Skip to content
2000
Volume 29, Issue 9
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Novel bispidine skeleton has been extensively designed as bifunctional chelators (BFCs) for their special stereochemical structure and variable dentate numbers. Bispidine-based ligands (BBLs) as BFCs generally integrate the benefits of conventional acyclic and macrocyclic BFCs, demonstrating exceptional radiolabeling kinetics, thermodynamic stability and kinetic inertness for their metal complexes. The accessible inherent spatial asymmetry in bispidine skeleton is well-suited for Jahn-Teller active metal ions, notably Cu(II). Currently, BBLs have already been studied to coordinate with radionuclides such as 52Mn, 64/67Cu, 68Ga, 111In, 133La, 177Lu, 212Pb, 212/213Bi, and 225Ac for radiopharmaceuticals application. Among them, the 64Cu, 52Mn, 111In, 177Lu, and 225Ac complexes with BBLs have particularly made significant research progress. In this review, we introduce the synthesis of BBLs and their applications in chelating the above five metallic radionuclides for the development of radiopharmaceuticals are discussed.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728346887240924050723
2024-10-21
2025-04-09
Loading full text...

Full text loading...

References

  1. LapiS.E. ScottP.J.H. ScottA.M. WindhorstA.D. ZeglisB.M. Abdel-WahabM. BaumR.P. BuattiJ.M. GiammarileF. KiessA.P. JalilianA. KnollP. KordeA. KunikowskaJ. LeeS.T. PaezD. UrbainJ.L. ZhangJ. LewisJ.S. Recent advances and impending challenges for the radiopharmaceutical sciences in oncology.Lancet Oncol.2024256e236e24910.1016/S1470‑2045(24)00030‑5 38821098
    [Google Scholar]
  2. LiuS. The role of coordination chemistry in the development of target-specific radiopharmaceuticals.Chem. Soc. Rev.200433744546110.1039/b309961j 15354226
    [Google Scholar]
  3. VolkertW.A. HoffmanT.J. Therapeutic radiopharmaceuticals.Chem. Rev.19999992269229210.1021/cr9804386 11749482
    [Google Scholar]
  4. SunX. HuangX. YanX. WangY. GuoJ. JacobsonO. LiuD. SzajekL.P. ZhuW. NiuG. KiesewetterD.O. SunS. ChenX. Chelator-free (64)Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy.ACS Nano2014888438844610.1021/nn502950t 25019252
    [Google Scholar]
  5. FosterA. NigamS. TatumD.S. RaphaelI. XuJ. KumarR. PlakseychukE. LatocheJ.D. VinczeS. LiB. GiriR. McCarlL.H. EdingerR. AkM. PeddagangireddyV. FoleyL.M. HitchensT.K. ColenR.R. PollackI.F. PanigrahyA. MagdaD. AndersonC.J. EdwardsW.B. KohanbashG. Novel theranostic agent for PET imaging and targeted radiopharmaceutical therapy of tumour-infiltrating immune cells in glioma.EBioMedicine20217110357110.1016/j.ebiom.2021.103571 34530385
    [Google Scholar]
  6. GuoZ. SadlerP.J. Metals in medicine.Angew. Chem. Int. Ed.199938111512153110.1002/(SICI)1521‑3773(19990601)38:11<1512:AID‑ANIE1512>3.0.CO;2‑Y 29711002
    [Google Scholar]
  7. MediciS. PeanaM. NurchiV.M. LachowiczJ.I. CrisponiG. ZorodduM.A. Noble metals in medicine: Latest advances.Coord. Chem. Rev.201528432935010.1016/j.ccr.2014.08.002
    [Google Scholar]
