Skip to content
2000
Volume 29, Issue 9
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Under the broad domain of multimetallic catalysis, the utilisation of two transition metals (either homometallic or heterometallic) as catalysts in a cooperative way to enhance reactivity and promote higher stereoselectivity and versatility has witnessed remarkable advancements in organic synthesis in the last two decades. This review attempts to provide an account of the development in the recent past to its progress now in this area, highlighting the importance of simultaneous catalytic cycles in the mechanistic pathway and optimal reaction conditions for organic transformations leading to building blocks of importance in biology and pharmaceutical applications. The reactions presented here include, among others, C-H activation, reductive cross-coupling, allenylation, tandem isomerisation-allylation, heteroarylation, and asymmetric synthesis.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728326733240829074825
2024-09-20
2025-05-06
Loading full text...

Full text loading...

References

  1. RavelliD. DondiD. FagnoniM. AlbiniA. Photocatalysis. A multi-faceted concept for green chemistry.Chem. Soc. Rev.20093871999201110.1039/b714786b 19551179
    [Google Scholar]
  2. MizunoN. MisonoM. Heterogeneous catalysis.Chem. Rev.199898119921810.1021/cr960401q 11851503
    [Google Scholar]
  3. NoyoriR. Asymmetric catalysis in organic synthesis.Wiley1993
    [Google Scholar]
  4. SaptalV.B. RutaV. BajadaM.A. ViléG. Single‐atom catalysis in organic synthesis.Angew. Chem. Int. Ed.20236234e20221930610.1002/anie.202219306 36918356
    [Google Scholar]
  5. BolmC. BellerM. Transition metals for organic synthesis.WeinheimWiley-VCH20041
    [Google Scholar]
  6. WheatleyN. KalckP. Structure and reactivity of early-late heterobimetallic complexes.Chem. Rev.199999123379342010.1021/cr980325m 11849025
    [Google Scholar]
  7. FoggD.E. dos SantosE.N. Tandem catalysis: A taxonomy and illustrative review.Coord. Chem. Rev.200424821-242365237910.1016/j.ccr.2004.05.012
    [Google Scholar]
  8. ShaoZ. ZhangH. Combining transition metal catalysis and organocatalysis: A broad new concept for catalysis.Chem. Soc. Rev.20093892745275510.1039/b901258n 19690751
    [Google Scholar]
  9. RomitiF. del PozoJ. PaiotiP.H.S. GonsalesS.A. LiX. HartrampfF.W.W. HoveydaA.H. Different strategies for designing dual-catalytic enantioselective processes: From fully cooperative to non-cooperative systems.J. Am. Chem. Soc.201914145179521796110.1021/jacs.9b05464 31674773
    [Google Scholar]
  10. CaoX. AntonyukS.V. SeetharamanS.V. WhitsonL.J. TaylorA.B. HollowayS.P. StrangeR.W. DoucetteP.A. ValentineJ.S. TiwariA. HaywardL.J. PaduaS. CohlbergJ.A. HasnainS.S. HartP.J. Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis.J. Biol. Chem.200828323161691617710.1074/jbc.M801522200 18378676
    [Google Scholar]
  11. BruiceT.C. BenkovicS.J. Chemical basis for enzyme catalysis.Biochemistry200039216267627410.1021/bi0003689 10828939
    [Google Scholar]
  12. JabriE. CarrM. HausingerR. KarplusP. The crystal structure of urease from Klebsiella aerogenes.Science19952685213998100410.1126/science.7754395 7754395
    [Google Scholar]
  13. MazzeiL. MusianiF. CiurliS. The structure-based reaction mechanism of urease, a nickel dependent enzyme: Tale of a long debate.J. Biol. Inorg. Chem.202025682984510.1007/s00775‑020‑01808‑w 32809087
    [Google Scholar]
  14. AkiyamaT. Asymmetric acid organocatalysis.In: Catalytic Asymmetric Synthesis.Wiley2022298010.1002/9781119736424.ch2
    [Google Scholar]
  15. BeletskayaI.P. NájeraC. YusM. Stereodivergent catalysis.Chem. Rev.2018118105080520010.1021/acs.chemrev.7b00561 29676895
    [Google Scholar]
  16. KrautwaldS. CarreiraE.M. Stereodivergence in asymmetric catalysis.J. Am. Chem. Soc.2017139165627563910.1021/jacs.6b13340 28384402
    [Google Scholar]
  17. RowlandsG.J. Ambifunctional cooperative catalysts.Tetrahedron200157101865188210.1016/S0040‑4020(01)00057‑6
    [Google Scholar]
  18. MaJ.A. CahardD. Towards perfect catalytic asymmetric synthesis: Dual activation of the electrophile and the nucleophile.Angew. Chem. Int. Ed.200443354566458310.1002/anie.200300635 15352183
    [Google Scholar]
  19. PodderS. Studies towards aromatic alkylation within Ir/Sn bimetallic or dual-reagent domain. Doctoral thesis, Indian Institute of Technology Kharagpur, India, 2007
