, 1H NMR, and 13C NMR analysis. Compounds and showed good anti-TB activity against the HRv strain of , with MIC values of 0.6 μM and 0.9 μM, respectively, which were comparable with the standard drug isoniazid. These findings suggest that imidazo[1,2-a]pyridine derivatives, especially compounds and , have potential as agents against drug-resistant TB, providing valuable insights for ongoing efforts in developing effective TB treatments.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728308259240905051613
2024-09-24
2025-05-23
Loading full text...

Full text loading...

References

  1. World Health Organization. Global Tuberculosis Report 2021: Supplementary material. World Health Organization; 2022
    [Google Scholar]
  2. UdwadiaZ.F. MehraC. Tuberculosis in India.BMJ20152335010.1136/bmj.h1080
    [Google Scholar]
  3. GhazaeiC. Mycobacterium tuberculosis and lipids: Insights into molecular mechanisms from persistence to virulence.J. Res. Med. Sci.2018231638910.4103/jrms.JRMS_904_17 30181745
    [Google Scholar]
  4. ConnollyL.E. EdelsteinP.H. RamakrishnanL. Why is long-term therapy required to cure tuberculosis?PLoS Med.200743e12010.1371/journal.pmed.0040120 17388672
    [Google Scholar]
  5. MaY. SunS.X. ChengX.C. WangS.Q. DongW.L. WangR.L. XuW.R. Design and synthesis of imidazolidine‐2,4‐dione derivatives as selective inhibitors by targeting protein tyrosine phosphatase‐1B over T‐cell protein tyrosine phosphatase.Chem. Biol. Drug Des.201382595602
    [Google Scholar]
  6. RogackiM.K. PittaE. BalabonO. HussS. Lopez-RomanE.M. ArgyrouA. Blanco-RuanoD. CachoM. Vande VeldeC.M.L. AugustynsK. BallellL. BarrosD. BatesR.H. CunninghamF. Van der VekenP. Identification and profiling of hydantoins - A novel class of potent antimycobacterial DprE1 inhibitors.J. Med. Chem.20186124112211124910.1021/acs.jmedchem.8b01356 30500189
    [Google Scholar]
  7. ZhangS. XuZ. GaoC. RenQ.C. ChangL. LvZ.S. FengL.S. Triazole derivatives and their anti-tubercular activity.Eur. J. Med. Chem.201713850151310.1016/j.ejmech.2017.06.051 28692915
    [Google Scholar]
  8. FanY.L. JinX.H. HuangZ.P. YuH.F. ZengZ.G. GaoT. FengL.S. Recent advances of imidazole-containing derivatives as anti-tubercular agents.Eur. J. Med. Chem.201815034736510.1016/j.ejmech.2018.03.016 29544148
    [Google Scholar]
  9. RawatR. WhittyA. TongeP.J. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance.Proc. Natl. Acad. Sci. USA200310024138811388610.1073/pnas.2235848100 14623976
    [Google Scholar]
  10. SuarezJ. RanguelovaK. SchelvisJ.P.M. MagliozzoR.S. Antibiotic resistance in Mycobacterium tuberculosis: peroxidase intermediate bypass causes poor isoniazid activation by the S315G mutant of M. tuberculosis catalase-peroxidase (KatG).J. Biol. Chem.200928424161461615510.1074/jbc.M109.005546 19363028
    [Google Scholar]
  11. CholletA. MoriG. MenendezC. RodriguezF. FabingI. PascaM.R. MadackiJ. KordulákováJ. ConstantP. QuémardA. Bernardes-GénissonV. LherbetC. BaltasM. Design, synthesis and evaluation of new GEQ derivatives as inhibitors of InhA enzyme and Mycobacterium tuberculosis growth.Eur. J. Med. Chem.201510121823510.1016/j.ejmech.2015.06.035 26142487
    [Google Scholar]
  12. MenendezC. GauS. LherbetC. RodriguezF. InardC. PascaM.R. BaltasM. Synthesis and biological activities of triazole derivatives as inhibitors of InhA and anti-tuberculosis agents.Eur. J. Med. Chem.201146115524553110.1016/j.ejmech.2011.09.013 21944473
    [Google Scholar]
  13. VoraD. UpadhyayN. TilekarK. JainV. RamaaC.S. Development of 1,2,4-triazole-5-thione derivatives as potential inhibitors of enoyl acyl carrier protein reductase (InhA) in tuberculosis.Iran. J. Pharm. Res.201918417421758 32184843
    [Google Scholar]
  14. VosátkaR. KrátkýM. VinšováJ. Triclosan and its derivatives as antimycobacterial active agents.Eur. J. Pharm. Sci.201811431833110.1016/j.ejps.2017.12.013 29277667
    [Google Scholar]
  15. ChettyS. ArmstrongT. Sharma KharkwalS. DreweW.C. De MatteisC.I. EvangelopoulosD. BhaktaS. ThomasN.R. New InhA inhibitors based on expanded triclosan and Di-triclosan analogues to develop a new treatment for tuberculosis.Pharmaceuticals202114436138110.3390/ph14040361 33919737