  8. LiC. PangY. XuY. LuM. TuL. LiQ. SharmaA. GuoZ. LiX. SunY. Near-infrared metal agents assisting precision medicine: From strategic design to bioimaging and therapeutic applications.Chem. Soc. Rev.202352134392444210.1039/D3CS00227F 37334831
    [Google Scholar]
  9. KhorasaniA. Shahbazi-GahroueiD. SafariA. Recent metal nanotheranostics for cancer diagnosis and therapy: A review.Diagnostics (Basel)202313583310.3390/diagnostics13050833 36899980
    [Google Scholar]
  10. XuY. LiC. LuS. WangZ. LiuS. YuX. LiX. SunY. Construction of emissive ruthenium(II) metallacycle over 1000 nm wavelength for in vivo biomedical applications.Nat. Commun.2022131200910.1038/s41467‑022‑29572‑2 35422104
    [Google Scholar]
  11. TuL. LiC. XiongX. Hyeon KimJ. LiQ. MeiL. LiJ. LiuS. Seung KimJ. SunY. Engineered metallacycle-based supramolecular photosensitizers for effective photodynamic therapy.Angew. Chem. Int. Ed.20236215e20230156010.1002/anie.202301560 36786535
    [Google Scholar]
  12. LiC. TuL. YangJ. LiuC. XuY. LiJ. TuoW. OlenyukB. SunY. StangP.J. SunY. Acceptor engineering of metallacycles with high phototoxicity indices for safe and effective photodynamic therapy.Chem. Sci. (Camb.)202314112901290910.1039/D2SC06936A 36937588
    [Google Scholar]
  13. XuY. LiC. AnJ. MaX. YangJ. LuoL. DengY. KimJ.S. SunY. Construction of a 980 nm laser-activated Pt(II) metallacycle nanosystem for efficient and safe photo-induced bacteria sterilization.Sci. China Chem.202366115516310.1007/s11426‑022‑1440‑2
    [Google Scholar]
  14. XuY. LiC. MaX. TuoW. TuL. LiX. SunY. StangP.J. SunY. Long wavelength–emissive Ru(II) metallacycle–based photosensitizer assisting in vivo bacterial diagnosis and antibacterial treatment.Proc. Natl. Acad. Sci. USA202211932e220990411910.1073/pnas.2209904119 35914164
    [Google Scholar]
  15. JosefsenL.B. BoyleR.W. Photodynamic therapy and the development of metal-based photosensitisers.Met. Based Drugs20082008112310.1155/2008/276109 18815617
    [Google Scholar]
  16. LengacherR. MarlinA. ŚmiłowiczD. BorosE. Medicinal inorganic chemistry – Challenges, opportunities and guidelines to develop the next generation of radioactive, photoactivated and active site inhibiting metal-based medicines.Chem. Soc. Rev.202251187715773110.1039/D2CS00407K 35942718
    [Google Scholar]
  17. MacPhersonD.S. FungK. CookB.E. FrancesconiL.C. ZeglisB.M. A brief overview of metal complexes as nuclear imaging agents.Dalton Trans.20194839145471456510.1039/C9DT03039E 31556418
    [Google Scholar]
  18. DengX. RongJ. WangL. VasdevN. ZhangL. JosephsonL. LiangS.H. Chemistry for positron emission tomography: Recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions.Angew. Chem. Int. Ed.20195892580260510.1002/anie.201805501 30054961
    [Google Scholar]
  19. LittichR. ScottP.J.H. Novel strategies for fluorine-18 radiochemistry.Angew. Chem. Int. Ed.20125151106110910.1002/anie.201106785 22213395
    [Google Scholar]
  20. KostelnikT.I. OrvigC. Radioactive main group and rare earth metals for imaging and therapy.Chem. Rev.2019119290295610.1021/acs.chemrev.8b00294 30379537
    [Google Scholar]
