Skip to content
2000
Volume 29, Issue 8
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Hydrazides, derivatives of hydrazine, are widely used in pharmaceuticals, polymers, dyes, herbicides, and as chemical preservatives. A notable application is in synthesizing 1,3,4-oxadiazole, an important aromatic compound with a five-membered heterocyclic ring containing two nitrogen atoms and one oxygen atom. Among the four oxadiazole isomers, 1,3,4-oxadiazole is the most significant, used in drug discovery, pharmaceuticals, and dyes. It is synthesized from various substituted hydrazides or hydrazones using reagents like copper, cobalt, cerium, phosphorus oxychloride, mercury oxide, potassium iodide, triflic anhydride, and carbon disulfide. This study reviews the synthesis methods of 1,3,4-oxadiazole, highlighting the advantages and disadvantages of different catalysts and conditions, providing useful insights for researchers.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728327072240816065351
2024-09-09
2025-05-04
Loading full text...

Full text loading...

References

  1. FerreiraL.M. WeissJ.P. LambachM. Disparities and conceptual connections regarding the concept of substance in general chemistry textbook glossaries.Found. Chem.202224217118710.1007/s10698‑022‑09425‑y
    [Google Scholar]
  2. PopiołekŁ. Hydrazide–hydrazones as potential antimicrobial agents: Overview of the literature since 2010.Med. Chem. Res.201726228730110.1007/s00044‑016‑1756‑y 28163562
    [Google Scholar]
  3. RagavendranJ.V. SriramD. PatelS.K. ReddyI.V. BharathwajanN. StablesJ. YogeeswariP. Design and synthesis of anticonvulsants from a combined phthalimide–GABA–anilide and hydrazone pharmacophore.Eur. J. Med. Chem.200742214615110.1016/j.ejmech.2006.08.010 17011080
    [Google Scholar]
  4. GürsoyE. GüzeldemirciN.U. Synthesis and primary cytotoxicity evaluation of new imidazo[2,1-b]thiazole derivatives.Eur. J. Med. Chem.200742332032610.1016/j.ejmech.2006.10.012 17145120
    [Google Scholar]
  5. MasunariA. TavaresL.C. A new class of nifuroxazide analogues: Synthesis of 5-nitrothiophene derivatives with antimicrobial activity against multidrug-resistant Staphylococcus aureus.Bioorg. Med. Chem.200715124229423610.1016/j.bmc.2007.03.068 17419064
    [Google Scholar]
  6. BoddapatiS.M. Synthesis of 2-aryl-5-(aryl sulfonyl)-1,3,4-oxadiazoles as potent antibacterial and antioxidant agents.Turk. J. Chem.202246376677610.55730/1300‑0527.3366 37720609
    [Google Scholar]
  7. KüçükgüzelS.G. MaziA. SahinF. ÖztürkS. StablesJ. Synthesis and biological activities of diflunisal hydrazide–hydrazones.Eur. J. Med. Chem.20033811-121005101310.1016/j.ejmech.2003.08.004 14642333
    [Google Scholar]
  8. ViciniP. ZaniF. CozziniP. DoytchinovaI. Hydrazones of 1,2-benzisothiazole hydrazides: Synthesis, antimicrobial activity and QSAR investigations.Eur. J. Med. Chem.200237755356410.1016/S0223‑5234(02)01378‑8 12126774
    [Google Scholar]
  9. GemmaS. KukrejaG. FattorussoC. PersicoM. RomanoM.P. AltarelliM. SaviniL. CampianiG. FattorussoE. BasilicoN. TaramelliD. YardleyV. ButiniS. Synthesis of N1-arylidene-N2-quinolyl- and N2-acrydinylhydrazones as potent antimalarial agents active against CQ-resistant P. falciparum strains.Bioorg. Med. Chem. Lett.200616205384538810.1016/j.bmcl.2006.07.060 16890433
    [Google Scholar]
  10. SadeekG.T. SaeedZ.F. SalehM.Y. Synthesis and pharmacological profile of hydrazide compounds.Res. J. Pharm. Technol.202316297598210.52711/0974‑360X.2023.00163