    [Google Scholar]
  20. van den BeukenE.K. FeringaB.L. Bimetallic catalysis by late transition metal complexes.Tetrahedron19985443129851301110.1016/S0040‑4020(98)00319‑6
    [Google Scholar]
  21. AllenA.E. MacMillanD.W.C. Synergistic catalysis: A powerful synthetic strategy for new reaction development.Chem. Sci. 20123363365810.1039/c2sc00907b 22518271
    [Google Scholar]
  22. KimU.B. JungD.J. JeonH.J. RathwellK. LeeS. Synergistic dual transition metal catalysis.Chem. Rev.202012024133821343310.1021/acs.chemrev.0c00245 33251788
    [Google Scholar]
  23. MalakarC.C. Dell’AmicoL. ZhangW. Dual catalysis in organic synthesis: Current challenges and new trends.Eur. J. Org. Chem.2023261e20220111410.1002/ejoc.202201114
    [Google Scholar]
  24. WuY. HuoX. ZhangW. Synergistic Pd/Cu catalysis in organic synthesis.Chemistry202026224895491610.1002/chem.201904495 31762085
    [Google Scholar]
  25. ZhangQ. WangC. Metal/metal dual catalysis in C-H activation.Eur. J. Org. Chem.2022202222e20220043110.1002/ejoc.202200431
    [Google Scholar]
  26. WeiL. WangC.J. Asymmetric transformations enabled by synergistic dual transition-metal catalysis.Chem. Catal.20233110045510.1016/j.checat.2022.10.031
    [Google Scholar]
  27. WeiL. FuC. WangZ.F. TaoH.Y. WangC.J. Synergistic dual catalysis in stereodivergent synthesis.ACS Catal.20241463812384410.1021/acscatal.3c06267
    [Google Scholar]
  28. MiyauraN. YamadaK. SuzukiA. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides.Tetrahedron Lett.197920363437344010.1016/S0040‑4039(01)95429‑2
    [Google Scholar]
  29. HoshiT. ShishidoY. SuzukiA. SasakiY. HagiwaraH. SuzukiT. Suzuki-Miyaura coupling reactions using low loading of ligand-activated palladium catalyst by cooperative copper catalysis.Chem. Lett.201847678078310.1246/cl.180185
    [Google Scholar]
  30. TrostB.M. Van VrankenD.L. Asymmetric transition metal-catalyzed allylic alkylations.Chem. Rev.199696139542210.1021/cr9409804 11848758
    [Google Scholar]
  31. ButtN.A. ZhangW. Transition metal-catalyzed allylic substitution reactions with unactivated allylic substrates.Chem. Soc. Rev.201544227929796710.1039/C5CS00144G 26293479
    [Google Scholar]
  32. HuoX. HeR. FuJ. ZhangJ. YangG. ZhangW. Stereoselective and site-specific allylic alkylation of amino acids and small peptides via a Pd/Cu Dual catalysis.J. Am. Chem. Soc.2017139299819982210.1021/jacs.7b05460 28686426
    [Google Scholar]
  33. HuoX. FuJ. HeX. ChenJ. XieF. ZhangW. Pd/Cu dual catalysis: Highly enantioselective access to α-substituted α-amino acids and α-amino amides.Chem. Commun. 201854659960210.1039/C7CC08732B 29256570
    [Google Scholar]
  34. MichalsonE.T. SzmuszkoviczJ. Medicinal agents incorporating the 1,2-diamine functionality.Prog. Drug Res.19893313514910.1007/978‑3‑0348‑9146‑2_6 2687936
    [Google Scholar]
  35. OoiT. SakaiD. TakeuchiM. TayamaE. MaruokaK. Practical asymmetric synthesis of vicinal diamines through the catalytic highly enantioselective alkylation of glycine amide derivatives.Angew. Chem. Int. Ed.200342475868587010.1002/anie.200352658 14673922
    [Google Scholar]
  36. PyziakJ. WalkowiakJ. MarciniecB. Recent advances in boron-substituted 1,3-dienes chemistry: Synthesis and application.Chemistry201723153502354110.1002/chem.201602124 28297134
    [Google Scholar]
  37. SuginomeM. MatsudaT. ItoY. Nickel-catalyzed silaborative dimerization of alkynes.Organometallics199817245233523510.1021/om9807250
    [Google Scholar]
  38. WangC. TobrmanT. XuZ. NegishiE. Highly regio- and stereoselective synthesis of (Z)-trisubstituted alkenes via propyne bromoboration and tandem Pd-catalyzed cross-coupling.Org. Lett.200911184092409510.1021/ol901566e 19694459
    [Google Scholar]
  39. DainiM. SuginomeM. Palladium-catalyzed carboboration of alkynes using chloroborane and organozirconium reagents.Chem. Commun. 200841415224522610.1039/b809433k 18956076
    [Google Scholar]
  40. SembaK. NakaoY. Arylboration of alkenes by cooperative palladium/copper catalysis.J. Am. Chem. Soc.2014136217567757010.1021/ja5029556 24810227
    [Google Scholar]
  41. LesieurM. BidalY.D. LazregF. NahraF. CazinC.S.J. Versatile relay and cooperative palladium(0) N‐heterocyclic carbene/copper(I) N‐heterocyclic carbene catalysis for the synthesis of tri‐ and tetrasubstituted alkenes.ChemCatChem20157142108211210.1002/cctc.201500268
    [Google Scholar]