  21. DhoundiyalS. SrivastavaS. KumarS. SinghG. AshiqueS. PalR. MishraN. Taghizadeh-HesaryF. Radiopharmaceuticals: Navigating the frontier of precision medicine and therapeutic innovation.Eur. J. Med. Res.20242912610.1186/s40001‑023‑01627‑0 38183131
    [Google Scholar]
  22. PriceE.W. OrvigC. Matching chelators to radiometals for radiopharmaceuticals.Chem. Soc. Rev.201443126029010.1039/C3CS60304K 24173525
    [Google Scholar]
  23. OkoyeN.C. BaumeisterJ.E. Najafi KhosroshahiF. HennkensH.M. JurissonS.S. Chelators and metal complex stability for radiopharmaceutical applications.Radiochim. Acta20191079-111087112010.1515/ract‑2018‑3090
    [Google Scholar]
  24. BornK. CombaP. FerrariR. LawranceG.A. WadepohlH. Stability constants: A new twist in transition metal bispidine chemistry.Inorg. Chem.200746245846410.1021/ic061501+ 17279825
    [Google Scholar]
  25. LattuadaL. BargeA. CravottoG. GiovenzanaG.B. TeiL. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents.Chem. Soc. Rev.20114053019304910.1039/c0cs00199f 21384039
    [Google Scholar]
  26. WadasT.J. WongE.H. WeismanG.R. AndersonC.J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease.Chem. Rev.201011052858290210.1021/cr900325h 20415480
    [Google Scholar]
  27. PriceE.W. CawthrayJ.F. BaileyG.A. FerreiraC.L. BorosE. AdamM.J. OrvigC. H4octapa: An acyclic chelator for 111In radiopharmaceuticals.J. Am. Chem. Soc.2012134208670868310.1021/ja3024725 22540281
    [Google Scholar]
  28. Pérez-MaloM. SzabóG. EppardE. VagnerA. BrücherE. TóthI. MaiocchiA. SuhE.H. KovácsZ. BaranyaiZ. RöschF. Improved efficacy of synthesizing *MIII-labeled DOTA complexes in binary mixtures of water and organic solvents. A combined radio-and physicochemical study.Inorg. Chem.201857106107611710.1021/acs.inorgchem.8b00669 29746106
    [Google Scholar]
  29. ViitanenR. MoisioO. LankinenP. LiX.G. KoivumäkiM. SuilamoS. TolvanenT. TaimenK. MaliM. KohonenI. KoskivirtaI. OikonenV. VirtanenH. SantalahtiK. AutioA. SarasteA. PiriläL. NuutilaP. KnuutiJ. JalkanenS. RoivainenA. First-in-human study of 68Ga-DOTA-Siglec-9, a PET ligand targeting vascular adhesion protein 1.J. Nucl. Med.202162457758310.2967/jnumed.120.250696 32817143
    [Google Scholar]
  30. TircsóG. KovácsZ. SherryA.D. Equilibrium and formation/dissociation kinetics of some Ln(III)PCTA complexes.Inorg. Chem.200645239269928010.1021/ic0608750 17083226
    [Google Scholar]
  31. NayakT.K. ReginoC.A.S. WongK.J. MilenicD.E. GarmestaniK. BaidooK.E. SzajekL.P. BrechbielM.W. PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A″-DTPA-cetuximab.Eur. J. Nucl. Med. Mol. Imaging20103771368137610.1007/s00259‑009‑1370‑z 20155263
    [Google Scholar]
  32. MannichC. MohsP. About derivatives of a bicyclic system fused from two piperidine rings.Ber. Dtsch. Chem. Ges. B193063360861210.1002/cber.19300630314
    [Google Scholar]
  33. NonatA.M. RouxA. SyM. CharbonnièreL.J. 2,4-Substituted bispidines as rigid hosts for versatile applications: From κ-opioid receptor to metal coordination.Dalton Trans.20194844164761649210.1039/C9DT03480C 31599913
    [Google Scholar]
  34. GrygorenkoO.O. RadchenkoD.S. VolochnyukD.M. TolmachevA.A. KomarovI.V. Bicyclic conformationally restricted diamines.Chem. Rev.201111195506556810.1021/cr100352k 21711015
