Skip to content
2000
Volume 29, Issue 8
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The synthesis of a novel family selenazolo[3,2-]pyridin-4-ium derivatives in high yields was developed based on the annulation reactions of 2-pyridineselenenyl chloride with unsaturated heteroatom and heterocyclic compounds. The analogous new thiazolo[3,2-]pyridin-4-ium derivatives were obtained by the annulation reactions of 2-pyridinesulfenyl chloride. The reactions with vinylic ethers and N-vinylimidazole gave 3-substituted selenazolo[3,2-]- and -[1,3]thiazolopyridin-4-ium derivatives, whereas reactions with allyl alcohol, allyl chloride, allyl bromide, 3-butenoic, 4-pentenoic and 5-hexenoic acids occurred with the opposite regiochemistry, affording 2-substituted [1,3]chalcogenazolo[3,2-]pyridiniums. The antibacterial activity of the obtained products against gram-positive and gram-negative bacteria was evaluated, and compounds with high activity were discovered. A comparison of the antibacterial properties of [1,3]selenazolo[3,2-]pyridin-4-ium derivatives with their sulfur analogs shows a higher activity of the selenium compounds.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728326804240828071148
2024-09-16
2025-05-24
Loading full text...

Full text loading...

References

  1. Santi C, editor. Organoselenium Chemistry: Between Synthesis and Biochemistry.Bentham Science Publishers2014
    [Google Scholar]
  2. SchwarzK. FoltzC.M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration.J. Am. Chem. Soc.195779123292329310.1021/ja01569a087
    [Google Scholar]
  3. AlbertoE.E. NascimentoV. BragaA.L. Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzyme mimetics.J. Braz. Chem. Soc.201021112032204110.1590/S0103‑50532010001100004
    [Google Scholar]
  4. SantiC. TideiC. ScaleraC. PiroddiM. GalliF. Selenium containing compounds from poison to drug candidates: A review on the GPx-like activity.Curr. Chem. Biol.201371253610.2174/2212796811307010003
    [Google Scholar]
  5. IwaokaM. AraiK. From sulfur to selenium. A new research arena in chemical biology and biological chemistry.Curr. Chem. Biol.20137122410.2174/2212796811307010002
    [Google Scholar]
  6. RoyG. SarmaB.K. PhadnisP.P. MugeshG. Selenium-containing enzymes in mammals: Chemical perspectives.J. Chem. Sci.2005117428730310.1007/BF02708441
    [Google Scholar]
  7. SantiC. SantoroS. BattistelliB. Organoselenium compounds as catalysts in nature and laboratory.Curr. Org. Chem.201014202442246210.2174/138527210793358231
    [Google Scholar]
  8. MisraS. BoylanM. SelvamA. SpallholzJ. BjörnstedtM. Redox-active selenium compounds-from toxicity and cell death to cancer treatment.Nutrients2015753536355610.3390/nu7053536 25984742
    [Google Scholar]
  9. PriyadarsiniK.I. SinghB.G. KunwarA. Current developments on synthesis, redox reactions and biochemical studies of selenium antioxidants.Curr. Chem. Biol.20137374610.2174/2212796811307010004
    [Google Scholar]
  10. GladyshevV.N. HatfieldD.L. Selenocysteine-containing proteins in mammals.J. Biomed. Sci.19996315116010.1007/BF02255899 10343164
    [Google Scholar]
