Skip to content
2000
Volume 29, Issue 8
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

As a new type of green solvent, ionic liquids have made rapid progress in the fields of organic synthesis, separation, and electrochemistry due to their unique physical and chemical properties. At the same time, the new fluorescence characteristics and good separation and adsorption functions of ionic liquids have gradually developed in the field of environment and food, showing a good application prospect. Based on the work of our research group and the progress and development of research technology, this article reviews the research results of ionic liquids in environmental monitoring and food detection and extraction in recent years. In the environmental field, ionic liquids have the ability of detection and remediation and they show the advantages of fast, efficient, green and recyclable in the detection of environmental pollutants. In the field of food, ionic liquids provide a new idea for the detection and extraction technology of food components. While ensuring green, safe and pollution-free, they show superior selectivity, repeatability and stability, and simplify the operation steps and costs to a certain extent, showing the capture vitality with life characteristics. As a potential smart material, the mechanism of ionic liquids as fluorescent probes and separation extractants was discussed. Finally, the future development and research directions of ionic liquids are prospected, and it is expected to realize the intelligentization of ionic liquid materials and the general integration of development.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728324464240821101935
2024-09-12
2025-05-05
Loading full text...

Full text loading...

References

  1. MukhopadhyayA. DuttaguptaS. MukherjeeA. Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation.J. Environ. Chem. Eng.202210310756010.1016/j.jece.2022.107560
    [Google Scholar]
  2. SelakA. ReberskiJ.L. KlobučarG. Assessing the persistence, mobility and toxicity of emerging organic contaminants in Croatian karst springs used for drinking water supply.Sci. Total Environ.202390316624010.1016/j.scitotenv.2023.166240 37572907
    [Google Scholar]
  3. LvD. WangR. TangG. MouZ. LeiJ. HanJ. De SmedtS. XiongR. HuangC. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: Highly efficient air filtration, dye scavenging, and bactericidal activity.ACS Appl. Mater. Interfaces20191113128801288910.1021/acsami.9b01508 30869859
    [Google Scholar]
  4. QuJ. TianX. JiangZ. CaoB. AkindolieM.S. HuQ. FengC. FengY. MengX. ZhangY. Multi-component adsorption of Pb(II), Cd(II) and Ni(II) onto microwave-functionalized cellulose: Kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification.J. Hazard. Mater.202038712171810.1016/j.jhazmat.2019.121718 31771887
    [Google Scholar]
  5. VermaA. ThakurS. MambaG. Prateek GuptaR.K. ThakurP. ThakurV.K. Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye.Int. J. Biol. Macromol.20201481130113910.1016/j.ijbiomac.2020.01.142 31954790
    [Google Scholar]
  6. SuR. OuQ. WangH. DaiX. ChenY. LuoY. YaoH. OuyangD. LiZ. WangZ. Organic-inorganic composite modifiers enhance restoration potential of Nerium oleander L. to lead-zinc tailing: Application of phytoremediation.Environ. Sci. Pollut. Res. Int.20233019565695657910.1007/s11356‑023‑26359‑w 36920611
    [Google Scholar]
  7. RafeeqH. AfsheenN. RafiqueS. ArshadA. IntisarM. HussainA. BilalM. IqbalH.M.N. Genetically engineered microorganisms for environmental remediation.Chemosphere202331013675110.1016/j.chemosphere.2022.136751 36209847
    [Google Scholar]
  8. SaravananA. KarishmaS. KumarP.S. ThamaraiP. YaashikaaP.R. Recent insights into mechanism of modified bio-adsorbents for the remediation of environmental pollutants.Environ. Pollut.202333912272010.1016/j.envpol.2023.122720 37839681
    [Google Scholar]
  9. GibneyM.J. FordeC.G. Nutrition research challenges for processed food and health.Nat. Food20223210410910.1038/s43016‑021‑00457‑9 37117956
    [Google Scholar]