    [Google Scholar]
  11. ZhaoS. ChenK. ZhangL. YangW. HuangD. Sulfonyl hydrazides in organic synthesis: A review of recent studies.Adv. Synth. Catal.2020362173516354110.1002/adsc.202000466
    [Google Scholar]
  12. YunusovaS.N. BolotinD.S. VovkM.A. TolstoyP.M. KukushkinV.Y. Tetrabromomethane as an organic catalyst: A kinetic study of CBr4‐catalyzed schiff condensation.Eur. J. Org. Chem.20202020436763676910.1002/ejoc.202001180
    [Google Scholar]
  13. JhunB.W. KohW.J. Treatment of isoniazid-resistant pulmonary tuberculosis.Tuberc. Respir. Dis. (Seoul)2020831203010.4046/trd.2019.0065 31905429
    [Google Scholar]
  14. RossJ.M. BadjeA. RangakaM.X. WalkerA.S. ShapiroA.E. ThomasK.K. AnglaretX. EholieS. GabillardD. BoulleA. MaartensG. WilkinsonR.J. FordN. GolubJ.E. WilliamsB.G. BarnabasR.V. Isoniazid preventive therapy plus antiretroviral therapy for the prevention of tuberculosis: A systematic review and meta-analysis of individual participant data.Lancet HIV202181e8e1510.1016/S2352‑3018(20)30299‑X 33387480
    [Google Scholar]
  15. MajumdarP. PatiA. PatraM. BeheraR.K. BeheraA.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings.Chem. Rev.201411452942297710.1021/cr300122t 24506477
    [Google Scholar]
  16. WarnicaJ.M. GleasonJ.L. Mimicking enzymatic cation–π interactions in hydrazide catalyst design: Access to trans -decalin frameworks.Chem. Commun. (Camb.)20235970104961049910.1039/D3CC03351A 37559565
    [Google Scholar]
  17. FarnungJ. TolmachovaK.A. BodeJ.W. Installation of electrophiles onto the C-terminus of recombinant ubiquitin and ubiquitin-like proteins.Chem. Sci. (Camb.)202214112112910.1039/D2SC04279G 36605735
    [Google Scholar]
  18. BahriF. ShadiM. MohammadianR. JavanbakhtS. ShaabaniA. Cu-decorated cellulose through a three-component Betti reaction: An efficient catalytic system for the synthesis of 1,3,4-oxadiazoles via imine C H functionalization of N-acylhydrazones.Carbohydr. Polym.202126511806710.1016/j.carbpol.2021.118067 33966831
    [Google Scholar]
  19. RadushevA.V. GusevV.Y. ChekanovaL.G. Perspectives of application of carbon acid hydrazides as multifunctional reagents in hydrometallurgy.
    [Google Scholar]
  20. LuczynskiM. KudelkoA. Synthesis and biological activity of 1, 3, 4-oxadiazoles used in medicine and agriculture.Appl. Sci. (Basel)2022128375610.3390/app12083756
    [Google Scholar]
  21. KumarK.A. JayaroopaP. KumarG.V. Comprehensive review on the chemistry of 1, 3, 4-oxadiazoles and their applications.Int. J. Chemtech Res.20124417821791
    [Google Scholar]
  22. Alburquerque-GonzálezB. Bernabé-GarcíaÁ. Bernabé-GarcíaM. Ruiz-SanzJ. López-CalderónF.F. GonnelliL. BanciL. Peña-GarcíaJ. LuqueI. NicolásF.J. Cayuela-FuentesM.L. LuchinatE. Pérez-SánchezH. Montoro-GarcíaS. Conesa-ZamoraP. The FDA-approved antiviral raltegravir inhibits fascin1-dependent invasion of colorectal tumor cells in vitro and in vivo.Cancers (Basel)202113486110.3390/cancers13040861 33670655
    [Google Scholar]
  23. WangY. ZhangH. ShenW. HeP. ZhouZ. Effectiveness and tolerability of targeted drugs for the treatment of metastatic castration-resistant prostate cancer: A network meta-analysis of randomized controlled trials.J. Cancer Res. Clin. Oncol.201814491751176810.1007/s00432‑018‑2664‑y 29797220
    [Google Scholar]
  24. SiwachA. VermaP.K. Therapeutic potential of oxadiazole or furadiazole containing compounds.BMC Chem.20201417010.1186/s13065‑020‑00721‑2 33372629