  11. LenardaoE.J. SantiC. SancinetoL. New Frontiers in Organoselenium Compounds.ChamSpringer International Publishing AG201810.1007/978‑3‑319‑92405‑2
    [Google Scholar]
  12. Woollins, J.D.; Laitinen, R.S., Eds.; Selenium and Tellurium Chemistry. From Small Molecules to Biomolecules and Materials.Heidelberg, GermanySpringer201110.1007/978‑3‑642‑20699‑3
    [Google Scholar]
  13. BanerjeeB. KoketsuM. Recent developments in the synthesis of biologically relevant selenium-containing scaffolds.Coord. Chem. Rev.201733910412710.1016/j.ccr.2017.03.008
    [Google Scholar]
  14. WoltersL.P. OrianL. Peroxidase activity of organic selenides: Mechanistic insights from quantum chemistry.Curr. Org. Chem.20162018919710.2174/1385272819666150724233655
    [Google Scholar]
  15. de SouzaD. MarianoD.O.C. NedelF. SchultzeE. CamposV.F. SeixasF. da SilvaR.S. MunchenT.S. IlhaV. DornellesL. BragaA.L. RochaJ.B.T. CollaresT. RodriguesO.E.D. New organochalcogen multitarget drug: Synthesis and antioxidant and antitumoral activities of chalcogenozidovudine derivatives.J. Med. Chem.20155883329333910.1021/jm5015296 25811955
    [Google Scholar]
  16. MamgainR. KosticM. SinghF.V. Synthesis and antioxidant properties of organoselenium compounds.Curr. Med. Chem.202330212421244810.2174/0929867329666220801165849 35927897
    [Google Scholar]
  17. BarcellosA.M. AbenanteL. SarroM.T. LeoI.D. LenardaoE.J. PerinG. SantiC. New prospective for redox modulation mediated by organo selenium and organotellurium compounds.Curr. Org. Chem.201721202044206110.2174/1385272820666161020162113
    [Google Scholar]
  18. AzeredoJ.B. SchwabR.S. BragaA.L. Synthesis of biologically active selenium-containing molecules from greener perspectives.Curr. Green Chem.20163516710.2174/2213346103666160127003506
    [Google Scholar]
  19. Pacula‚, A.J. An update on selenium containing compounds from poison to drug candidates: A review on the GPx-like activity.Curr. Chem. Biol.2015997112
    [Google Scholar]
  20. ThurowS. AbenanteL. AnghinoniJ.M. LenardãoE.J. Selenium as a versatile reagent in organic synthesis: More than allylic oxidation.Curr. Org. Synth.202219333136510.2174/1570179418666210525152001 34036912
    [Google Scholar]
  21. BartoliniD. SancinetoL. Fabro de BemA. TewK.D. SantiC. RadiR. ToquatoP. GalliF. Selenocompounds in cancer therapy: An overview. In: Advances in Cancer ResearchAcademic PressCambridge, MA, USA2017136259302
    [Google Scholar]
  22. MugeshG. du MontW.W. SiesH. Chemistry of biologically important synthetic organoselenium compounds.Chem. Rev.200110172125218010.1021/cr000426w 11710243
    [Google Scholar]
  23. ElsherbiniM. HamamaW.S. ZoorobH.H. Recent advances in the chemistry of selenium-containing heterocycles: Five-membered ring systems.Coord. Chem. Rev.201631214917710.1016/j.ccr.2016.01.003
    [Google Scholar]
  24. ElsherbiniM. HamamaW.S. ZoorobH.H. Recent advances in the chemistry of selenium-containing heterocycles: Six-membered ring systems.Coord. Chem. Rev.201733011012610.1016/j.ccr.2016.09.016
    [Google Scholar]
  25. NogueiraC.W. ZeniG. RochaJ.B.T. Organoselenium and organotellurium compounds: Toxicology and pharmacology.Chem. Rev.2004104126255628610.1021/cr0406559 15584701
    [Google Scholar]