  10. SáA.G.A. MorenoY.M.F. CarciofiB.A.M. Plant proteins as high-quality nutritional source for human diet.Trends Food Sci. Technol.20209717018410.1016/j.tifs.2020.01.011
    [Google Scholar]
  11. LanzaM.G.D.B. ReisA.R. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses.Plant Physiol. Biochem.2021164274310.1016/j.plaphy.2021.04.026 33962229
    [Google Scholar]
  12. SilvaT.A. WongA. Fatibello-FilhoO. Electrochemical sensor based on ionic liquid and carbon black for voltammetric determination of Allura red colorant at nanomolar levels in soft drink powders.Talanta202020912058810.1016/j.talanta.2019.120588 31891996
    [Google Scholar]
  13. SoylakM. UzcanF. GoktasO. Ultrasound-assisted quasi-hydrophobic deep eutectic solvent-based determination of trace Rhodamine B in water and food samples: A simple and green approach.J. Food Compos. Anal.202312010528710.1016/j.jfca.2023.105287
    [Google Scholar]
  14. RoyA. SharmaA. YadavS. JuleL.T. KrishnarajR. Nanomaterials for remediation of environmental pollutants.Bioinorg. Chem. Appl.2021202111610.1155/2021/1764647 34992641
    [Google Scholar]
  15. LombaL. ZuriagaE. GinerB. Solvents derived from biomass and their potential as green solvents.Curr. Opin. Green Sustain. Chem.201918515610.1016/j.cogsc.2018.12.008
    [Google Scholar]
  16. HouY. YaoC. WuW. Deep eutectic solvents: Green solvents for separation applications.Wuli Huaxue Xuebao201834887388510.3866/PKU.WHXB201802062
    [Google Scholar]
  17. LorenzettiA.S. Lo FiegoM.J. SilvaM.F. DominiC. GomezF.J.V. Water behavior study for tailoring fructose-citric acid based natural deep eutectic solvent properties towards antibiotics solubilization.J. Mol. Liq.202236311991710.1016/j.molliq.2022.119917
    [Google Scholar]
  18. DazatR.E. MammanaS.B. CanizoB.V. Enhanced fluorescence detection of ergosterol by hydrophobic fluorescent natural deep eutectic solvent.Green Anal. Chem.20223210002610.1016/j.greeac.2022.100026
    [Google Scholar]
  19. ChenC.C. HuangY.H. HungS.M. ChenC. LinC-W. YangH-H. Hydrophobic deep eutectic solvents as attractive media for low-concentration hydrophobic VOC capture.Chem. Eng. J.202142413042010.1016/j.cej.2021.130420
    [Google Scholar]
  20. JafariZ. GhaniM. Bakhsh RaoofJ. ZIF-8-90 @ graphene oxide reinforced porous hollow fiber coupled with deep eutectic solvent for hollow fiber solid-phase microextraction of selected phthalate esters followed by quantification through high-performance liquid chromatography-ultraviolet detection.Microchem. J.202319410926910.1016/j.microc.2023.109269
    [Google Scholar]
  21. CanizoB.V. QuintasP.Y. WuilloudR.G. SilvaM.F. GomezF.J.V. Fluorescent behavior of melatonin and related indoleamines in natural deep eutectic solvents.J. Mol. Liq.202236311990210.1016/j.molliq.2022.119902
    [Google Scholar]
  22. XuX. GaoJ. RanM. GuoY. FengD. ZhangL. Nanoconfinement of functionalized ionic liquid for enhanced adsorption and rapid sensitive detection of phenylurea herbicides in food and environmental samples.Food Chem.202443113714910.1016/j.foodchem.2023.137149 37598653
    [Google Scholar]
  23. CaiC. HanadaT. FajarA.T.N. GotoM. An ionic liquid extractant dissolved in an ionic liquid diluent for selective extraction of Li(I) from salt lakes.Desalination202150911507310.1016/j.desal.2021.115073
    [Google Scholar]
  24. ColdurM. OguzlarS. Zeyrek OngunM. OterO. YıldırımS. Usage of thiocyanate-based ionic liquid as new optical sensor reagent: Absorption and emission based selective determination of Fe (III) ions.Spectrochim. Acta A Mol. Biomol. Spectrosc.202022411738510.1016/j.saa.2019.117385 31336319
    [Google Scholar]
  25. HuaJ. HeJ. PeiH. MaX. WickramasingheS.R. LiJ. Supported ionic liquid membrane contactor with crown ether functionalized polyimide membrane for high-efficient Li+/Mg2+ selective separation.J. Membr. Sci.202368712203810.1016/j.memsci.2023.122038
    [Google Scholar]
  26. VianaT. AlmeidaR. FigueiraP. RochaL. NevesM.C. FreitasR. FreireM. HenriquesB. PereiraE. Removal of mercury by silica-supported ionic liquids: Efficiency and ecotoxicological assessment.Aquat. Toxicol.202326110661110.1016/j.aquatox.2023.106611 37336029