    [Google Scholar]
  25. NagarajC.K. NiranjanM.S. KiranS. 1, 3, 4-Oxadiazole: A potent drug candidate with various pharmacological activities.Int. J. Pharm. Pharm. Sci.201133916
    [Google Scholar]
  26. SalahuddinM.A. MazumderA. YarM.S. MazumderR. ChakraborthyG.S. AhsanM.J. RahmanM.U. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review.Synth. Commun.201747201805184710.1080/00397911.2017.1360911
    [Google Scholar]
  27. AhsanM.J. SamyJ.G. KhalilullahH. NomaniM.S. SaraswatP. GaurR. SinghA. Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents.Bioorg. Med. Chem. Lett.201121247246725010.1016/j.bmcl.2011.10.057 22071303
    [Google Scholar]
  28. SharmaD. Salahuddin SharmaV. KumarR. JoshiS. KumariS. SaxenaS. MazumderA. YarM.S. AhsanM.J. 1, 3, 4-oxadiazoles as potential pharmacophore for cytotoxic potentiality: A comprehensive review.Curr. Top. Med. Chem.202121151377139710.2174/1568026621666210612031144
    [Google Scholar]
  29. AkhterM. HusainA. AzadB. AjmalM. Aroylpropionic acid based 2,5-disubstituted-1,3,4-oxadiazoles: Synthesis and their anti-inflammatory and analgesic activities.Eur. J. Med. Chem.20094462372237810.1016/j.ejmech.2008.09.005 18977556
    [Google Scholar]
  30. ChenH. LiZ. HanY. Synthesis and Fungicidal Activity against Rhizoctonia s olani of 2-Alkyl (Alkylthio)-5-pyrazolyl-1,3,4-oxadiazoles (Thiadiazoles).J. Agric. Food Chem.200048115312531510.1021/jf991065s 11087478
    [Google Scholar]
  31. BanikB.K. SahooB.M. KumarB.V.V.R. PandaK.C. JenaJ. MahapatraM.K. BorahP. Green synthetic approach: An efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives.Molecules2021264116310.3390/molecules26041163 33671751
    [Google Scholar]
  32. AinsworthC. 1,3,4-oxadiazole.J. Am. Chem. Soc.196587245800580110.1021/ja00952a056
    [Google Scholar]
  33. KumarR. AbdullahM.M. Synthesis, characterization and anticonvulsant potential of 2, 5-disubstituted 1, 3, 4-oxadiazole analogues.Asian J. Chem.20193161389139710.14233/ajchem.2019.22061
    [Google Scholar]
  34. KudelkoA. JasiakK. EjsmontK. Study on the synthesis of novel 5-substituted 2-[2-(pyridyl)ethenyl]-1,3,4-oxadiazoles and their acid–base interactions.Monatsh. Chem.2015146230331110.1007/s00706‑014‑1355‑x 26166897
    [Google Scholar]
  35. JavanbakhtS. ShaabaniA. Carboxymethyl cellulose-based oral delivery systems.Int. J. Biol. Macromol.2019133212910.1016/j.ijbiomac.2019.04.079 30986470
    [Google Scholar]
  36. NikoorazmM. TahmasbiB. GholamiS. MoradiP. Copper and nickel immobilized on cytosine@MCM‐41: As highly efficient, reusable and organic–inorganic hybrid nanocatalysts for the homoselective synthesis of tetrazoles and pyranopyrazoles.Appl. Organomet. Chem.20203411e591910.1002/aoc.5919
    [Google Scholar]
  37. ClimentM.J. CormaA. IborraS. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals.Chem. Rev.201111121072113310.1021/cr1002084 21105733
    [Google Scholar]
  38. GuinS. GhoshT. RoutS.K. BanerjeeA. PatelB.K. Cu(II) catalyzed imine C-H functionalization leading to synthesis of 2,5-substituted 1,3,4-oxadiazoles.Org. Lett.201113225976597910.1021/ol202409r 22007797
    [Google Scholar]
  39. LiJ.L. LiH.Y. ZhangS.S. ShenS. YangX.L. NiuX. Photoredox/cobalt-catalyzed cascade oxidative synthesis of 2,5-disubstituted 1,3,4-oxadiazoles under oxidant-free conditions.J. Org. Chem.20238821148741488610.1021/acs.joc.3c01078 37862710