  42. Vázquez-GaliñanesN. Fañanás-MastralM. Stereoselective synthesis of borylated 1,3‐dienes by synergistic Cu/Pd catalysis.ChemCatChem201810214817482010.1002/cctc.201801240
    [Google Scholar]
  43. LednicerD. The Organic Chemistry of Drug Synthesis.John Wiley & Sons2007710.1002/9780470180679
    [Google Scholar]
  44. MiyauraN. SuzukiA. Palladium-catalyzed cross-coupling reactions of organoboron compounds.Chem. Rev.19959572457248310.1021/cr00039a007
    [Google Scholar]
  45. JanaR. PathakT.P. SigmanM.S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners.Chem. Rev.201111131417149210.1021/cr100327p 21319862
    [Google Scholar]
  46. ThomasS.P. AggarwalV.K. Asymmetric hydroboration of 1,1-disubstituted alkenes.Angew. Chem. Int. Ed.200948111896189810.1002/anie.200805604 19185046
    [Google Scholar]
  47. LuZ. BuchwaldS.L. Enantioselective preparation of arenes with β‐stereogenic centers: Confronting the 1,1‐disubstituted olefin problem using CuH/Pd cooperative catalysis.Angew. Chem. Int. Ed.20205937161281613210.1002/anie.202004414 32438497
    [Google Scholar]
  48. CatellaniM. FrignaniF. RangoniA. Regioselektive synthese o,o′‐disubstituierter Vinylarene über einen komplexen Katalysecyclus.Angew. Chem.19971091-214214510.1002/ange.19971090146
    [Google Scholar]
  49. ShenY. WuX.X. ChenS. XiaY. LiangY.M. Synthesis of polyfluoroarene-substituted benzofuran derivatives via cooperative Pd/Cu catalysis.Chem. Commun. 201854182256225910.1039/C8CC00489G 29431847
    [Google Scholar]
  50. MüllerK. FaehC. DiederichF. Fluorine in pharmaceuticals: Looking beyond intuition.Science200731758461881188610.1126/science.1131943 17901324
    [Google Scholar]
  51. DoH.Q. DaugulisO. Copper-catalyzed arylation and alkenylation of polyfluoroarene C-H bonds.J. Am. Chem. Soc.200813041128112910.1021/ja077862l 18181627
    [Google Scholar]
  52. WeiY. SuW. Pd(OAc)(2)-catalyzed oxidative C-H/C-H cross-coupling of electron-deficient polyfluoroarenes with simple arenes.J. Am. Chem. Soc.201013246163771637910.1021/ja109383e 21033755
    [Google Scholar]
  53. XieW. ChangS. [Cu(NHC)]‐catalyzed C-H allylation and alkenylation of both electron‐deficient and electron‐rich (Hetero)arenes with allyl halides.Angew. Chem. Int. Ed.20165551876188010.1002/anie.201510180 26695120
    [Google Scholar]
  54. SembaK. KameyamaR. NakaoY. Hydrogenative cross-coupling of internal alkynes and aryl iodides by palladium/copper cooperative catalysis.Chem. Lett.201847221321610.1246/cl.170961
    [Google Scholar]
  55. CampeauL.C. HazariN. Cross-coupling and related reactions: Connecting past success to the development of new reactions for the future.Organometallics201938133510.1021/acs.organomet.8b00720 31741548
    [Google Scholar]
  56. MaleczkaR.E. TerstiegeI. Development of a one-pot palladium-catalyzed hydrostannylation/Stille coupling protocol with catalytic amounts of tin.J. Org. Chem.199863269622962310.1021/jo981915n
    [Google Scholar]
  57. NahraF. MacéY. LambinD. RiantO. Copper/palladium-catalyzed 1,4 reduction and asymmetric allylic alkylation of α,β-unsaturated ketones: Enantioselective dual catalysis.Angew. Chem. Int. Ed.201352113208321210.1002/anie.201208612 23382027
    [Google Scholar]
  58. LuX. XiaoB. ZhangZ. GongT. SuW. YiJ. FuY. LiuL. Practical carbon-carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation.Nat. Commun.2016711112910.1038/ncomms11129 27033405
    [Google Scholar]
  59. MailigM. HazraA. ArmstrongM.K. LalicG. Catalytic anti-markovnikov hydroallylation of terminal and functionalized internal alkynes: Synthesis of skipped dienes and trisubstituted alkenes.J. Am. Chem. Soc.2017139206969697710.1021/jacs.7b02104 28449580
    [Google Scholar]
  60. UehlingM.R. SuessA.M. LalicG. Copper-catalyzed hydroalkylation of terminal alkynes.J. Am. Chem. Soc.201513741424142710.1021/ja5124368 25621888
    [Google Scholar]
  61. MolnárÁ. SárkányA. VargaM. Hydrogenation of carbon-carbon multiple bonds: Chemo-, regio- and stereo-selectivity.J. Mol. Catal. Chem.20011731-218522110.1016/S1381‑1169(01)00150‑9
    [Google Scholar]
  62. AlonsoF. BeletskayaI.P. YusM. Metal-mediated reductive hydrodehalogenation of organic halides.Chem. Rev.2002102114009409210.1021/cr0102967 12428984
    [Google Scholar]
  63. HuddlestonR.R. JangH.Y. KrischeM.J. First catalytic reductive coupling of 1,3-diynes to carbonyl partners: A new regio- and enantioselective C-C bond forming hydrogenation.J. Am. Chem. Soc.200312538114881148910.1021/ja030415v 13129338