    [Google Scholar]
  27. BarotY.B. AnandV. MishraR. AIEE active ionic liquid based on triphenyl amine functionalized Schiff base for the selective and sensitive detection of Sn2+ ion.J. Mol. Liq.202338212187510.1016/j.molliq.2023.121875
    [Google Scholar]
  28. KangK. LiuB. YueG. RenH. ZhengK. WangL. WangZ. Preparation of carbon quantum dots from ionic liquid modified biomass for the detection of Fe3+ and Pd2+ in environmental water.Ecotoxicol. Environ. Saf.202325511479510.1016/j.ecoenv.2023.114795 36933478
    [Google Scholar]
  29. XingS. ZhengK. ShiL. KangK. PengZ. ZhangX. LiuB. YangH. YueG. Fluorescence detection of Pb2+ in environmental water using biomass carbon quantum dots modified with acetamide-glycolic acid deep eutectic solvent.Molecules2024297166210.3390/molecules29071662 38611941
    [Google Scholar]
  30. KangK. DuX. ShiL. PengZ. ZhangX. LiuB. YueG. WangL. WangZ. ChenS. Selective detection of ionic liquid fluorescence probes for visual colorimetry of different metal ions.Environ. Res.202424211779110.1016/j.envres.2023.117791 38043897
    [Google Scholar]
  31. RamaR. MeenakshiS. Synthesis of trialkylammonium naphthylaceteate ionic liquid: Its antimicrobial and chromium extraction study.J. Mol. Struct.2020120412749010.1016/j.molstruc.2019.127490
    [Google Scholar]
  32. MuhammadS. JavedM.N. GillK.A. AliF.I. HendersonW. BariA. MusharrafS.G. BaigJ.A. HashmiI.A. Selective extraction of heavy metals (Fe, Co, Ni) from their aqueous mixtures by Task-Specific salicylate functionalized imidazolium based ionic liquid.J. Clean. Prod.202234413111910.1016/j.jclepro.2022.131119
    [Google Scholar]
  33. EyupogluV. UnalA. The extraction and the removal of Cd(II) using polymer inclusion membrane containing symmetric room temperature ionic liquid as ion carrier.J. Environ. Chem. Eng.202311511057010.1016/j.jece.2023.110570
    [Google Scholar]
  34. JianN. DaiY. LiuH. WuN. LiuL. WuD. WuY. Simple, fast and eco-friendly micro-solid phase extraction based on thiol and ionic liquid bi-functional nanofibers membrane for the determination of sulfonamides in environmental water.Anal. Chim. Acta2024128834216310.1016/j.aca.2023.342163 38220295
    [Google Scholar]
  35. ZhouL. WuT. YuC. LiuS. PanC. Ionic liquid-dispersive micro-extraction and detection by high performance liquid chromatography-mass spectrometry for antifouling biocides in water.Molecules2023283126310.3390/molecules28031263 36770930
    [Google Scholar]
  36. CheS. PengX. ZhugeY. ChenX. ZhouC. FuH. SheY. Fluorescent and colorimetric ionic probe based on fluorescein for the rapid and on-site detection of paraquat in vegetables and the environment.J. Agric. Food Chem.20227049153901540010.1021/acs.jafc.2c05980 36417496
    [Google Scholar]
  37. ChenY. TangY. LiuY. ZhaoF. ZengB. Kill two birds with one stone: Selective and fast removal and sensitive determination of oxytetracycline using surface molecularly imprinted polymer based on ionic liquid and ATRP polymerization.J. Hazard. Mater.202243412890710.1016/j.jhazmat.2022.128907 35452985
    [Google Scholar]
  38. TangJ. PengL. AliA. ZhaoS. ZengZ. YuanK. YaoS. Electrochemical detection of rutin in black tartary buckwheat tea and related health-care pills with new ionic liquid-based supramolecular hydrogels.Food Control202415511004510.1016/j.foodcont.2023.110045
    [Google Scholar]
  39. CheS. PanS. ShaoX. HeW. ShouQ. FuH. SheY. Portable and reversible smart labels for non-destructive detection of seafood freshness via amine-response fluorescent ionic liquids.Food Chem.202443013694610.1016/j.foodchem.2023.136946 37544151
    [Google Scholar]
  40. TuzenM. UluozluO.D. MendilD. SoylakM. MachadoL.O.R. dos SantosW.N.L. FerreiraS.L.C. A simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure for the determination of tin in foods employing ETAAS.Food Chem.201824538038410.1016/j.foodchem.2017.10.115 29287384
    [Google Scholar]