    [Google Scholar]
  40. JabbariA. MoradiP. TahmasbiB. Synthesis of tetrazoles catalyzed by a new and recoverable nanocatalyst of cobalt on modified boehmite NPs with 1,3-bis(pyridin-3-ylmethyl)thiourea.RSC Advances202313138890890010.1039/D2RA07510E 36936843
    [Google Scholar]
  41. PototschnigG. MaulideN. SchnürchM. Direct functionalization of C− H bonds by iron, nickel, and cobalt catalysis.Chemistry201723399206923210.1002/chem.201605657 28590552
    [Google Scholar]
  42. SinghP. SharmaP. SharmaJ. UpadhyayA. KumarN. Synthesis and evaluation of substituted diphenyl-1,3,4-oxadiazole derivatives for central nervous system depressant activity.Org. Med. Chem. Lett.201221810.1186/2191‑2858‑2‑8 22380426
    [Google Scholar]
  43. WangP.Y. ZhouL. ZhouJ. WuZ.B. XueW. SongB.A. YangS. Synthesis and antibacterial activity of pyridinium-tailored 2,5-substituted-1,3,4-oxadiazole thioether/sulfoxide/sulfone derivatives.Bioorg. Med. Chem. Lett.20162641214121710.1016/j.bmcl.2016.01.029 26810264
    [Google Scholar]
  44. XuG.Q. XuP.F. Visible light organic photoredox catalytic cascade reactions.Chem. Commun. (Camb.)20215796129141293510.1039/D1CC04883J 34782893
    [Google Scholar]
  45. BalgotraS. VermaP.K. VishwakarmaR.A. SawantS.D. Catalytic advances in direct functionalizations using arylated hydrazines as the building blocks.Catal. Rev., Sci. Eng.202062340647910.1080/01614940.2019.1702191
    [Google Scholar]
  46. MalojiraoV.H. GirimanchanaikaS.S. ShanmugamM.K. SherapuraA. Dukanya MetriP.K. VigneshwaranV. ChinnathambiA. AlharbiS.A. RangappaS. MohanC.D. Basappa, PrabhakarB.T. RangappaK.S. Novel 1, 3, 4-oxadiazole targets STAT3 signaling to induce antitumor effect in lung cancer.Biomedicines20208936810.3390/biomedicines8090368 32967366
    [Google Scholar]
  47. NingegowdaR. ChandrashekharappaS. SinghV. MohanlallV. VenugopalaK.N. Design, synthesis and characterization of novel 2-(2, 3-dichlorophenyl)-5-aryl-1,3,4-oxadiazole derivatives for their anti-tubercular activity against Mycobacterium tuberculosis.Chem. Data Collect.20202810043110.1016/j.cdc.2020.100431
    [Google Scholar]
  48. BettenhausenJ. StrohrieglP. Efficient synthesis of starburst oxadiazole compounds.Adv. Mater.19968650751010.1002/adma.19960080612
    [Google Scholar]
  49. PoonamB.G. Oxadiazoles: Moiety to synthesis and utilize.J. Iranian Chem. Soc.20221923113
    [Google Scholar]
  50. HusainA. AjmalM. Synthesis of novel 1,3,4-oxadiazole derivatives and their biological properties.Acta Pharm.200959222323310.2478/v10007‑009‑0011‑1 19564146
    [Google Scholar]
  51. LongZ.Q. YangL.L. ZhangJ.R. LiuS.T. Jiao Xie WangP.Y. ZhuJ.J. ShaoW.B. LiuL.W. YangS. Fabrication of versatile pyrazole hydrazide derivatives bearing a 1, 3, 4-oxadiazole core as multipurpose agricultural chemicals against plant fungal, oomycete, and bacterial diseases.J. Agric. Food Chem.202169308380839310.1021/acs.jafc.1c02460 34296859
    [Google Scholar]
  52. GalgeR. RajuA. DeganiM.S. ThoratB.N. Synthesis and in vitro antimicrobial activity of 1,3,4‐oxadiazole‐2‐thiol and its analogs.J. Heterocycl. Chem.201552235235710.1002/jhet.2042
    [Google Scholar]
  53. BaddiL. OuzeblaD. El MansouriA.E. SmietanaM. VasseurJ.J. LazrekH.B. Efficient one-pot, three-component procedure to prepare new α-aminophosphonate and phosphonic acid acyclic nucleosides.Nucleosides Nucleotides Nucleic Acids2021401436710.1080/15257770.2020.1826516 33030107