    [Google Scholar]
  35. KizirianJ.C. Chiral tertiary diamines in asymmetric synthesis.Chem. Rev.2008108114020510.1021/cr040107v 18081351
    [Google Scholar]
  36. ZhangM. YanY. SunH. FuX. HuangJ. Sparteine family: Privileged chiral ligands in transition metal catalysis.Curr. Org. Chem.202226542743110.2174/1385272826666220408105613
    [Google Scholar]
  37. CombaP. KerscherM. RückK. StarkeM. Bispidines for radiopharmaceuticals.Dalton Trans.201847289202922010.1039/C8DT01108G 29862405
    [Google Scholar]
  38. CombaP. KubeilM. PietzschJ. RudolfH. StephanH. ZarschlerK. Bispidine dioxotetraaza macrocycles: A new class of bispidines for (64)Cu PET imaging.Inorg. Chem.201453136698670710.1021/ic500476u 24906110
    [Google Scholar]
  39. O’BrienP. Basic instinct: Design, synthesis and evaluation of (+)-sparteine surrogates for asymmetric synthesis.Chem. Commun. (Camb.)2008665566710.1039/B711420F 18478687
    [Google Scholar]
  40. LiuJ. YangZ. WangZ. WangF. ChenX. LiuX. FengX. SuZ. HuC. Asymmetric direct aldol reaction of functionalized ketones catalyzed by amine organocatalysts based on bispidine.J. Am. Chem. Soc.2008130175654565510.1021/ja800839w 18380434
    [Google Scholar]
  41. SunH. HuangL. HuangJ. Sparteine thiourea: The synthesis of an N chiral bispidine-quinolizidine-derived organocatalyst and applications in asymmetric synthesis of dihydropyrano[c]chromenes.J. Org. Chem.202489107225723210.1021/acs.joc.4c00638 38712792
    [Google Scholar]
  42. LiG. WangR. YeD. PuM. FengX. LinL. Bispidine-based S,N-chiral ligands for palladium-catalyzed asymmetric arylation of cyclic N-sulfonyl ketimines.Eur. J. Org. Chem.20242710e20240000810.1002/ejoc.202400008
    [Google Scholar]
  43. HoppeD. HintzeF. TebbenP. Chiral lithium-1-oxyalkanides by asymmetric deprotonation-Enantioselective synthesis of 2-hydroxyalkanoic acids and secondary alkanols.Angew. Chem. Int. Ed. Engl.199029121422142410.1002/anie.199014221
    [Google Scholar]
  44. KerrickS.T. BeakP. Asymmetric deprotonations: Enantioselective syntheses of 2-substituted tert-(butoxycarbonyl)pyrrolidines.J. Am. Chem. Soc.1991113259708971010.1021/ja00025a066
    [Google Scholar]
  45. NdiayeD. SyM. PallierA. MêmeS. de SilvaI. LacerdaS. NonatA.M. CharbonnièreL.J. TóthÉ. Unprecedented kinetic inertness for a Mn2+‐bispidine chelate: A novel structural entry for Mn2+‐based imaging agents.Angew. Chem. Int. Ed.20205929119581196310.1002/anie.202003685 32298021
    [Google Scholar]
  46. PriceT.W. YapS.Y. GilletR. SavoieH. CharbonnièreL.J. BoyleR.W. NonatA.M. StasiukG.J. Evaluation of a bispidine-based chelator for gallium-68 and of the porphyrin conjugate as PET/PDT theranostic.Chemistry202026347602760810.1002/chem.201905776 32068310
    [Google Scholar]
  47. ChoudharyN. DimmlingA. WangX. SouthcottL. RadchenkoV. PatrickB.O. CombaP. OrvigC. Octadentate oxine-armed bispidine ligand for radiopharmaceutical chemistry.Inorg. Chem.201958138685869310.1021/acs.inorgchem.9b01016 31247868
    [Google Scholar]