    [Google Scholar]
  64. KomanduriV. GrantC.D. KrischeM.J. Branch-selective reductive coupling of 2-vinyl pyridines and imines via rhodium catalyzed C-C bond forming hydrogenation.J. Am. Chem. Soc.200813038125921259310.1021/ja805056g 18759388
    [Google Scholar]
  65. KeM. LiuZ. ZhangK. ZuoS. ChenF. Synergistic Pd/Cu catalysis for stereoselective allylation of vinylethylene carbonates with glycine iminoesters: Enantioselective access to diverse trisubstituted allylic amino acid derivatives.Green Synth. Catal.20212222823210.1016/j.gresc.2021.04.004
    [Google Scholar]
  66. FuL. GreßiesS. ChenP. LiuG. Recent advances and perspectives in transition metal‐catalyzed 1,4‐functionalizations of unactivated 1,3‐enynes for the synthesis of allenes.Chin. J. Chem.20203819110010.1002/cjoc.201900277
    [Google Scholar]
  67. ZhangJ. HuoX. XiaoJ. ZhaoL. MaS. ZhangW. Enantio- and diastereodivergent construction of 1,3-nonadjacent stereocenters bearing axial and central chirality through synergistic Pd/Cu catalysis.J. Am. Chem. Soc.202114332126221263210.1021/jacs.1c05087 34351136
    [Google Scholar]
  68. ZhaoL. LuoY. XiaoJ. HuoX. MaS. ZhangW. Stereodivergent synthesis of allenes with α,β‐adjacent central chiralities empowered by synergistic Pd/Cu catalysis.Angew. Chem. Int. Ed.2023629e20221814610.1002/anie.202218146 36594710
    [Google Scholar]
  69. HassanJ. SévignonM. GozziC. SchulzE. LemaireM. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction.Chem. Rev.200210251359147010.1021/cr000664r 11996540
    [Google Scholar]
  70. GooßenL.J. RodríguezN. GooßenK. Carboxylic acids as substrates in homogeneous catalysis.Angew. Chem. Int. Ed.200847173100312010.1002/anie.200704782 18357604
    [Google Scholar]
  71. PanF. LeiZ.Q. WangH. LiH. SunJ. ShiZ.J. Rhodium(I)-catalyzed redox-economic cross-coupling of carboxylic acids with arenes directed by N-containing groups.Angew. Chem. Int. Ed.20135272063206710.1002/anie.201208362 23307746
    [Google Scholar]
  72. LeiZ.Q. PanF. LiH. LiY. ZhangX.S. ChenK. WangX. LiY.X. SunJ. ShiZ.J. Group exchange between ketones and carboxylic acids through directing group assisted Rh-catalyzed reorganization of carbon skeletons.J. Am. Chem. Soc.2015137155012502010.1021/ja512003d 25843169
    [Google Scholar]
  73. LiuC. JiC.L. ZhouT. HongX. SzostakM. Bimetallic cooperative catalysis for decarbonylative heteroarylation of carboxylic acids via C‐O/C‐H coupling.Angew. Chem. Int. Ed.20216019106901069910.1002/anie.202100949 33596335
    [Google Scholar]
  74. VerrierC. LassalasP. ThéveauL. QuéguinerG. TrécourtF. MarsaisF. HoarauC. Recent advances in direct C-H arylation: Methodology, selectivity and mechanism in oxazole series.Beilstein J. Org. Chem.2011711584160110.3762/bjoc.7.187 22238536
    [Google Scholar]
  75. AckermannL. BarfüsserS. KornhaassC. KapdiA.R. C-H bond arylations and benzylations on oxazol(in)es with a palladium catalyst of a secondary phosphine oxide.Org. Lett.201113123082308510.1021/ol200986x 21599032
    [Google Scholar]
  76. GuoX.X. GuD.W. WuZ. ZhangW. Copper-catalyzed C-H functionalization reactions: Efficient synthesis of heterocycles.Chem. Rev.201511531622165110.1021/cr500410y 25531056
    [Google Scholar]
  77. LarsonH. SchultzD. KalyaniD. Ni-catalyzed C-H arylation of oxazoles and benzoxazoles using pharmaceutically relevant aryl chlorides and bromides.J. Org. Chem.20198420130921310310.1021/acs.joc.9b02094 31550163
    [Google Scholar]
  78. HuangJ. ChanJ. ChenY. BorthsC.J. BaucomK.D. LarsenR.D. FaulM.M. A highly efficient palladium/copper cocatalytic system for direct arylation of heteroarenes: An unexpected effect of Cu(Xantphos)I.J. Am. Chem. Soc.2010132113674367510.1021/ja100354j 20180566
    [Google Scholar]
  79. PiouT. SlutskyyY. KevinN.J. SunZ. XiaoD. KongJ. Direct arylation of azoles enabled by Pd/Cu dual catalysis.Org. Lett.20212361996200110.1021/acs.orglett.1c00100 33667104
    [Google Scholar]
  80. MaitiB. WangK. BhandariS. BungeS.D. TwiegR.J. DunietzB.D. Enhancing charge mobilities in selectively fluorinated oligophenyl organic semiconductors: A design approach based on experimental and computational perspectives.J. Mater. Chem. C Mater. Opt. Electron. Devices20197133881388810.1039/C8TC06517A
    [Google Scholar]
  81. TsukadaN. SatoT. InoueY. Rhodium-catalyzed allylation of styrenes with allyl tosylate.Chem. Commun. 20013323723810.1039/b007880h