  26. RafiqueJ. CantoR.F.S. SabaS. BarbosaF.A.R. BragaA.L. Recent advances in the synthesis of biologically relevant selenium-containing 5-membered heterocycles.Curr. Org. Chem.20162016618810.2174/1385272819666150810222057
    [Google Scholar]
  27. Al-RubaieA.Z. Al-JadaanS.A.S. MuslimS.K. SaeedE.A. AliE.T. Al-HasaniA.K.J. Al-SalmanH.N.K. Al-FadalS.A.M. Synthesis, characterization and antibacterial activity of some new ferrocenyl selenazoles and 3,5-diferrocenyl-1,2,4-selenadiazole.J. Organomet. Chem.2014774434710.1016/j.jorganchem.2014.10.007
    [Google Scholar]
  28. Álvarez-PérezM. AliW. MarćM. HandzlikJ. Domínguez-ÁlvarezE. Selenides and diselenides: A review of their anticancer and chemopreventive activity.Molecules201823362810.3390/molecules23030628 29534447
    [Google Scholar]
  29. HouW. DongH. ZhangX. WangY. SuL. XuH. Selenium as an emerging versatile player in heterocycles and natural products modification.Drug Discov. Today20222782268227710.1016/j.drudis.2022.03.020 35390546
    [Google Scholar]
  30. TiekinkE.R.T. Therapeutic potential of selenium and tellurium compounds: Opportunities yet unrealised.Dalton Trans.201241216390639510.1039/c2dt12225a 22252404
    [Google Scholar]
  31. BragaA.L. RafiqueJ. Synthesis of biologically relevant small molecules containing selenium. Part, B. Anti-infective and anticancer compounds. In: Organic Selenium and Tellurium Compounds RappoportZ. Patai’s Chemistry of Functional Groups. John Wiley and SonsChichester, UK2013410531117
    [Google Scholar]
  32. ChuaiH. ZhangS.Q. BaiH. LiJ. WangY. SunJ. WenE. ZhangJ. XinM. Small molecule selenium-containing compounds: Recent development and therapeutic applications.Eur. J. Med. Chem.202122311362110.1016/j.ejmech.2021.113621 34217061
    [Google Scholar]
  33. AngeliA. TaniniD. CapperucciA. SupuranC.T. Synthesis of novel selenides bearing benzenesulfonamide moieties as carbonic anhydrase I, II, IV, VII, and IX inhibitors.ACS Med. Chem. Lett.20178121213121710.1021/acsmedchemlett.7b00387 29259736
    [Google Scholar]
  34. ThoméG.R. OliveiraV.A. Chitolina SchetingerM.R. SaraivaR.A. SouzaD. Dorneles RodriguesO.E. Teixeira RochaJ.B. IneuR.P. PereiraM.E. Selenothymidine protects against biochemical and behavioral alterations induced by ICV-STZ model of dementia in mice.Chem. Biol. Interact.201829413514310.1016/j.cbi.2018.08.004 30120923
    [Google Scholar]
  35. NinomiyaM. GarudD.R. KoketsuM. Biologically significant selenium-containing heterocycles.Coord. Chem. Rev.201125523-242968299010.1016/j.ccr.2011.07.009
    [Google Scholar]
  36. TucciA.R. da RosaR.M. RosaA.S. Augusto ChavesO. FerreiraV.N.S. OliveiraT.K.F. Coutinho SouzaD.D. BorbaN.R.R. DornellesL. RochaN.S. MayerJ.C.P. da RochaJ.B.T. RodriguesO.E.D. MirandaM.D. Antiviral effect of 5′-Arylchalcogeno-3-aminothymidine derivatives in SARS-CoV-2 infection.Molecules20232818669610.3390/molecules28186696 37764472
    [Google Scholar]
  37. RuberteA.C. SanmartinC. AydilloC. SharmaA.K. PlanoD. Development and therapeutic potential of selenazo compounds.J. Med. Chem.20206341473148910.1021/acs.jmedchem.9b01152 31638805
    [Google Scholar]