  48. KoppI. CieslikP. AngerK. JosephyT. NeupertL. VelmuruganG. GastM. WadepohlH. BrühlmannS.A. WaltherM. KopkaK. BachmannM. StephanH. KubeilM. CombaP. Bispidine chelators for radiopharmaceutical applications with lanthanide, actinide, and main group metal ions.Inorg. Chem.20236250207542076810.1021/acs.inorgchem.3c02340 37707798
    [Google Scholar]
  49. CieslikP. KubeilM. ZarschlerK. UllrichM. BrandtF. AngerK. WadepohlH. KopkaK. BachmannM. PietzschJ. StephanH. CombaP. Toward personalized medicine: One chelator for imaging and therapy with lutetium-177 and actinium-225.J. Am. Chem. Soc.202214447215552156710.1021/jacs.2c08438 36382991
    [Google Scholar]
  50. BruchertseiferF. CombaP. MartinB. MorgensternA. NotniJ. StarkeM. WadepohlH. First-generation bispidine chelators for 213BiIII radiopharmaceutical applications.ChemMedChem202015161591160010.1002/cmdc.202000361 32613737
    [Google Scholar]
  51. NorrehedS. ErdélyiM. LightM.E. GogollA. Protonation-triggered conformational modulation of an N,N′-dialkylbispidine: first observation of the elusive boat–boat conformer.Org. Biomol. Chem.201311376292629910.1039/c3ob41122b 23942643
    [Google Scholar]
  52. CombaP. KerscherM. SchiekW. Bispidine Coordination Chemistry. In: Progress in Inorganic Chemistry. KarlinK.D. John Wiley & Sons, Inc.200761370410.1002/9780470144428.ch9
    [Google Scholar]
  53. StetterH. SchäferJ. DiemingerK. On compounds with urotropin structure, X. On the formation of the 1,3-diaza-adamantane ring system by Mannich condensation.Chem. Ber.195891359860410.1002/cber.19580910319
    [Google Scholar]
  54. StetterH. DiemingerK. RauscherE. About compounds with urotropin structure, XIII. About sulfur-containing derivatives of 1,3-diaza-adamantane.Chem. Ber.19599292057206110.1002/cber.19590920915
    [Google Scholar]
  55. StetterH. HennigH. On compounds with urotropin structure, VI. Communication: Synthesis of 1,3-diaza-adamantane.Chem. Ber.195588678979510.1002/cber.19550880608
    [Google Scholar]
  56. GalinovskyF. LangerH. Synthese des 1,3-diaza-adamantans und des bispidins.Monatsh. Chem.195586344945310.1007/BF00903631
    [Google Scholar]
  57. CombaP. HunoldtS. MorgenM. PietzschJ. StephanH. WadepohlH. Optimization of pentadentate bispidines as bifunctional chelators for 64Cu Positron Emission Tomography (PET).Inorg. Chem.201352148131814310.1021/ic4008685 23819880
    [Google Scholar]
  58. Abad-GalánL. CieslikP. CombaP. GastM. MauryO. NeupertL. RouxA. WadepohlH. Excited state properties of lanthanide(III) complexes with a nonadentate bispidine ligand.Chemistry20212740103031031210.1002/chem.202005459 33780569
    [Google Scholar]
  59. HallerR. Metallchelate pyridyl‐(2)‐substituierter 3,7‐diaza‐bicyclo‐[3,3,1]‐nonanone.Arch. Pharm. (Weinheim)1969302211311810.1002/ardp.19693020206 5260840
    [Google Scholar]
  60. StetterH. MertenR. On compounds with urotropin structure, IX. About bispidine.Chem. Ber.195790686887510.1002/cber.19570900605
    [Google Scholar]
  61. HoskenG.D. AllanC.C. BoeyensJ.C.A. HancockR.D. Structure of the copper(II) complex of a highly preorganised tetradentate ligand based on bispidine (3,7-diazabicyclo[3.3.1]nonane).J. Chem. Soc., Dalton Trans.1995223705370810.1039/dt9950003705