    [Google Scholar]
  82. Ponce-de-LeónJ. InfanteR. Pérez-IglesiasM. EspinetP. Fluorinated vs Nonfluorinated PR2 (biaryl) ligands and their [AuCl(L)] complexes: Synthesis, x-ray structures, and computational study of weak interactions. bond, no bond, and beyond.Inorg. Chem.20205922165991661010.1021/acs.inorgchem.0c02513 33119278
    [Google Scholar]
  83. BudimanY.P. JayaramanA. FriedrichA. KernerF. RadiusU. MarderT.B. Palladium-catalyzed homocoupling of highly fluorinated arylboronates: Studies of the influence of strongly vs weakly coordinating solvents on the reductive elimination process.J. Am. Chem. Soc.2020142136036605010.1021/jacs.9b11871 32134642
    [Google Scholar]
  84. Ponce-de-LeónJ. EspinetP. Selective synthesis of fluorinated biaryls by [MCl2(PhPEWO-F)] (M = Ni, Pd) catalysed Negishi cross-coupling.Chem. Commun. 20215783108751087810.1039/D1CC04915A 34590665
    [Google Scholar]
  85. Pérez-IglesiasM. Lozano-LavillaO. CasaresJ.A. [Cu(C6Cl2F3)(tht)]4: An extremely efficient catalyst for the aryl scrambling between palladium complexes.Organometallics201938473974210.1021/acs.organomet.8b00885
    [Google Scholar]
  86. Ponce-de-LeónJ. Marcos-AyusoG. CasaresJ.A. EspinetP. Pd/Cu bimetallic catalysis to access highly fluorinated biaryls from aryl halides and fluorinated arenes.Chem. Commun. 202258193146314910.1039/D2CC00141A 35174831
    [Google Scholar]
  87. LesieurM. LazregF. CazinC.S.J. A cooperative Pd-Cu system for direct C-H bond arylation.Chem. Commun. 201450648927892910.1039/C4CC03201B 24976025
    [Google Scholar]
  88. delPozoJ. CasaresJ.A. EspinetP. The decisive role of ligand metathesis in Au/Pd bimetallic catalysis.Chem. Commun. 201349657246724810.1039/c3cc43133a 23842864
    [Google Scholar]
  89. MaganoJ. DunetzJ.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals.Chem. Rev.201111132177225010.1021/cr100346g 21391570
    [Google Scholar]
  90. SonogashiraK. TohdaY. HagiharaN. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines.Tetrahedron Lett.197516504467447010.1016/S0040‑4039(00)91094‑3
    [Google Scholar]
  91. DieckH.A. HeckF.R. Palladium catalyzed synthesis of aryl, heterocyclic and vinylic acetylene derivatives.J. Organomet. Chem.197593225926310.1016/S0022‑328X(00)94049‑X
    [Google Scholar]
  92. CassarL. Synthesis of aryl- and vinyl-substituted acetylene derivatives by the use of nickel and palladium complexes.J. Organomet. Chem.197593225325710.1016/S0022‑328X(00)94048‑8
    [Google Scholar]
  93. GlaserC. Beiträge zur Kenntniss des Acetenylbenzols.Ber. Dtsch. Chem. Ges.18692142242410.1002/cber.186900201183
    [Google Scholar]
  94. HayA.S. Oxidative coupling of acetylenes. II1.J. Org. Chem.19622793320332110.1021/jo01056a511
    [Google Scholar]
  95. JinB. GallouF. ReillyJ. LipshutzB.H. ppm Pd-catalyzed, Cu-free Sonogashira couplings in water using commercially available catalyst precursors.Chem. Sci. 201910123481348510.1039/C8SC05618H 30996938
    [Google Scholar]
  96. JakobiM. GallouF. SparrC. ParmentierM. A general protocol for robust Sonogashira reactions in micellar medium.Helv. Chim. Acta20191023e190002410.1002/hlca.201900024
    [Google Scholar]
  97. GazvodaM. VirantM. PinterB. KošmrljJ. Mechanism of copper-free Sonogashira reaction operates through palladium-palladium transmetallation.Nat. Commun.201891481410.1038/s41467‑018‑07081‑5 30446654
    [Google Scholar]
  98. MartekB.A. GazvodaM. UrankarD. KošmrljJ. Designing homogeneous copper-free sonogashira reaction through a prism of Pd-Pd transmetalation.Org. Lett.202022134938494310.1021/acs.orglett.0c01227 32379458
    [Google Scholar]
  99. ShimizuI. YamadaT. TsujiJ. Palladium-catalyzed rearrangement of allylic esters of acetoacetic acid to give γ,δ-unsaturated methyl ketones.Tetrahedron Lett.198021333199320210.1016/S0040‑4039(00)77444‑2
    [Google Scholar]
  100. TsudaT. ChujoY. NishiS. TawaraK. SaegusaT. Facile generation of a reactive palladium(II) enolate intermediate by the decarboxylation of palladium(II). beta.-ketocarboxylate and its utilization in allylic acylation.J. Am. Chem. Soc.1980102206381638410.1021/ja00540a053
    [Google Scholar]
  101. TrostB. SchultzJ. Palladium-catalyzed asymmetric allylic alkylation strategies for the synthesis of acyclic tetrasubstituted stereocenters.Synthesis201951113010.1055/s‑0037‑1610386
    [Google Scholar]