    [Google Scholar]
  54. EL MansouriA. OubellaA. MehdiA. AitIttoM.Y. ZahouilyM. MorjaniH. LazrekH.B. Design, synthesis, biological evaluation and molecular docking of new 1,3,4-oxadiazole homonucleosides and their double-headed analogs as antitumor agents.Bioorg. Chem.202110810455810.1016/j.bioorg.2020.104558 33358270
    [Google Scholar]
  55. Wet-osotS. PhakhodeeW. PattarawarapanM. Application of N-acylbenzotriazoles in the synthesis of 5-substituted 2-ethoxy-1,3,4-oxadiazoles as building blocks toward 3, 5-disubstituted 1, 3, 4-oxadiazol-2 (3 H)-ones.J. Org. Chem.201782189923992910.1021/acs.joc.7b01863 28862855
    [Google Scholar]
  56. BhatK.I. SufeeraK. Chaitanya Sunil KumarP. Synthesis, characterization and biological activity studies of 1,3,4-oxadiazole analogs.J. Young Pharm.20113431031410.4103/0975‑1483.90243 22224038
    [Google Scholar]
  57. SumranG. RaniC. AggarwalR. Efficient synthesis of new oxadiazole-thiazole hybrids using (diacetoxyiodo) benzene. Indian J. Chem.-.Sec. B20205918592
    [Google Scholar]
  58. JasiakK. KudelkoA. ZielińskiW. KuźnikbN. Study on DDQ-promoted synthesis of 2,5-disubstituted 1,3,4-oxadiazoles from acid hydrazides and aldehydes.ARKIVOC201620172668
    [Google Scholar]
  59. AmirM. KumarS. Synthesis and evaluation of anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation properties of ibuprofen derivatives.Acta Pharm.2007571314510.2478/v10007‑007‑0003‑y 19839405
    [Google Scholar]
  60. SharmaJ. Development of new hypervalent iodine mediated reaction methodologies for cleavage of alkenes and synthesis of 1,2,4-oxadiazoles.United StatesSouthern Illinois University at Carbondale2014
    [Google Scholar]
  61. GuinS. RoutS.K. GhoshT. KhatunN. PatelB.K. A one pot synthesis of 1,3,4-oxadiazoles mediated by molecular iodine.RSC Advances2012283180318310.1039/c2ra00044j
    [Google Scholar]
  62. Zabiulla; Nagesh Khadri, M.J.; Bushra Begum, A.; Sunil, M.K.; Khanum, S.A. Synthesis, docking and biological evaluation of thiadiazole and oxadiazole derivatives as antimicrobial and antioxidant agents.Results Chem.2020210004510.1016/j.rechem.2020.100045
    [Google Scholar]
  63. BaykovS.V. ShetnevA.A. SemenovA.V. BaykovaS.O. BoyarskiyV.P. Room temperature synthesis of bioactive 1, 2, 4-oxadiazoles.Int. J. Mol. Sci.2023246540610.3390/ijms24065406 36982481
    [Google Scholar]
  64. JakopinZ. DolencM. Recent Advances in the Synthesis of 1,2,4- and 1,3,4-oxadiazoles.Curr. Org. Chem.2008121085089810.2174/138527208784911860
    [Google Scholar]
  65. NarellaS.G. ShaikM.G. MohammedA. AlvalaM. AngeliA. SupuranC.T. Synthesis and biological evaluation of coumarin-1,3,4-oxadiazole hybrids as selective carbonic anhydrase IX and XII inhibitors.Bioorg. Chem.20198776577210.1016/j.bioorg.2019.04.004 30974299
    [Google Scholar]
  66. JwaidM.M. AliK.F. Abd-alwahabM.H. Synthesis, antibacterial study and ADME evaluation of novel isonicotinoyl hydrazide derivative containing 1, 3, 4-oxadiazole moiety.AJpS20202020113772
    [Google Scholar]
  67. SahooB. DindaS. KumarB.V.V. PandaJ. BrahmkshatriyaP. S Brahmkshatriya P. Design, green synthesis, and anti-inflammatory activity of schiff base of 1, 3, 4-oxadiazole analogues.Lett. Drug Des. Discov.2013111828910.2174/15701808113109990041
    [Google Scholar]
  68. GongY.D. LeeT. Combinatorial syntheses of five-membered ring heterocycles using carbon disulfide and a solid support.J. Comb. Chem.201012439340910.1021/cc100049u 20533849