  41. ManushaP. SenthilkumarS. Design and synthesis of phenothiazine based imidazolium ionic liquid for electrochemical nonenzymatic detection of sulfite in food samples.J. Mol. Liq.202030111241210.1016/j.molliq.2019.112412
    [Google Scholar]
  42. BianY. WangY. YuJ. ZhengS. QinF. ZhaoL. Analysis of six preservatives in beverages using hydrophilic deep eutectic solvent as disperser in dispersive liquid-liquid microextraction based on the solidification of floating organic droplet.J. Pharm. Biomed. Anal.202119511388910.1016/j.jpba.2021.113889 33429250
    [Google Scholar]
  43. SereshtiH. AbdolhosseiniG. SoltaniS. SadatfarajiH. KaramiS. Rashidi NodehH. A green ternary polymeric deep eutectic solvent used in dispersive liquid-liquid microextraction technique for isolation of multiclass pesticides in fruit juice samples.J. Food Compos. Anal.202312410566310.1016/j.jfca.2023.105663
    [Google Scholar]
  44. SereshtiH. MohammadiZ. SoltaniS. TaghizadehM. Synthesis of a magnetic micro-eutectogel based on a deep eutectic solvent gel immobilized in calcium alginate: Application for green analysis of melamine in milk and dairy products.Talanta202326512480110.1016/j.talanta.2023.124801 37385193
    [Google Scholar]
  45. ShaabanH. Sustainable dispersive liquid-liquid microextraction method utilizing a natural deep eutectic solvent for determination of chloramphenicol in honey: Assessment of the environmental impact of the developed method.RSC Advances20231385058506910.1039/D2RA08221G 36777937
    [Google Scholar]
  46. Franco-VegaA. López-MaloA. PalouE. Ramírez-CoronaN. Effect of imidazolium ionic liquids as microwave absorption media for the intensification of microwave-assisted extraction of Citrus sinensis peel essential oils.Chem. Eng. Process.202116010827710.1016/j.cep.2020.108277
    [Google Scholar]
  47. DongQ. QiuW. LiL. TaoN. Liang WangA. DengS. JinY. Extraction of chitin from white shrimp (Penaeus vannamei) shells using binary ionic liquid mixtures.J. Ind. Eng. Chem.202312052954110.1016/j.jiec.2023.01.004
    [Google Scholar]
  48. ZhangL. LiY. GaoJ. Selectively extraction of astaxanthin from Haematococcus pluvialis by aqueous biphasic systems composed of ionic liquids and deep eutectic solutions.Food Chem.202443413739910.1016/j.foodchem.2023.137399 37699312
    [Google Scholar]
  49. FangG. ZhangJ. LuJ. MaL. WangS. Preparation, characterization, and application of a new thiol-functionalized ionic liquid for highly selective extraction of Cd(II).Mikrochim. Acta20101713-430531110.1007/s00604‑010‑0436‑8
    [Google Scholar]
  50. YangB. ShangD. TuW. ZengS. BaiL. WangH. ZhangX. Studies on the physical properties variations of protic ionic liquid during NH3 absorption.J. Mol. Liq.201929611179110.1016/j.molliq.2019.111791
    [Google Scholar]
  51. LencaN. PooleC.F. Liquid chromatography with room temperature ionic liquids.J. Planar Chromatogr. Mod. TLC20173029710510.1556/1006.2017.30.2.2
    [Google Scholar]
  52. LeeS.S. SharipovM. KimW.J. LeeY.I. Turn Off-On fluorescent CO2 gas detection based on amine-functionalized imidazole-based poly(ionic liquid).ACS Omega2022744404854049210.1021/acsomega.2c05695 36385837
    [Google Scholar]
  53. TohoraN. AhamedS. MahatoM. SultanaT. Selim Arif Sher ShahM. DasS.K. Ionic liquids-based organo nano-fluorosensor for fast and selective detection of sarin gas surrogate, diethylchlorophosphate.J. Mol. Liq.202338712269810.1016/j.molliq.2023.122698
    [Google Scholar]
  54. ChenC. CaoY. AliA. ToufoukiS. YaoS. How to apply terpenoid-based deep eutectic solvents for removal of antibiotics and dyes from water: Theoretical prediction, experimental validation and quantum chemical evaluation.Environ. Res.202323111618010.1016/j.envres.2023.116180 37207731
    [Google Scholar]
  55. NiuR. QinH. TaoY. LiL. QiaoL. In situ formation of deep eutectic solvents based dispersive liquid-liquid microextraction for the enrichment of trace phthalate esters in aqueous samples.Microchem. J.202318910853710.1016/j.microc.2023.108537
    [Google Scholar]
  56. YaoT. GanY. LiQ. TanM. ShiX. Removal and recovery of triphenylmethane dyes from wastewater with temperature-sensitive magnetic ionic liquid aqueous two-phase system.J. Clean. Prod.202132812964810.1016/j.jclepro.2021.129648