  102. CusumanoA.Q. StoltzB.M. GoddardW.A. III Reaction mechanism, origins of enantioselectivity, and reactivity trends in asymmetric allylic alkylation: A comprehensive quantum mechanics investigation of a C(sp3)-C(sp3) cross-coupling.J. Am. Chem. Soc.202014232139171393310.1021/jacs.0c06243 32640162
    [Google Scholar]
  103. BehennaD.C. StoltzB.M. The enantioselective Tsuji allylation.J. Am. Chem. Soc.200412646150441504510.1021/ja044812x 15547998
    [Google Scholar]
  104. LiuJ. MishraS. AponickA. Enol acetates: Versatile substrates for the enantioselective intermolecular Tsuji allylation.J. Am. Chem. Soc.201814047161521615810.1021/jacs.8b08746 30392366
    [Google Scholar]
  105. AhlstenN. BartoszewiczA. Martín-MatuteB. Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes.Dalton Trans.20124161660167010.1039/c1dt11678a 22214981
    [Google Scholar]
  106. Masson-MakdissiJ. JangY.J. PrietoL. TaylorM.S. LautensM. Rhodium-catalyzed tandem isomerization-allylation: From diallyl carbonates to α-quaternary aldehydes.ACS Catal.2019912118081181210.1021/acscatal.9b04128
    [Google Scholar]
  107. Masson-MakdissiJ. ChingJ. ReidC.M. LautensM. Pd/Rh dual catalysis: Tandem isomerization-allylation to access α-quaternary carbonyl compounds.ACS Catal.20221224151301513410.1021/acscatal.2c04818
    [Google Scholar]
  108. AlbericoD. ScottM.E. LautensM. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation.Chem. Rev.2007107117423810.1021/cr0509760 17212475
    [Google Scholar]
  109. SimonettiM. CannasD.M. LarrosaI. Biaryl synthesis via C-H bond activation: Strategies and methods. Advances in Organometallic Chemistry; Academic Press,20176729939910.1016/bs.adomc.2017.03.002
    [Google Scholar]
  110. HeM. SouléJ.F. DoucetH. Synthesis of (Poly)fluorobiphenyls through metal‐catalyzed C-H bond activation/arylation of (Poly)fluorobenzene derivatives.ChemCatChem2014671824185910.1002/cctc.201402020
    [Google Scholar]
  111. BatuecasM. LuoJ. GergelitsováI. KrämerK. WhitakerD. Vitorica-YrezabalI.J. LarrosaI. Catalytic asymmetric C-H arylation of (η6-arene) chromium complexes: facile access to planar-chiral phosphines.ACS Catal.2019965268527810.1021/acscatal.9b00918 32064145
    [Google Scholar]
  112. HfaiedhA. Ben AmmarH. SouléJ.F. DoucetH. Palladium-catalyzed regioselective C-H bond arylations at the C3 position of ortho-substituted fluorobenzenes.Org. Biomol. Chem.201715357447745510.1039/C7OB01689A 28837201
    [Google Scholar]
  113. LeeS.Y. HartwigJ.F. Palladium-catalyzed, site-selective direct allylation of aryl C-H bonds by silver-mediated C-H activation: A synthetic and mechanistic investigation.J. Am. Chem. Soc.201613846152781528410.1021/jacs.6b10220 27797512
    [Google Scholar]
  114. Tlahuext-AcaA. LeeS.Y. SakamotoS. HartwigJ.F. Direct arylation of simple arenes with aryl bromides by synergistic silver and palladium catalysis.ACS Catal.20211131430143410.1021/acscatal.0c05254 34790433
    [Google Scholar]
  115. HashmiA.S.K. LothschützC. DöppR. RudolphM. RamamurthiT.D. RomingerF. Gold and palladium combined for cross-coupling.Angew. Chem. Int. Ed.200948448243824610.1002/anie.200902942 19790218
    [Google Scholar]
  116. HashmiA.S.K. DöppR. LothschützC. RudolphM. RiedelD. RomingerF. Scope and limitations of palladium-catalyzed cross-coupling reactions with organogold compounds.Adv. Synth. Catal.201035281307131410.1002/adsc.201000159
    [Google Scholar]
  117. HashmiA.S.K. LothschützC. DöppR. AckermannM. De Buck BeckerJ. RudolphM. ScholzC. RomingerF. On homogeneous gold/palladium catalytic systems.Adv. Synth. Catal.2012354113314710.1002/adsc.201000044
    [Google Scholar]
  118. ShiY. RothK.E. RamgrenS.D. BlumS.A. Catalyzed catalysis using carbophilic Lewis acidic gold and Lewis basic palladium: Synthesis of substituted butenolides and isocoumarins.J. Am. Chem. Soc.200913150180221802310.1021/ja9068497 19929002
    [Google Scholar]
  119. García-DomínguezP. NevadoC. Au-Pd bimetallic catalysis: The importance of anionic ligands in catalyst speciation.J. Am. Chem. Soc.2016138103266326910.1021/jacs.5b10277 26952216
    [Google Scholar]
  120. AlonsoJ.M. MuñozM.P. Heterobimetallic catalysis: Platinum‐gold‐catalyzed tandem cyclization/C-X coupling reaction of (hetero)arylallenes with nucleophiles.Angew. Chem. Int. Ed.201857174742474610.1002/anie.201800670 29493867
    [Google Scholar]