    [Google Scholar]
  62. CombaP. NuberB. RamlowA. The design of a new type of very rigid tetradentate ligand.J. Chem. Soc., Dalton Trans.1997334735210.1039/a603635j
    [Google Scholar]
  63. TownsendD.W. Positron emission tomography/computed tomography.Semin. Nucl. Med.200838315216610.1053/j.semnuclmed.2008.01.003 18396176
    [Google Scholar]
  64. HoskenG.D. HancockR.D. Very strong and selective complexation of small metal lons by a highly preorganised open-chain bispidine-based ligand.J. Chem. Soc. Chem. Commun.1994111363136410.1039/c39940001363
    [Google Scholar]
  65. CombaP. JuranS. KerscherM. PietzschH-J. SpiesH. StephanH. Radio metal complexes based on bispidine and the derivatives thereof as chelating agents, and use thereof for nuclear medical diagnosis and therapy. US Patent 0,193,378,2008
    [Google Scholar]
  66. JuranS. WaltherM. StephanH. BergmannR. SteinbachJ. KrausW. EmmerlingF. CombaP. Hexadentate bispidine derivatives as versatile bifunctional chelate agents for copper(II) radioisotopes.Bioconjug. Chem.200920234735910.1021/bc800461e 19173600
    [Google Scholar]
  67. Avila-RodriguezM.A. NyeJ.A. NicklesR.J. Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei.Appl. Radiat. Isot.200765101115112010.1016/j.apradiso.2007.05.012 17669663
    [Google Scholar]
  68. BoschiA. MartiniP. Janevik-IvanovskaE. DuattiA. The emerging role of copper-64 radiopharmaceuticals as cancer theranostics.Drug Discov. Today20182381489150110.1016/j.drudis.2018.04.002 29635027
    [Google Scholar]
  69. BartholomäM.D. Recent developments in the design of bifunctional chelators for metal-based radiopharmaceuticals used in Positron Emission Tomography.Inorg. Chim. Acta2012389365110.1016/j.ica.2012.01.061
    [Google Scholar]
  70. MotekaitisR.J. RogersB.E. ReichertD.E. MartellA.E. WelchM.J. Stability and structure of activated macrocycles. Ligands with biological applications.Inorg. Chem.199635133821382710.1021/ic960067g 11666570
    [Google Scholar]
  71. ParkerD. Tumour targeting with radiolabelled macrocycle–antibody conjugates.Chem. Soc. Rev.199019327129110.1039/CS9901900271
    [Google Scholar]
  72. SmithC.J. VolkertW.A. HoffmanT.J. Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: A concise update.Nucl. Med. Biol.200330886186810.1016/S0969‑8051(03)00116‑1 14698790
    [Google Scholar]
  73. FerreiraC.A. FuscaldiL.L. TownsendD.M. RubelloD. BarrosA.L.B. Radiolabeled bombesin derivatives for preclinical oncological imaging.Biomed. Pharmacother.201787587210.1016/j.biopha.2016.12.083 28040598
    [Google Scholar]
  74. SinghG. ZarschlerK. HunoldtS. MartínezI.I.S. RuehlC.L. MatternaM. BergmannR. MáthéD. HegedüsN. BachmannM. CombaP. StephanH. Versatile bispidine‐based bifunctional chelators for 64CuII‐labelling of biomolecules.Chemistry20202691989200110.1002/chem.201904654 31755596
    [Google Scholar]
  75. MitsudomiT. YatabeY. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer.FEBS J.2010277230130810.1111/j.1742‑4658.2009.07448.x 19922469
    [Google Scholar]