    [Google Scholar]
  69. KadagathurM. ShaikhA.S. JadhavG.S. SigalapalliD.K. ShankaraiahN. TangellamudiN.D. Cyclodesulfurization: An enabling protocol for synthesis of various heterocycles.ChemistrySelect20216102621264010.1002/slct.202100201
    [Google Scholar]
  70. IlangovanA. SaravanakumarS. UmeshS. T3P as an efficient cyclodehydration reagent for the one-pot synthesis of 2-amino-1,3,4-oxadiazoles.J. Chem. Sci.2015127579780110.1007/s12039‑015‑0834‑x
    [Google Scholar]
  71. QuadrelliP. CaramellaP. Synthesis and synthetic applications of 1, 2, 4-oxadiazole-4-oxides.Curr. Org. Chem.2007111195998610.2174/138527207781058745
    [Google Scholar]
  72. KumarS. Synthesis and biological activity of 5-substituted-2-amino-1,3,4-oxadiazole derivatives.Turk. J. Chem.20113519910810.3906/kim‑0908‑177
    [Google Scholar]
  73. ParameshwaraiahS. XiZ. RavishA. MohanA. ShankarnaikV. DukanyaD. BasappaS. PreethamH. PeriyasamyG. GaonkarS. LobieP. PandeyV. BasappaB. Development of an environment-friendly and electrochemical method for the synthesis of an oxadiazole drug-scaffold that targets poly(ADP-ribose)polymerase in human breast cancer cells.Catalysts2023138118510.3390/catal13081185
    [Google Scholar]
  74. YoshidaJ. Organic electrochemistry, microreactors, and their synergy.Electrochem. Soc. Interface2009182404510.1149/2.F05092IF
    [Google Scholar]
  75. FangT. TanQ. DingZ. LiuB. XuB. Pd-catalyzed oxidative annulation of hydrazides with isocyanides: Synthesis of 2-amino-1,3,4-oxadiazoles.Org. Lett.20141692342234510.1021/ol5006449 24725151
    [Google Scholar]
  76. BakareS.P. PatilM. Palladium catalyzed direct C–H arylation of 1,3,4-oxadiazole using ligand combination approach.Tetrahedron202415513388510.1016/j.tet.2024.133885
    [Google Scholar]
  77. PaunA. HadadeN.D. ParaschivescuC.C. MatacheM. 1,3,4-Oxadiazoles as luminescent materials for organic light emitting diodes via cross-coupling reactions.J. Mater. Chem. C Mater. Opt. Electron. Devices20164378596861010.1039/C6TC03003C
    [Google Scholar]
  78. GorjizadehM. AfshariM. NazariS. Afshari M, NAzARI SI. Microwave-assisted one-step synthesis of 2, 5-disubstituted-1, 3, 4-oxadiazoles using 1, 4-bis (triphenylphosphonium)-2-butene peroxodisulfate.Orient. J. Chem.20132941627163010.13005/ojc/290448
    [Google Scholar]
  79. DabiriM. SalehiP. BaghbanzadehM. BahramnejadM. A facile procedure for the one-pot synthesis of unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles.Tetrahedron Lett.200647396983698610.1016/j.tetlet.2006.07.127
    [Google Scholar]
  80. BadriR. GorjizadehM. 1, 4-bis (triphenylphosphonium)-2-butene peroxodisulfate: An efficient reagent for synthesis of β-nitrato alcohols.Synth. Commun.200939234239424810.1080/00397910902898593
    [Google Scholar]
  81. BadriR. GorjizadehM. cis-1,4-bis(triphenylphosphonium)-2-butene peroxodisulfate as an efficient reagent for the synthesis of phenacyl thiocyanates and phenacyl azides.Synth. Commun.201242142058206610.1080/00397911.2010.551701
    [Google Scholar]
  82. GorjizadehM. Novel and chemoselective dehydrogenation of 3,4-dihydropyrimidin-2(1H)-ones with 1,4-Bis(triphenylphosphonium)-2-butene peroxodisulfate.Bull. Korean Chem. Soc.20133461751175410.5012/bkcs.2013.34.6.1751
    [Google Scholar]
  83. BijuC.R. IlangoK. PrathapM. RekhaK. Design and microwave-assisted synthesis of 1, 3, 4-oxadiazole derivatives for analgesie and anti-inflammatory activity.J. Young Pharm.201241333710.4103/0975‑1483.93576 22523458