  121. WangD. CaiR. SharmaS. JirakJ. ThummanapelliS.K. AkhmedovN.G. ZhangH. LiuX. PetersenJ.L. ShiX. “Silver effect” in gold(I) catalysis: An overlooked important factor.J. Am. Chem. Soc.2012134219012901910.1021/ja303862z 22563621
    [Google Scholar]
  122. BayK.L. YangY.F. HoukK.N. Multiple roles of silver salts in palladium-catalyzed C-H activations.J. Organomet. Chem.2018864192510.1016/j.jorganchem.2017.12.026
    [Google Scholar]
  123. LotzM.D. CamassoN.M. CantyA.J. SanfordM.S. Role of silver salts in palladium-catalyzed arene and heteroarene C-H functionalization reactions.Organometallics201736116517110.1021/acs.organomet.6b00437
    [Google Scholar]
  124. WhitakerD. BurésJ. LarrosaI. Ag (I)-catalyzed C-H activation: The role of the Ag (I) salt in Pd/Ag-mediated C-H arylation of electron-deficient arenes.J. Am. Chem. Soc.2016138278384838710.1021/jacs.6b04726 27303956
    [Google Scholar]
  125. CambeiroX.C. AhlstenN. LarrosaI. Au-catalyzed cross-coupling of arenes via double C-H activation.J. Am. Chem. Soc.201513750156361563910.1021/jacs.5b10593 26645996
    [Google Scholar]
  126. LuP. BoormanT.C. SlawinA.M.Z. LarrosaI. Gold(I)-mediated C-H activation of arenes.J. Am. Chem. Soc.2010132165580558110.1021/ja101525w 20364835
    [Google Scholar]
  127. HowlettA.C. BarthF. BonnerT.I. CabralG. CasellasP. DevaneW.A. FelderC.C. HerkenhamM. MackieK. MartinB.R. MechoulamR. PertweeR.G. International union of pharmacology. XXVII. Classification of cannabinoid receptors.Pharmacol. Rev.200254216120210.1124/pr.54.2.161 12037135
    [Google Scholar]
  128. LiW. YuanD. WangG. ZhaoY. XieJ. LiS. ZhuC. Cooperative Au/Ag dual-catalyzed cross-dehydrogenative biaryl coupling: Reaction development and mechanistic insight.J. Am. Chem. Soc.201914173187319710.1021/jacs.8b12929 30681846
    [Google Scholar]
  129. WangC. XiaoG. GuoT. DingY. WuX. LohT.P. Palladium-catalyzed regiocontrollable reductive Heck reaction of unactivated aliphatic alkenes.J. Am. Chem. Soc.2018140309332933610.1021/jacs.8b03619 29925236
    [Google Scholar]
  130. RejS. ChataniN. Rhodium(I)-catalyzed c8-alkylation of 1-naphthylamide derivatives with alkenes through a bidentate picolinamide chelation system.ACS Catal.2018876699670610.1021/acscatal.8b01675
    [Google Scholar]
  131. KindtS. WichtK. HeinrichM.R. Thermisch induzierte carbohydroxylierung von styrolen mit aryldiazoniumsalzen.Angew. Chem.2016128308886888910.1002/ange.201601656
    [Google Scholar]
  132. DauthA. LoveJ.A. Strategy towards olefin carbohydroxylation: Transmetalation of 2-rhodaoxetanes with organoboron nucleophiles.Angew. Chem. Int. Ed.201049489219922410.1002/anie.201003348 20967909
    [Google Scholar]
  133. AhmedW. ZhangS. YuX. FengX. YamamotoY. BaoM. Direct carbohydroxylation of arylalkenes with allylic alcohols: Cooperative catalysis of copper, silver, and a Brønsted acid.Angew. Chem. Int. Ed.20195882495249910.1002/anie.201813148 30600884
    [Google Scholar]
  134. KendeA.S. LiuK. Jos BrandsK.M. Total synthesis of (-)-altemicidin: A novel exploitation of the potier-polonovski rearrangement.J. Am. Chem. Soc.199511742105971059810.1021/ja00147a032
    [Google Scholar]
  135. SoloshonokV.A. IzawaK. Eds. Asymmetric synthesis and application of α-amino acids.American Chemical Society2009
    [Google Scholar]
  136. WeiL. ZhuQ. XuS.M. ChangX. WangC.J. Stereodivergent synthesis of α,α-disubstituted α-amino acids via synergistic Cu/Ir catalysis.J. Am. Chem. Soc.201814041508151310.1021/jacs.7b12174 29303578
    [Google Scholar]
  137. ZhuB.K. XuH. XiaoL. ChangX. WeiL. TengH. DangY. DongX.Q. WangC.J. Enantio- and diastereodivergent synthesis of fused indolizines enabled by synergistic Cu/Ir catalysis.Chem. Sci. 202314154134414210.1039/D3SC00118K 37063803
    [Google Scholar]
  138. LiJ. ZhangS. ZouH. One-pot chemoselective domino condensation to form a fused pyrrolo-pyrazino-indolizine framework: Discovery of novel AIE molecules.Org. Chem. Front.20207101218122310.1039/D0QO00274G
    [Google Scholar]
  139. RatmanovaN.K. AndreevI.A. LeontievA.V. MomotovaD. NovoselovA.M. IvanovaO.A. TrushkovI.V. Strategic approaches to the synthesis of pyrrolizidine and indolizidine alkaloids.Tetrahedron2020761413103110.1016/j.tet.2020.131031
    [Google Scholar]
  140. SinghG.S. MmatliE.E. Recent progress in synthesis and bioactivity studies of indolizines.Eur. J. Med. Chem.201146115237525710.1016/j.ejmech.2011.08.042 21937153
    [Google Scholar]