  38. ChuC.K. MaL. OlgenS. PierraC. DuJ. GuminaG. GullenE. ChengY.C. SchinaziR.F. Synthesis and antiviral activity of oxaselenolane nucleosides.J. Med. Chem.200043213906391210.1021/jm990113x 11052795
    [Google Scholar]
  39. SancinetoL. MariottiA. BagnoliL. MariniF. DesantisJ. IraciN. SantiC. PannecouqueC. TabarriniO. Design and synthesis of diselenoBisBenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-hiv activity.J. Med. Chem.201558249601961410.1021/acs.jmedchem.5b01183 26613134
    [Google Scholar]
  40. IraciN. TabarriniO. SantiC. SancinetoL. NCp7: Targeting a multitask protein for next-generation anti-HIV drug development part 2. Noncovalent inhibitors and nucleic acid binders.Drug Discov. Today201823368769510.1016/j.drudis.2018.01.022 29326078
    [Google Scholar]
  41. GandinV. KhalkarP. BraudeJ. FernandesA.P. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment.Free Radic. Biol. Med.2018127809710.1016/j.freeradbiomed.2018.05.001 29746900
    [Google Scholar]
  42. AzadG.K. TomarR.S. Ebselen, a promising antioxidant drug: Mechanisms of action and targets of biological pathways.Mol. Biol. Rep.20144184865487910.1007/s11033‑014‑3417‑x 24867080
    [Google Scholar]
  43. VitakuE. SmithD.T. NjardarsonJ.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.J. Med. Chem.20145724102571027410.1021/jm501100b 25255204
    [Google Scholar]
  44. GomtsyanA. Heterocycles in drugs and drug discovery.Chem. Heterocycl. Compd.201248171010.1007/s10593‑012‑0960‑z
    [Google Scholar]
  45. HaddachM. SchwaebeM.K. MichauxJ. NagasawaJ. O’BrienS.E. WhittenJ.P. PierreF. KerdoncuffP. DarjaniaL. StansfieldR. DryginD. AnderesK. ProffittC. BliesathJ. Siddiqui-JainA. OmoriM. HuserN. RiceW.G. RyckmanD.M. Discovery of CX-5461, the first direct and selective inhibitor of RNA Polymerase I, for cancer therapeutics.ACS Med. Chem. Lett.20123760260610.1021/ml300110s 24900516
    [Google Scholar]
  46. ShiF. LiC. XiaM. MiaoK. ZhaoY. TuS. ZhengW. ZhangG. MaN. Green chemoselective synthesis of thiazolo[3,2-a]pyridine derivatives and evaluation of their antioxidant and cytotoxic activities.Bioorg. Med. Chem. Lett.200919195565556810.1016/j.bmcl.2009.08.046 19729303
    [Google Scholar]
  47. MishraR. SharmaP.K. VermaP.K. TomerI. MathurG. DhakadP.K. Biological potential of thiazole derivatives of synthetic origin.J. Heterocycl. Chem.20175442103211610.1002/jhet.2827
    [Google Scholar]
  48. ChhabriaM.T. PatelS. ModiP. BrahmkshatriyaP.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives.Curr. Top. Med. Chem.201616262841286210.2174/1568026616666160506130731 27150376
    [Google Scholar]
  49. ManfroniG. MeschiniF. BarrecaM.L. LeyssenP. SamueleA. IraciN. SabatiniS. MassariS. MagaG. NeytsJ. CecchettiV. Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase.Bioorg. Med. Chem.201220286687610.1016/j.bmc.2011.11.061 22197397
    [Google Scholar]
  50. WalkerK.A.M. SjogrenE.B. MatthewsT.R. Antitrichomonal activity of mesoionic thiazolo[3,2-a]pyridines.J. Med. Chem.198528111673167910.1021/jm00149a023 4067993
    [Google Scholar]
  51. MusalovM.V. YakimovV.A. PotapovV.A. AmosovaS.V. BorodinaT.N. ZinchenkoS.V. A novel methodology for the synthesis of condensed selenium heterocycles based on the annulation and annulation-methoxylation reactions of selenium dihalides.New J. Chem.20194347184761848310.1039/C9NJ04707G