  76. ZarschlerK. WitecyS. KappluschF. FoersterC. StephanH. High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli.Microb. Cell Fact.20131219710.1186/1475‑2859‑12‑97 24161153
    [Google Scholar]
  77. StephanH. WaltherM. FähnemannS. CeroniP. MolloyJ.K. BergaminiG. HeisigF. MüllerC.E. KrausW. CombaP. Bispidines for dual imaging.Chemistry20142051170111701810.1002/chem.201404086 25345969
    [Google Scholar]
  78. BleiholderC. BörzelH. CombaP. FerrariR. HeydtM. KerscherM. KuwataS. LaurenczyG. LawranceG.A. LienkeA. MartinB. MerzM. NuberB. PritzkowH. Coordination chemistry of a new rigid, hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand.Inorg. Chem.200544228145815510.1021/ic0513383 16241165
    [Google Scholar]
  79. CombaP. GrimmL. OrvigC. RückK. WadepohlH. Synthesis and coordination chemistry of hexadentate picolinic acid based bispidine ligands.Inorg. Chem.20165524125311254310.1021/acs.inorgchem.6b01787 27989192
    [Google Scholar]
  80. CombaP. JakobM. RückK. WadepohlH. Tuning of the properties of a picolinic acid-based bispidine ligand for stable copper(II) complexation.Inorg. Chim. Acta20184819810510.1016/j.ica.2017.08.022
    [Google Scholar]
  81. RouxA. NonatA.M. BrandelJ. Hubscher-BruderV. CharbonnièreL.J. Kinetically inert bispidol-based Cu(II) chelate for potential application to 64/67Cu nuclear medicine and diagnosis.Inorg. Chem.20155494431444410.1021/acs.inorgchem.5b00207 25866934
    [Google Scholar]
  82. GilletR. RouxA. BrandelJ. Huclier-MarkaiS. CamerelF. JeanninO. NonatA.M. CharbonnièreL.J. A bispidol chelator with a phosphonate pendant arm: Synthesis, Cu(II) complexation, and 64Cu labeling.Inorg. Chem.20175619117381175210.1021/acs.inorgchem.7b01731 28915014
    [Google Scholar]
  83. RouxA. GilletR. Huclier-MarkaiS. Ehret-SabatierL. CharbonnièreL.J. NonatA.M. Bifunctional bispidine derivatives for copper-64 labelling and positron emission tomography.Org. Biomol. Chem.20171561475148310.1039/C6OB02712A 28116378
    [Google Scholar]
  84. Medved’koA.V. EgorovaB.V. KomarovaA.A. RakhimovR.D. Krut’koD.P. KalmykovS.N. VatsadzeS.Z. Copper-bispidine complexes: Synthesis and complex stability study.ACS Omega20161585486710.1021/acsomega.6b00237 31457168
    [Google Scholar]
  85. LinC.T. RorabacherD.B. CayleyG.R. MargerumD.W. Steric effects in the complexation kinetics of cyclic and open-chain polyamines with copper(II) in basic aqueous media.Inorg. Chem.197514491992510.1021/ic50146a040
    [Google Scholar]
  86. DrumhillerJ.A. MontavonF. LehnJ.M. TaylorR.W. Complexation kinetics of highly substituted acyclic, monocyclic, and bicyclic tetraamines with copper(II) in basic aqueous media.Inorg. Chem.198625213751375710.1021/ic00241a009
    [Google Scholar]
  87. DiaddarioL.L.Jr OchrymowyczL.A. RorabacherD.B. Effect of “noncomplexing” anions on copper(II)-macrocyclic tetrathiaether complexes. Evaluation of dissociation kinetics in aqueous solution using mercury(II) ion as scavenger.Inorg. Chem.199231122347235310.1021/ic00038a011
    [Google Scholar]
  88. AronneL. YuQ. OchrymowyczL.A. RorabacherD.B. Effect of macrocyclic ligand constraints upon the kinetics of complex formation and dissociation and metal Ion exchange. Copper(II) complexes with cyclohexanediyl derivatives of the cyclic tetrathiaether [14]aneS4 in 80% methanol.Inorg. Chem.19953471844185110.1021/ic00111a036