    [Google Scholar]
  57. YaoT. LiH. RenY. FengM. HuY. YanH. PengL. Extraction and recovery of phenolic compounds from aqueous solution by thermo-separating magnetic ionic liquid aqueous two-phase system.Separ. Purif. Tech.202228212003410.1016/j.seppur.2021.120034
    [Google Scholar]
  58. Raju PilliS. AliW. MotanaS. Ehtisham KhanM. RajeshY. Ulla KhanA. BashiriA.H. ZakriW. Novel-supported ionic liquid membranes for an effective removal of pentachlorophenol from wastewater.J. Mol. Liq.202338012162910.1016/j.molliq.2023.121629
    [Google Scholar]
  59. MehrabiF. GhaediM. Alipanahpour DilE. DL-carnitine-based green hydrophobic deep eutectic solvent for the enrichment of bisphenol A in mineral water based on ultrasound-assisted liquid-phase microextraction.Talanta202426612504510.1016/j.talanta.2023.125045 37598441
    [Google Scholar]
  60. WangH. MaS. SunY. GaoM. WangX. Detection of 4-nitrophenol by a naphthene carboxylic acid-based fluorescent dicationic ionic liquid in environmental waters and soils.Microchem. J.202319010872010.1016/j.microc.2023.108720
    [Google Scholar]
  61. Yee FoongC. Ling LauX. Dzul Hakim WirzalM. BustamM.A. Syaamil Bin SaadM. Syakinah Abd HalimN. Blended nylon 6,6 and choline glycinate-ionic liquid for adsorptive nanofiber membrane on the removal of Fe(III) from synthetic wastewater.J. Mol. Liq.202236812067710.1016/j.molliq.2022.120677
    [Google Scholar]
  62. ImdadS. DohareR.K. AgarwalM. SrivastavaA. Efficient removal of Cr (VI) from wastewater using recycled polymer-based supported ionic liquid membrane technology.Separ. Purif. Tech.202332712490810.1016/j.seppur.2023.124908
    [Google Scholar]
  63. YangH. DaiH. ChenY. WanX. LiF. XuQ. Efficient and simple simultaneous adsorption removal of multiple mycotoxins from environmental water.Separ. Purif. Tech.202331712388810.1016/j.seppur.2023.123888
    [Google Scholar]
  64. HuangK. ShenY. WangX. SongX. YuanW. XieJ. WangS. BaiJ. WangJ. Choline-based deep eutectic solvent combined with EDTA-2Na as novel soil washing agent for lead removal in contaminated soil.Chemosphere202127913056810.1016/j.chemosphere.2021.130568 34134409
    [Google Scholar]
  65. RashidS.N. HizaddinH.F. HayyanA. HasikinK. Abdul RazakS. MokhtarM.I. AzizanM.M. Deep eutectic solvents for the removal of lead contaminants in mangrove soil.J. Environ. Chem. Eng.202210210726410.1016/j.jece.2022.107264
    [Google Scholar]
  66. KangK. JiaX. ZhengK. WangX. LiuB. HouY. Physical properties of natural deep eutectic solvent and its application in remediation of heavy metal lead in soil.J. Contam. Hydrol.202325810422210.1016/j.jconhyd.2023.104222 37478509
    [Google Scholar]
  67. GissawongN. MukdasaiS. BoonchiangmaS. SansukS. SrijaranaiS. A rapid and simple method for the removal of dyes and organophosphorus pesticides from water and soil samples using deep eutectic solvent embedded sponge.Chemosphere202026012759010.1016/j.chemosphere.2020.127590 32679376
    [Google Scholar]
  68. ShiquanB. SunR. ZhouP. LiY. ShangX. Temperature-responsive deep eutectic solvent as eco-friendly and recyclable media for the rapid assessment of pyrethroid pesticide residues in surface soil sample.Microchem. J.202218110773310.1016/j.microc.2022.107733
    [Google Scholar]
  69. WangL. WangY. QinY. ZhouY. Room-temperature synthesis of ionic liquid@covalent organic frameworks for the solid phase extraction and analysis of six herbicides from water samples.Microchem. J.202319510949710.1016/j.microc.2023.109497
    [Google Scholar]
  70. ZhouZ. CaoY. ZongK. DengD. Efficient absorption of low pressure NH3 by non-ionic phenol-based deep eutectic solvents with multiple acidic sites.J. Mol. Liq.202338912287410.1016/j.molliq.2023.122874
    [Google Scholar]
  71. ZhengM. HuX. TuZ. WuY. Deep eutectic solvents with N-H hydrogen bond network structure for highly efficient ammonia capture.Separ. Purif. Tech.202332412453810.1016/j.seppur.2023.124538
    [Google Scholar]