    [Google Scholar]
  84. NayakY.N. GaonkarS.L. SalehE.A.M. DawsariA.M.A.L. Harshitha HusainK. HassanI. Chloramine-T (N-chloro-p-toluenesulfonamide sodium salt), a versatile reagent in organic synthesis and analytical chemistry: An up to date review.J. Saudi Chem. Soc.202226210141610.1016/j.jscs.2021.101416
    [Google Scholar]
  85. MogilaiahK. ReddyC.S. Chloramine-T mediated synthesis of 1,3,4-oxadiazolyl-1,8-naphthyridines under microwave irradiation.ChemInform20053634200534201
    [Google Scholar]
  86. DesaiN.C. KotadiyaG.M. Microwave-assisted synthesis of benzimidazole bearing 1,3,4-oxadiazole derivatives: Screening for their in vitro antimicrobial activity.Med. Chem. Res.20142394021403310.1007/s00044‑014‑0978‑0
    [Google Scholar]
  87. SangshettiJ.N. ChabukswarA.R. ShindeD.B. Microwave assisted one pot synthesis of some novel 2,5-disubstituted 1,3,4-oxadiazoles as antifungal agents.Bioorg. Med. Chem. Lett.201121144444810.1016/j.bmcl.2010.10.120 21095127
    [Google Scholar]
  88. ZampieriD. FortunaS. RomanoM. De LoguA. CabidduG. SannaA. MamoloM.G. Synthesis, biological evaluation and computational studies of new hydrazide derivatives containing 1, 3, 4-oxadiazole as antitubercular agents.Int. J. Mol. Sci.202223231529510.3390/ijms232315295 36499618
    [Google Scholar]
  89. MamoloM.G. FalagianiV. ZampieriD. VioL. BanfiE. Synthesis and antimycobacterial activity of [5-(pyridin-2-yl)-1,3,4-thiadiazol-2-ylthio] acetic acid arylidene-hydrazide derivatives.Farmaco200156858759210.1016/S0014‑827X(01)01097‑7 11601644
    [Google Scholar]
  90. VikanR.C. Formation of a Sydno [3, 4-a] indolone and Reactions Thereof.,Master's thesis, Wright State University2007
    [Google Scholar]
  91. AmerZ. Al-TamimiE.O. Synthesis, characterization and antioxidant activity of new derivatives 1, 3, 4-oxadiazole and 1,3,4-thiadiazole from acid hydrazide.Hist. Med.20239112051210
    [Google Scholar]
  92. DaoudK.N. AliA.A. AhmedA. Synthesis of 2-(3-chloro-4-nitro-1-benzothien-2-yl)-1,3,4-oxadiazole-1,3,4-thiadiazole and 5-(3-chloro-4-nitro-1-benzothien-2-yl)-4H-1, 2, 4-triazole-3-thiol.J. Education Sci.2010234192610.33899/edusj.2010.59245
    [Google Scholar]
  93. RaufA. FarshoriN.N. RaufA. FarshoriN.N. Oxadiazoles. Microwave-Induced Synthesis of Aromatic Heterocycles.Berlin, HeidelbergSpringerLink20122538
    [Google Scholar]
  94. BhuktaS. ChatterjeeR. Kumar AngajalaK. DandelaR. Iodine-mediated domino cyclization of hydrazides for one-pot synthesis of 1,3,4-oxadiazoles via oxidative bond cleavage of vinyl azide.Tetrahedron Lett.202312815471410.1016/j.tetlet.2023.154714
    [Google Scholar]
  95. El-MasryR.M. KadryH.H. TaherA.T. Abou-SeriS.M. Comparative study of the synthetic approaches and biological activities of the bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles over the past decade.Molecules2022279270910.3390/molecules27092709 35566059
    [Google Scholar]
  96. NiuP. KangJ. TianX. SongL. LiuH. WuJ. YuW. ChangJ. Synthesis of 2-amino-1,3,4-oxadiazoles and 2-amino-1,3,4-thiadiazoles via sequential condensation and I2-mediated oxidative C–O/C–S bond formation.J. Org. Chem.20158021018102410.1021/jo502518c 25506709
    [Google Scholar]
  97. AsifM. ImranM. A chapter on synthesis of various heterocyclic compounds by environmentally friendly green chemistry technologies. Handbook of Greener Synthesis of Nanomaterials and CompoundsElsevierAmsterdam202126910810.1016/B978‑0‑12‑822446‑5.00004‑6