  141. ZhangD. SuZ. HeQ. WuZ. ZhouY. PanC. LiuX. FengX. Diversified transformations of tetrahydroindolizines to construct chiral 3-arylindolizines and dicarbofunctionalized 1,5-diketones.J. Am. Chem. Soc.202014237159751598510.1021/jacs.0c07066 32816475
    [Google Scholar]
  142. TianK. ChangX. XiaoL. DongX.Q. WangC.J. Stereodivergent synthesis of α-fluoro α-azaaryl γ-butyrolactones via cooperative copper and iridium catalysis.Fundam. Res.202441778510.1016/j.fmre.2022.07.008 38933830
    [Google Scholar]
  143. NaušP. CaletkováO. KonečnýP. DžubákP. BogdanováK. KolářM. VrbkováJ. SlavětínskáL. Tloušt’ováE. PerlíkováP. HajdúchM. HocekM. Synthesis, cytostatic, antimicrobial, and anti-HCV activity of 6-substituted 7-(het)aryl-7-deazapurine ribonucleosides.J. Med. Chem.20145731097111010.1021/jm4018948 24397620
    [Google Scholar]
  144. LiQ. PersoonsL. DaelemansD. HerdewijnP. Iron/Copper co-catalyzed cross-coupling reaction for the synthesis of 6-substituted 7-deazapurines and the corresponding nucleosides.J. Org. Chem.202085240341810.1021/acs.joc.9b02414 31858795
    [Google Scholar]
  145. LoveringF. Escape from flatland 2: Complexity and promiscuity.MedChemComm20134351551910.1039/c2md20347b
    [Google Scholar]
  146. SomeyaH. YorimitsuH. OshimaK. Silver-catalyzed cross-coupling reactions of alkyl bromides with alkyl or aryl Grignard reagents.Tetrahedron Lett.200950263270327210.1016/j.tetlet.2009.02.040
    [Google Scholar]
  147. DevasagayarajA. StüdemannT. KnochelP. A new nickel-catalyzed cross-coupling reaction between sp3 carbon centers.Angew. Chem. Int. Ed. Engl.19963423-242723272510.1002/anie.199527231
    [Google Scholar]
  148. TeraoJ. TodoH. BegumS.A. KuniyasuH. KambeN. Copper-catalyzed cross-coupling reaction of grignard reagents with primary-alkyl halides: Remarkable effect of 1-phenylpropyne.Angew. Chem. Int. Ed.200746122086208910.1002/anie.200603451 17278171
    [Google Scholar]
  149. DongolK.G. KohH. SauM. ChaiC.L.L. Iron-catalysed sp3-sp3 cross-coupling reactions of unactivated alkyl halides with alkyl grignard reagents.Adv. Synth. Catal.200734971015101810.1002/adsc.200600383
    [Google Scholar]
  150. KambeN. IwasakiT. TakagawaH. OkamotoK. SinghS. KuniyasuH. The cobalt-catalyzed cross-coupling reaction of alkyl halides with alkyl Grignard reagents: A new route to constructing quaternary carbon centers.Synthesis201446121583159210.1055/s‑0033‑1341152
    [Google Scholar]
  151. KlementI. KnochelP. ChauK. CahiezG. Preparation of alkylzinc bromides using a new Mn/Cu catalyzed bromine-zinc exchange reaction.Tetrahedron Lett.19943581177118010.1016/0040‑4039(94)88017‑4
    [Google Scholar]
  152. YuX. YangT. WangS. XuH. GongH. Nickel-catalyzed reductive cross-coupling of unactivated alkyl halides.Org. Lett.20111382138214110.1021/ol200617f 21434609
    [Google Scholar]
  153. YanX.B. LiC.L. JinW.J. GuoP. ShuX.Z. Reductive coupling of benzyl oxalates with highly functionalized alkyl bromides by nickel catalysis.Chem. Sci. 20189194529453410.1039/C8SC00609A 29896396
    [Google Scholar]
  154. KomeyamaK. MichiyukiT. OsakaI. Nickel/cobalt-catalyzed C(sp3)-C(sp3) cross-coupling of alkyl halides with alkyl tosylates.ACS Catal.20199109285929110.1021/acscatal.9b03352
    [Google Scholar]
  155. GasparB. CarreiraE.M. Mild cobalt-catalyzed hydrocyanation of olefins with tosyl cyanide.Angew. Chem. Int. Ed.200746244519452210.1002/anie.200700575 17479996
    [Google Scholar]
  156. LeggansE.K. BarkerT.J. DuncanK.K. BogerD.L. Iron(III)/NaBH4-mediated additions to unactivated alkenes: Synthesis of novel 20′-vinblastine analogues.Org. Lett.20121461428143110.1021/ol300173v 22369097
    [Google Scholar]
  157. GreenS.A. Vásquez-CéspedesS. ShenviR.A. Iron-nickel dual-catalysis: A new engine for olefin functionalization and the formation of quaternary centers.J. Am. Chem. Soc.201814036113171132410.1021/jacs.8b05868 30048124
    [Google Scholar]
  158. GreenS.A. MatosJ.L.M. YagiA. ShenviR.A. Branch-selective hydroarylation: Iodoarene-olefin cross-coupling.J. Am. Chem. Soc.201613839127791278210.1021/jacs.6b08507 27623023
    [Google Scholar]
  159. GreenS.A. HuffmanT.R. McCourtR.O. van der PuylV. ShenviR.A. Hydroalkylation of olefins to form quaternary carbons.J. Am. Chem. Soc.2019141197709771410.1021/jacs.9b02844 31030508
    [Google Scholar]
/content/journals/coc/10.2174/0113852728326733240829074825
Loading
/content/journals/coc/10.2174/0113852728326733240829074825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test