    [Google Scholar]
  89. CieslikP. CombaP. DittmarB. NdiayeD. TóthÉ. VelmuruganG. WadepohlH. Exceptional manganese(II) stability and manganese(II)/zinc(II) selectivity with rigid polydentate ligands.Angew. Chem. Int. Ed.20226110e20211558010.1002/anie.202115580 34979049
    [Google Scholar]
  90. NdiayeD. CieslikP. WadepohlH. PallierA. MêmeS. CombaP. TóthÉ. Mn2+ bispidine complex combining exceptional stability, inertness, and MRI efficiency.J. Am. Chem. Soc.202214448222122222010.1021/jacs.2c10108 36445192
    [Google Scholar]
  91. NdiayeD. SyM. ThorW. CharbonnièreL.J. NonatA.M. TóthÉ. Structural variations in carboxylated bispidine ligands: Influence of positional isomerism and rigidity on the conformation, stability, inertness and relaxivity of their Mn2+ complexes.Chemistry20232962e20230188010.1002/chem.202301880 37470713
    [Google Scholar]
  92. WadasT.J. PandyaD.N. Solingapuram SaiK.K. MintzA. Molecular targeted α-particle therapy for oncologic applications.AJR Am. J. Roentgenol.2014203225326010.2214/AJR.14.12554 25055256
    [Google Scholar]
  93. GeorgeS.C. SamuelE.J.J. Developments in 177Lu-based radiopharmaceutical therapy and dosimetry.Front Chem.202311121867010.3389/fchem.2023.1218670 37583569
    [Google Scholar]
  94. MittraE.S. Neuroendocrine tumor therapy: 177Lu-DOTATATE.AJR Am. J. Roentgenol.2018211227828510.2214/AJR.18.19953 29949416
    [Google Scholar]
  95. McDevittM.R. MaD. SimonJ. FrankR.K. ScheinbergD.A. Design and synthesis of 225Ac radioimmunopharmaceuticals.Appl. Radiat. Isot.200257684184710.1016/S0969‑8043(02)00167‑7 12406626
    [Google Scholar]
  96. CombaP. JermilovaU. OrvigC. PatrickB.O. RamogidaC.F. RückK. SchneiderC. StarkeM. Octadentate picolinic acid-based bispidine ligand for radiometal ions.Chemistry20172363159451595610.1002/chem.201702284 28815804
    [Google Scholar]
  97. HuA. BrownV. MacMillanS.N. RadchenkoV. YangH. WhartonL. RamogidaC.F. WilsonJ.J. Chelating the alpha therapy radionuclides 225Ac3+ and 213Bi3+ with 18-membered macrocyclic ligands macrodipa and py-macrodipa.Inorg. Chem.202261280180610.1021/acs.inorgchem.1c03670 34965102
    [Google Scholar]
  98. KovácsA. Metal-ligand bonding in bispidine chelate complexes for radiopharmaceutical applications.Struct. Chem.202334151510.1007/s11224‑022‑01902‑6
    [Google Scholar]
  99. KovácsA. Theoretical study of heptadentate bispidine ligands for radiopharmaceutic applications.Comput. Theor. Chem.2022121211371610.1016/j.comptc.2022.113716
    [Google Scholar]
  100. GeenenL. NonnekensJ. KonijnenbergM. BaatoutS. De JongM. AertsA. Overcoming nephrotoxicity in peptide receptor radionuclide therapy using [177Lu]Lu-DOTA-TATE for the treatment of neuroendocrine tumours.Nucl. Med. Biol.2021102-10311110.1016/j.nucmedbio.2021.06.006 34242948
    [Google Scholar]
/content/journals/coc/10.2174/0113852728346887240924050723
Loading
/content/journals/coc/10.2174/0113852728346887240924050723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test