    [Google Scholar]
  52. PotapovV.A. MusalovM.V. AmosovaS.V. Reactions of selenium dichloride and dibromide with unsaturated ethers. Annulation of 2,3-dihydro-1,4-oxaselenine to the benzene ring.Tetrahedron Lett.201152364606461010.1016/j.tetlet.2011.06.071
    [Google Scholar]
  53. PotapovV.A. IshigeevR.S. BelovezhetsL.A. AmosovaS.V. A novel family of [1,4]Thiazino[2,3,4-ij]quinolin-4-ium derivatives: Regioselective synthesis based on unsaturated heteroatom and heterocyclic compounds and antibacterial activity.Molecules20212618557910.3390/molecules26185579 34577049
    [Google Scholar]
  54. MusalovM.V. PotapovV.A. Selenium dihalides: New possibilities for the synthesis of selenium-containing heterocycles (microreview).Chem. Heterocycl. Compd.201753215015210.1007/s10593‑017‑2031‑y
    [Google Scholar]
  55. AccursoA.A. ChoS.H. AminA. PotapovV.A. AmosovaS.V. FinnM.G. Thia-, aza-, and selena[3.3.1]bicyclononane dichlorides: Rates vs internal nucleophile in anchimeric assistance.J. Org. Chem.201176114392439510.1021/jo102440k 21545125
    [Google Scholar]
  56. PotapovV.A. AmosovaS.V. AbramovaE.V. LyssenkoK.A. MusalovM.V. FinnM.G. Transannular addition of selenium dichloride and dibromide to 1,5-cyclooctadiene: Synthesis of 2,6-dihalo-9-selenabicyclo[3.3.1]nonanes and their complexes with selenium dihalides.New J. Chem.2015398055805910.1039/C5NJ00684H
    [Google Scholar]
  57. PotapovV.A. MusalovM.V. MusalovaM.V. AmosovaS.V. Recent advances in organochalcogen synthesis based on reactions of chalcogen halides with alkynes and alkene.Curr. Org. Chem.20162013614510.2174/1385272819666150810222454
    [Google Scholar]
  58. BorisovA.V. MatsulevichZ.V. OsmanovV.K. BorisovaT.N. SavikhinaE.V. Heterocyclization in the reaction of pyridine-2-selanyl chloride with styrene.Chem. Heterocycl. Compd.200743452552610.1007/s10593‑007‑0084‑z
    [Google Scholar]
  59. BorisovA.V. OsmanovV.K. BorisovaG.N. MatsulevichZ.V. FukinG.K. Synthesis of condensed sulfur- and nitrogen-containing heterocycles via polar cycloaddition of hetarene sulfenyl chlorides to a C-C multiple bond.Mendeleev Commun.2009191495110.1016/j.mencom.2009.01.020
    [Google Scholar]
  60. BorisovA.V. MatsulevichZ.V. OsmanovV.K. BorisovaG.N. MammadovaG.Z. MaharramovA.M. KhrustalevV.N. Cycloaddition of di(2-pyridyl) diselenide to styrene activated with antimony pentachloride.Russ. Chem. Bull.201160102057206210.1007/s11172‑011‑0313‑6
    [Google Scholar]
  61. BorisovA.V. MatsulevichZ.V. OsmanovV.K. BorisovaG.N. MammadovaG.Z. MaharramovA.M. KhrustalevV.N. Sulfenyl halides in the synthesis of heterocycles. 4*. Heterocyclization in reactions of alkenes with sulfenylating reagents based on di(2-pyridyl) disulfide.Chem. Heterocycl. Compd.20124871098110410.1007/s10593‑012‑1104‑1
    [Google Scholar]
  62. BorisovA.V. MatsulevichZ.V. OsmanovV.K. BorisovaG.N. Synthesis of 2,3-dihydroselenazolo[3,2-a]pyridinium salts based on reactions of pyridine-2-selanyl chloride with alkenes and dienes.Chem. Heterocycl. Compd.201248349249610.1007/s10593‑012‑1021‑3
    [Google Scholar]