    [Google Scholar]
  98. IzgiS. SengulI.F. ŞahinE. KocaM.S. CebeciF. KandemirH. Synthesis of 7-azaindole based carbohydrazides and 1,3,4-oxadiazoles; Antioxidant activity, α-glucosidase inhibition properties and docking study.J. Mol. Struct.2022124713134310.1016/j.molstruc.2021.131343
    [Google Scholar]
  99. MaL. XiaoY. LiC. XieZ.L. LiD.D. WangY.T. MaH.T. ZhuH.L. WangM.H. YeY.H. Synthesis and antioxidant activity of novel Mannich base of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan.Bioorg. Med. Chem.201321216763677010.1016/j.bmc.2013.08.002 23993673
    [Google Scholar]
  100. BeyzaeiH. SargaziS. BagherzadeG. MoradiA. YarmohammadiE. Ultrasound-assisted synthesis, antioxidant activity and computational study of 1,3,4-oxadiazol-2-amines.Acta Chim. Slov.202168110911710.17344/acsi.2020.6208 34057509
    [Google Scholar]
  101. FaiziM. DabirianS. TajaliH. AhmadiF. ZavarehE.R. ShahhosseiniS. TabatabaiS.A. Novel agonists of benzodiazepine receptors: Design, synthesis, binding assay and pharmacological evaluation of 1,2,4-triazolo[1,5-a]pyrimidinone and 3-amino-1,2,4-triazole derivatives.Bioorg. Med. Chem.201523348048710.1016/j.bmc.2014.12.016 25564376
    [Google Scholar]
  102. KatritzkyAR RogovoyBV VvedenskyVY KovalenkoK SteelPJ MarkovVI ForoodB Synthesis of N, N-disubstituted 3-amino-1, 2, 4-triazoles.Synthesis20012001060897903
    [Google Scholar]
  103. TokumaruK. JohnstonJ.N. A convergent synthesis of 1,3,4-oxadiazoles from acyl hydrazides under semiaqueous conditions.Chem. Sci. (Camb.)2017843187319110.1039/C7SC00195A 28507694
    [Google Scholar]
  104. El MansouriA.E. MaatallahM. Ait BenhassouH. MoumenA. MehdiA. SnoeckR. AndreiG. ZahouilyM. LazrekH.B. Design, synthesis, chemical characterization, biological evaluation, and docking study of new 1,3,4-oxadiazole homonucleoside analogs.Nucleosides Nucleotides Nucleic Acids20203981088110710.1080/15257770.2020.1761982 32397827
    [Google Scholar]
  105. MiyakeF.Y. YakushijinK. HorneD.A. A concise synthesis of topsentin A and nortopsentins B and D.Org. Lett.20002142121212310.1021/ol000124g 10891245
    [Google Scholar]
  106. NaazF. AhmadF. LoneB.A. PokharelY.R. FuloriaN.K. FuloriaS. RavichandranM. PattabhiramanL. ShafiS. Shahar YarM. Design and synthesis of newer 1,3,4-oxadiazole and 1,2,4-triazole based Topsentin analogues as anti-proliferative agent targeting tubulin.Bioorg. Chem.20209510351910.1016/j.bioorg.2019.103519 31884140
    [Google Scholar]
  107. Channa BasappaV. Hamse KameshwarV. KumaraK. AchuthaD.K. Neratur KrishnappagowdaL. KariyappaA.K. Design and synthesis of coumarin-triazole hybrids: Biocompatible anti-diabetic agents, in silico molecular docking and ADME screening.Heliyon2020610e0529010.1016/j.heliyon.2020.e05290 33102875
    [Google Scholar]
  108. SharmaU. KumarR. MazumderA. Salahuddin KukretiN. MishraR. ChaitanyaM.V.N.L. Substrate‐based synthetic strategies and biological activities of 1,3,4‐oxadiazole: A review.Chem. Biol. Drug Des.20241036e1455210.1111/cbdd.14552 38825735
    [Google Scholar]
/content/journals/coc/10.2174/0113852728327072240816065351
Loading
/content/journals/coc/10.2174/0113852728327072240816065351
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 1,3,4-oxadiazole; catalysts; cerium; hydrazides; mercury oxide; reagents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test