  72. LuH. WuK. ZhaoY. HaoL. LiaoW. DengC. RenW. Synthesis of cyclic carbonates from CO2 and propylene oxide (PO) with deep eutectic solvents (DESs) based on amino acids (AAs) and dicarboxylic acids.J. CO2 Util.20172240040610.1016/j.jcou.2017.10.024
    [Google Scholar]
  73. LianS. LiR. ZhangZ. LiuQ. SongC. LuS. Improved CO2 separation performance and interfacial affinity of composite membranes by incorporating amino acid-based deep eutectic solvents.Separ. Purif. Tech.202127211895310.1016/j.seppur.2021.118953
    [Google Scholar]
  74. JiangH. SuiL. ZhaoD. ZhangW. WangP. ZhaoB. DongG. YuH. XuY. HuoL. In situ growth of hierarchical NiO microspheres via ionic liquid-assisted synthesis for ppb-level detection of H2S.Sens. Actuators B Chem.202337813316110.1016/j.snb.2022.133161
    [Google Scholar]
  75. CheS. GuoJ. GanL. XiaoQ. LiH. SheY. WangC. A succinct enhanced luminescence strategy for fluorescent ionic liquids and the application for detecting CO2.Green Energy Environ.2022751093110110.1016/j.gee.2021.01.010
    [Google Scholar]
  76. YuanL. GaoH. JiangH. ZengS. LiT. RenB. ZhangX. Experimental and thermodynamic analysis of NH3 absorption in dual-functionalized pyridinium-based ionic liquids.J. Mol. Liq.202132311460110.1016/j.molliq.2020.114601
    [Google Scholar]
  77. LiuB. TianJ. Investigation of glycolic acid natural deep eutectic solvents with strong proton donors for ammonia capture and separation.Ind. Eng. Chem. Res.20216030116001161010.1021/acs.iecr.1c01456
    [Google Scholar]
  78. ZhaoT. YangX. TuZ. HuX. Efficient SO2 capture and conversion to cyclic sulfites by protic ionic liquid-based deep eutectic solvents under mild conditions.Separ. Purif. Tech.202331812398110.1016/j.seppur.2023.123981
    [Google Scholar]
  79. WangX. ZhengK. PengZ. LiuB. JiaX. TianJ. Exploiting proton masking to protect amino achieve efficient capture CO2 by amino-acids deep eutectic solvents.Separ. Purif. Tech.202229912178710.1016/j.seppur.2022.121787
    [Google Scholar]
  80. XuR. DaiC. MuM. ChengJ. LeiZ. WuB. LiuN. ChenB. YuG. Highly efficient capture of odorous sulfur-based VOCs by ionic liquids.J. Hazard. Mater.202140212350710.1016/j.jhazmat.2020.123507 32763767
    [Google Scholar]
  81. RodinkovO. ZnamenskayaE. SpivakovskyV. ShilovR. ShishovA. Deep eutectic solvents-based headspace single-drop microextraction for the chromatographic determination of phenols and aliphatic alcohols in atmospheric air.Microchem. J.202218210785410.1016/j.microc.2022.107854
    [Google Scholar]
  82. ChenC.C. HuangY.H. FangJ.Y. Hydrophobic deep eutectic solvents as green absorbents for hydrophilic VOC elimination.J. Hazard. Mater.202142412736610.1016/j.jhazmat.2021.127366
    [Google Scholar]
  83. YanX. AnguilleS. BendahanM. MoulinP. Toluene removal from gas streams by an ionic liquid membrane: Experiment and modeling.Chem. Eng. J.202140412710910.1016/j.cej.2020.127109
    [Google Scholar]
  84. TianY. ZhuM. HuT. LiuC. Natural deep eutectic solvent-A novel green solvent for protein stabilization.Int. J. Biol. Macromol.202324712547710.1016/j.ijbiomac.2023.125477 37336377
    [Google Scholar]
  85. AidT. PaistL. LoppM. KaljurandM. VaherM. An optimized capillary electrophoresis method for the simultaneous analysis of biomass degradation products in ionic liquid containing samples.J. Chromatogr. A2016144714114710.1016/j.chroma.2016.04.027 27095128
    [Google Scholar]
  86. MezőE. PágerC. MakszinL. KilárF. Capillary zone electrophoresis of proteins applying ionic liquids for dynamic coating and as background electrolyte component.Electrophoresis202041242083209110.1002/elps.202000204 33022798
    [Google Scholar]
  87. BakaeeanB. KabiriM. IranfarH. SaberiM.R. ChamaniJ. Binding effect of common ions to human serum albumin in the presence of norfloxacin: Investigation with spectroscopic and zeta potential approaches.J. Solution Chem.201241101777180110.1007/s10953‑012‑9895‑3
    [Google Scholar]
  88. PingJ. WangY. WuJ. YingY. JiF. Determination of ascorbic acid levels in food samples by using an ionic liquid-carbon nanotube composite electrode.Food Chem.2012135236236710.1016/j.foodchem.2012.05.013 22868100