  63. PotapovV.A. MalinovichD.A. AmosovaS.V. RusakovY.Y. BhasinK.K. Reaction of 2-pyridylselenenyl bromide with divinyl selenide.Chem. Heterocycl. Compd.20124871129113110.1007/s10593‑012‑1115‑y
    [Google Scholar]
  64. PotapovV.A. MusalovaM.V. IshigeevR.S. MusalovM.V. PanovV.A. KhabibulinaA.G. AmosovaS.V. BhasinK.K. Efficient and selective syntheses of novel unsaturated chalcogen-containing pyridine derivatives.Tetrahedron Lett.201657485341534310.1016/j.tetlet.2016.10.066
    [Google Scholar]
  65. PotapovV.A. IshigeevR.S. AmosovaS.V. BorodinaT.N. Synthesis of a novel family of water-soluble 2H,3H-[1,3]thia- and -selenazolo[3,2-a]pyridin-4-ium heterocycles by annulation reactions.Tetrahedron Lett.201960647547910.1016/j.tetlet.2019.01.001
    [Google Scholar]
  66. PotapovV.A. IshigeevR.S. ShkurchenkoI.V. ZinchenkoS.V. AmosovaS.V. Natural compounds and their structural analogs in regio- and stereoselective synthesis of new families of water-soluble 2H,3H-[1,3]thia- and -Selenazolo[3,2-a]pyridin-4-ium heterocycles by annulation reactions.Molecules202025237610.3390/molecules25020376 31963275
    [Google Scholar]
  67. SamuilovY.D. GainullinV.I. Solov’evaS.E. KonovalovA.I. Reactivity of styrenes toward electrophilic addition of phenylsulfenyl chloride.Zhurnal Organicheskoi Khimii198824795803
    [Google Scholar]
  68. LiottaD. ZimaG. An examination of the synthetic utility of phenylselenenyl chloride additions to olefins.Tetrahedron Lett.197819504977498010.1016/S0040‑4039(01)85786‑5
    [Google Scholar]
  69. RasteikieneL. GreiciuteD. Lin’kovaM.G. KnunyantsI.L. The addition of sulphenyl chlorides to unsaturated compounds.Russ. Chem. Rev.197746654856410.1070/RC1977v046n06ABEH002155
    [Google Scholar]
  70. SmitV.A. ZefirovN.S. BodrikovI.V. KrimerM.Z. Episulfonium ions: Myth and reality.Acc. Chem. Res.197912828228810.1021/ar50140a003
    [Google Scholar]
  71. Abu-yousefI.A. HarppD.N. New sulfenyl chloride chemistry: Synthesis, reactions and mechanisms toward carbon-carbon double bonds.Sulfur reports200324325528210.1080/01961770308047977
    [Google Scholar]
  72. DenmarkS.E. VoglerT. Synthesis and reactivity of enantiomerically enriched thiiranium ions.Chemistry20091543117371174510.1002/chem.200901377 19760721
    [Google Scholar]
  73. DenmarkS.E. CollinsW.R. CullenM.D. Observation of direct sulfenium and selenenium group transfer from thiiranium and seleniranium ions to alkenes.J. Am. Chem. Soc.2009131103490349210.1021/ja900187y 19227982
    [Google Scholar]
  74. DenmarkS.E. EdwardsM.G. On the mechanism of the selenolactonization reaction with selenenyl halides.J. Org. Chem.200671197293730610.1021/jo0610457 16958523
    [Google Scholar]
  75. DenmarkS.E. KalyaniD. CollinsW.R. Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions.J. Am. Chem. Soc.201013244157521576510.1021/ja106837b 20961070
    [Google Scholar]
  76. WiegandI. HilpertK. HancockR.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.Nat. Protoc.20083216317510.1038/nprot.2007.521 18274517
    [Google Scholar]
/content/journals/coc/10.2174/0113852728326804240828071148
Loading
/content/journals/coc/10.2174/0113852728326804240828071148
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test