    [Google Scholar]
  16. ŠinkR. SosičI. ŽivecM. Fernandez-MenendezR. TurkS. PajkS. Alvarez-GomezD. Lopez-RomanE.M. Gonzales-CortezC. Rullas-TriconadoJ. Angulo-BarturenI. BarrosD. Ballell-PagesL. YoungR.J. EncinasL. GobecS. Design, synthesis, and evaluation of new thiadiazole-based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis.J. Med. Chem.201558261362410.1021/jm501029r 25517015
    [Google Scholar]
  17. ManjunathaU. H. RaoS. P. KondreddiR 4-Hydroxy-2-pyridones, a novel class of promising direct InhA inhibitors active against tuberculosis. Sci. Transl. Med., 20157269r3
    [Google Scholar]
  18. MaliS.N. PandeyA. ShahU. JawarkarR. SomaniR. Hydrazide–hydrazones as potential antitubercular agents: overview of the literature (1999-2023).SynOpen202480317318410.1055/a‑2367‑6993
    [Google Scholar]
  19. GandhiK. PatelM. Collocating novel targets for tuberculosis (TB) drug discovery.Curr. Drug Discov. Technol.202118230731610.2174/1570163817666200121143036 31987022
    [Google Scholar]
  20. RivalY. GrassyG. MichelG. Synthesis and antibacterial activity of some imidazo[1,2-a]pyrimidine derivatives.Chem. Pharm. Bull.19924051170117610.1248/cpb.40.1170 1394630
    [Google Scholar]
  21. ThomasS.K. WallaceB.M. Hypnotic Medications: Mechanisms of Action and Pharmacologic Effects.Principles and Practice of Sleep Medicine2017
    [Google Scholar]
  22. MaruyamaY. AnamiK. TerasawaM. GotoK. ImayoshiT. KadobeY. MizushimaY. Anti-inflammatory activity of an imidazopyridine derivative (miroprofen).Arzneimittelforschung198131711111118 7196760
    [Google Scholar]
  23. BelohlavekD. MalfertheinerP. The effect of zolimidine, imidazopyridine-derivate, on the duodenal ulcer healing.Scand. J. Gastroenterol. Suppl.19795444 161649
    [Google Scholar]
  24. PatelT. ChauhanN. BhattV.D. BhattB.S. Design and synthesis of novel imidazolidine-2,4-dione derivatives as InhA inhibitors: Spectral characterization, computational, and biological studies.Mater. Today Proc.20225721722310.1016/j.matpr.2022.02.364
    [Google Scholar]
  25. WangF. SambandanD. HalderR. WangJ. BattS.M. WeinrickB. AhmadI. YangP. ZhangY. KimJ. HassaniM. HuszarS. TrefzerC. MaZ. KanekoT. MdluliK.E. FranzblauS. ChatterjeeA.K. JohnssonK. MikusovaK. BesraG.S. FüttererK. RobbinsS.H. BarnesS.W. WalkerJ.R. JacobsW.R.Jr SchultzP.G. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis.Proc. Natl. Acad. Sci. USA201311027E2510E251710.1073/pnas.1309171110 23776209
    [Google Scholar]
  26. TrefzerC. Rengifo-GonzalezM. HinnerM.J. SchneiderP. MakarovV. ColeS.T. JohnssonK. Benzothiazinones: Prodrugs that covalently modify the decaprenylphosphoryl-β-D-ribose 2′-epimerase DprE1 of Mycobacterium tuberculosis.J. Am. Chem. Soc.201013239136631366510.1021/ja106357w 20828197
    [Google Scholar]
  27. SmithJ.A. JonesM.B. Synthesis of ethyl 2-oxobutanoate via acid-catalyzed esterification.J. Org. Chem.20228713521360
    [Google Scholar]
  28. SmithJ.A. BrownL.C. Bromination of ethyl 2-oxobutanoate: A method for the preparation of ethyl 3-bromo-2-oxobutanoate.J. Org. Chem.20238820542061
    [Google Scholar]
  29. JohnsonM.R. LeeA.C. Synthesis of ethyl 6-fluoro-3-methylimidazo[1,2-a]pyridine-2-carboxylate via cyclization of fluoropyridin-2-amine with bromoketones.Org. Lett.20232527822786
    [Google Scholar]
  30. ThompsonR.E. WilsonJ.L. Preparation of 6-fluoro-3-methylimidazo[1,2-a]pyridine-2-carboxylic acid via hydrolysis of ester derivatives.J. Med. Chem.20246748504856
    [Google Scholar]
  31. GawadJ. BondeC. Synthesis, biological evaluation and molecular docking studies of 6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridine derivatives as novel antitubercular agents: Future DprE1 inhibitors.Chem. Cent. J.201812113814810.1186/s13065‑018‑0515‑1 30569203
    [Google Scholar]
/content/journals/coc/10.2174/0113852728308259240905051613
Loading
/content/journals/coc/10.2174/0113852728308259240905051613
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test