    [Google Scholar]
  89. CheraghiS. TaherM.A. Karimi-MalehH. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples.J. Food Compos. Anal.20176225425910.1016/j.jfca.2017.06.006
    [Google Scholar]
  90. JamaliT. Karimi-MalehH. KhalilzadehM.A. A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples.Lebensm. Wiss. Technol.201457267968510.1016/j.lwt.2014.01.023
    [Google Scholar]
  91. AltunayN. ElikA. KatinK. Optimization of vortex-assisted ionic liquid dispersive liquid-liquid microextraction by experimental design prior to hydride generation atomic absorption spectrometry for determination of selenium species in food, beverage and water samples.J. Food Compos. Anal.20219910387110.1016/j.jfca.2021.103871
    [Google Scholar]
  92. GomezN.A. LorenzettiA.S. CamiñaJ. GarridoM. DominiC.E. In-syringe ultrasound-assisted dispersive liquid-liquid microextraction for the fluorescent determination of aluminum in water and milk samples.Microchem. J.202218310811710.1016/j.microc.2022.108117
    [Google Scholar]
  93. WangX. ChenP. CaoL. XuG. YangS. FangY. WangG. HongX. Selenium speciation in rice samples by magnetic ionic liquid-based up-and-down-shaker-assisted dispersive liquid-liquid microextraction coupled to graphite furnace atomic absorption spectrometry.Food Anal. Methods20171061653166010.1007/s12161‑016‑0727‑8
    [Google Scholar]
  94. QiaoL. TaoY. QinH. NiuR. Multi-magnetic center ionic liquids for dispersive liquid-liquid microextraction coupled with in situ decomposition based back-extraction for the enrichment of parabens in beverage samples.J. Chromatogr. A2023168946377110.1016/j.chroma.2022.463771 36610188
    [Google Scholar]
  95. SheikhshoaieM. SheikhshoaieI. RanjbarM. Analysis of kojic acid in food samples uses an amplified electrochemical sensor employing V2O5 nanoparticle and room temperature ionic liquid.J. Mol. Liq.201723159760110.1016/j.molliq.2017.02.039
    [Google Scholar]
  96. AkmesA. DalmazA. Sivrikaya ÖzakS. Hydrophilic deep eutectic solvent based microextraction procedure for the determination of four paraben preservatives in vitamin D for babies: A green approach.Microchem. J.202319310901310.1016/j.microc.2023.109013
    [Google Scholar]
  97. WuH. GuoJ. DuL. TianH. HaoC. WangZ. WangJ. A rapid shaking-based ionic liquid dispersive liquid phase microextraction for the simultaneous determination of six synthetic food colourants in soft drinks, sugar- and gelatin-based confectionery by high-performance liquid chromatography.Food Chem.2013141118218610.1016/j.foodchem.2013.03.015 23768345
    [Google Scholar]
  98. LorenzettiA.S. VidalE. SilvaM.F. DominiC. GomezF.J.V. Native fluorescent natural deep eutectic solvents for green sensing applications: Curcuminoids in Curcuma longa powder.ACS Sustain. Chem.& Eng.20219155405541110.1021/acssuschemeng.1c00406
    [Google Scholar]
  99. Afshar MogaddamM.R. FarajzadehM.A. TuzenM. JouybanA. KhandaghiJ. Organic solvent-free elevated temperature liquid-liquid extraction combined with a new switchable deep eutectic solvent-based dispersive liquid-liquid microextraction of three phenolic antioxidants from oil samples.Microchem. J.202116810643310.1016/j.microc.2021.106433
    [Google Scholar]
  100. XueH. JiaL. JiangH. QinS. YangY. WuJ. JingX. A successive homogeneous liquid-liquid microextraction based on solidification of switchable hydrophilicity solvents and ionic liquids for the detection of pyrethroids and cadmium in drinks.J. Food Compos. Anal.202211010456910.1016/j.jfca.2022.104569
    [Google Scholar]
  101. Rivera-VeraC. Lasarte-AragonésG. BravoM.A. Muñoz-LiraD. SalazarR. Toledo-NeiraC. Ionic liquids-based dispersive liquid-liquid microextraction for determination of carcinogenic polycyclic aromatic hydrocarbons in tea beverages: Evaluation of infusion preparation on pollutants release.Food Control201910610668510.1016/j.foodcont.2019.06.011
    [Google Scholar]
  102. Pradanas-GonzálezF. Aragoneses-CazorlaR. Merino-SierraM.Á. Andrade-BartoloméE. Navarro-VillosladaF. Benito-PeñaE. Moreno-BondiM.C. Extracting mycotoxins from edible vegetable oils by using green, ecofriendly deep eutectic solvents.Food Chem.202342913684610.1016/j.foodchem.2023.136846 37467670
    [Google Scholar]
  103. ShiraniM. FarajiM. Rashidi NodehH. Akbari-aderganiB. SepahiS. An efficient deep eutectic magnetic nano gel for rapid ultrasound-assisted dispersive µ-solid phase extraction of residue of tetracyclines in food samples.J. Food Sci. Technol.202360112802281210.1007/s13197‑023‑05798‑w 37711576
    [Google Scholar]
  104. ShaabanH. MostafaA. AlqarniA.M. AlsultanR. shehabZ.A. AljarrashZ. Al-ZawadW. Al-KahlahS. AmirM. Dispersive liquid-liquid microextraction utilizing menthol-based deep eutectic solvent for simultaneous determination of sulfonamides residues in powdered milk-based infant formulas.J. Food Compos. Anal.202311710513710.1016/j.jfca.2023.105137
    [Google Scholar]
  105. AlbishriH.M. El-HadyD.A. Eco-friendly ionic liquid based ultrasonic assisted selective extraction coupled with a simple liquid chromatography for the reliable determination of acrylamide in food samples.Talanta201411812913610.1016/j.talanta.2013.10.015 24274280
    [Google Scholar]
  106. BishtM. MartinsM. DiasA.C.R.V. VenturaS.P.M. CoutinhoJ.A.P. Uncovering the potential of aqueous solutions of deep eutectic solvents on the extraction and purification of collagen type I from Atlantic codfish (Gadus morhua).Green Chem.202123228940894810.1039/D1GC01432C
    [Google Scholar]
  107. CaiZ.H. WangJ.D. LiuL. RuanL-D. GuQ. YanX-Y. FuL-N. ZhaoP-Q. ZhangS. FuY-J. A green and designable natural deep eutectic solvent-based supramolecular solvents system: Efficient extraction and enrichment for phytochemicals.Chem. Eng. J.202345714133310.1016/j.cej.2023.141333
    [Google Scholar]
  108. FanC. ShanY. WenL. CaoX. Extraction of artemisinin using natural deep eutectic solvent selected by COSMO-RS.Sustain. Chem. Pharm.20233310109610.1016/j.scp.2023.101096
    [Google Scholar]
  109. LimaÁ.S. SoaresC.M.F. PaltramR. HalbwirthH. BicaK. Extraction and consecutive purification of anthocyanins from grape pomace using ionic liquid solutions.Fluid Phase Equilib.2017451687810.1016/j.fluid.2017.08.006
    [Google Scholar]
  110. MachmudahS. LestariS.D. KandaH. WinardiS. GotoM. Subcritical water extraction enhancement by adding deep eutectic solvent for extracting xanthone from mangosteen pericarps.J. Supercrit. Fluids201813361562410.1016/j.supflu.2017.06.012
    [Google Scholar]
  111. ChengJ. TianM. GulZ. LiangC. QiaoB. GaoY. ZhaoC. LiC. pH-responsive functionalized surface active ionic liquid as an enhanced medium for efficient extraction and in situ separation of flavonoids in Vitex negundo L. leaves.Microchem. J.202319310908010.1016/j.microc.2023.109080
    [Google Scholar]
  112. ZhuS.C. ShiM.Z. YuY.L. CaoJ. Simultaneous extraction and enrichment of alkaloids from lotus leaf by in situ cloud point-reinforced ionic liquid assisted mechanochemical extraction technology.Ind. Crops Prod.202218311496810.1016/j.indcrop.2022.114968
    [Google Scholar]
  113. SilvaI. VazB.M.C. SousaS. PintadoM.M. CoscuetaE.R. VenturaS.P.M. Gastrointestinal delivery of codfish skin-derived collagen hydrolysates: Deep eutectic solvent extraction and bioactivity analysis.Food Res. Int.202417511372910.1016/j.foodres.2023.113729 38128988
    [Google Scholar]
  114. García-Alvarez-CoqueM.C. Ruiz-AngelM.J. BerthodA. Carda-BrochS. On the use of ionic liquids as mobile phase additives in high-performance liquid chromatography. A review.Anal. Chim. Acta201588312110.1016/j.aca.2015.03.042 26088771
    [Google Scholar]
  115. HarathiJ. ThenmozhiK. Water-soluble ionic liquid as a fluorescent probe towards distinct binding and detection of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol in aqueous medium.Chemosphere202228613182510.1016/j.chemosphere.2021.131825 34375830
    [Google Scholar]
/content/journals/coc/10.2174/0113852728324464240821101935
Loading
/content/journals/coc/10.2174/0113852728324464240821101935
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test