Skip to content
2000
image of Bispidine-based Ligands as Bifunctional Chelators for Radiopharmaceuticals

Abstract

Novel bispidine skeleton has been extensively designed as bifunctional chelators (BFCs) for their special stereochemical structure and variable dentate numbers. Bispidine-based ligands (BBLs) as BFCs generally integrate the benefits of conventional acyclic and macrocyclic BFCs, demonstrating exceptional radiolabeling kinetics, thermodynamic stability and kinetic inertness for their metal complexes. The accessible inherent spatial asymmetry in bispidine skeleton is well-suited for Jahn-Teller active metal ions, notably Cu(II). Currently, BBLs have already been studied to coordinate with radionuclides such as 52Mn, 64/67Cu, 68Ga, 111In, 133La, 177Lu, 212Pb, 212/213Bi, and 225Ac for radiopharmaceuticals application. Among them, the 64Cu, 52Mn, 111In, 177Lu, and 225Ac complexes with BBLs have particularly made significant research progress. In this review, we introduce the synthesis of BBLs and their applications in chelating the above five metallic radionuclides for the development of radiopharmaceuticals are discussed.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728346887240924050723
2024-10-21
2024-11-23
Loading full text...

Full text loading...

References

  1. Lapi S.E. Scott P.J.H. Scott A.M. Windhorst A.D. Zeglis B.M. Abdel-Wahab M. Baum R.P. Buatti J.M. Giammarile F. Kiess A.P. Jalilian A. Knoll P. Korde A. Kunikowska J. Lee S.T. Paez D. Urbain J.L. Zhang J. Lewis J.S. Recent advances and impending challenges for the radiopharmaceutical sciences in oncology. Lancet Oncol. 2024 25 6 e236 e249 10.1016/S1470‑2045(24)00030‑5 38821098
    [Google Scholar]
  2. Liu S. The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chem. Soc. Rev. 2004 33 7 445 461 10.1039/b309961j 15354226
    [Google Scholar]
  3. Volkert W.A. Hoffman T.J. Therapeutic Radiopharmaceuticals. Chem. Rev. 1999 99 9 2269 2292 10.1021/cr9804386 11749482
    [Google Scholar]
  4. Sun X. Huang X. Yan X. Wang Y. Guo J. Jacobson O. Liu D. Szajek L.P. Zhu W. Niu G. Kiesewetter D.O. Sun S. Chen X. Chelator-free (64)Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy. ACS Nano 2014 8 8 8438 8446 10.1021/nn502950t 25019252
    [Google Scholar]
  5. Foster A. Nigam S. Tatum D.S. Raphael I. Xu J. Kumar R. Plakseychuk E. Latoche J.D. Vincze S. Li B. Giri R. McCarl L.H. Edinger R. Ak M. Peddagangireddy V. Foley L.M. Hitchens T.K. Colen R.R. Pollack I.F. Panigrahy A. Magda D. Anderson C.J. Edwards W.B. Kohanbash G. Novel theranostic agent for PET imaging and targeted radiopharmaceutical therapy of tumour-infiltrating immune cells in glioma. EBioMedicine 2021 71 103571 10.1016/j.ebiom.2021.103571 34530385
    [Google Scholar]
  6. Guo Z. Sadler P.J. Metals in Medicine. Angew. Chem. Int. Ed. 1999 38 11 1512 1531 10.1002/(SICI)1521‑3773(19990601)38:11<1512::AID‑ANIE1512>3.0.CO;2‑Y 29711002
    [Google Scholar]
  7. Medici S. Peana M. Nurchi V.M. Lachowicz J.I. Crisponi G. Zoroddu M.A. Noble metals in medicine: Latest advances. Coord. Chem. Rev. 2015 284 329 350 10.1016/j.ccr.2014.08.002
    [Google Scholar]
  8. Li C. Pang Y. Xu Y. Lu M. Tu L. Li Q. Sharma A. Guo Z. Li X. Sun Y. Near-infrared metal agents assisting precision medicine: From strategic design to bioimaging and therapeutic applications. Chem. Soc. Rev. 2023 52 13 4392 4442 10.1039/D3CS00227F 37334831
    [Google Scholar]
  9. Khorasani A. Shahbazi-Gahrouei D. Safari A. Recent metal nanotheranostics for cancer diagnosis and therapy: A review. Diagnostics (Basel) 2023 13 5 833 10.3390/diagnostics13050833 36899980
    [Google Scholar]
  10. Xu Y. Li C. Lu S. Wang Z. Liu S. Yu X. Li X. Sun Y. Construction of emissive ruthenium(II) metallacycle over 1000 nm wavelength for in vivo biomedical applications. Nat. Commun. 2022 13 1 2009 10.1038/s41467‑022‑29572‑2 35422104
    [Google Scholar]
  11. Tu L. Li C. Xiong X. Hyeon Kim J. Li Q. Mei L. Li J. Liu S. Seung Kim J. Sun Y. Engineered metallacycle-based supramolecular photosensitizers for effective photodynamic therapy. Angew. Chem. Int. Ed. 2023 62 15 e202301560 10.1002/anie.202301560 36786535
    [Google Scholar]
  12. Li C. Tu L. Yang J. Liu C. Xu Y. Li J. Tuo W. Olenyuk B. Sun Y. Stang P.J. Sun Y. Acceptor engineering of metallacycles with high phototoxicity indices for safe and effective photodynamic therapy. Chem. Sci. (Camb.) 2023 14 11 2901 2909 10.1039/D2SC06936A 36937588
    [Google Scholar]
  13. Xu Y. Li C. An J. Ma X. Yang J. Luo L. Deng Y. Kim J.S. Sun Y. Construction of a 980 nm laser-activated Pt(II) metallacycle nanosystem for efficient and safe photo-induced bacteria sterilization. Sci. China Chem. 2023 66 1 155 163 10.1007/s11426‑022‑1440‑2
    [Google Scholar]
  14. Xu Y. Li C. Ma X. Tuo W. Tu L. Li X. Sun Y. Stang P.J. Sun Y. Long wavelength–emissive Ru(II) metallacycle–based photosensitizer assisting in vivo bacterial diagnosis and antibacterial treatment. Proc. Natl. Acad. Sci. USA 2022 119 32 e2209904119 10.1073/pnas.2209904119 35914164
    [Google Scholar]
  15. Josefsen L.B. Boyle R.W. Photodynamic therapy and the development of metal-based photosensitisers. Met. Based Drugs 2008 2008 1 1 23 10.1155/2008/276109 18815617
    [Google Scholar]
  16. Lengacher R. Marlin A. Śmiłowicz D. Boros E. Medicinal inorganic chemistry – Challenges, opportunities and guidelines to develop the next generation of radioactive, photoactivated and active site inhibiting metal-based medicines. Chem. Soc. Rev. 2022 51 18 7715 7731 10.1039/D2CS00407K 35942718
    [Google Scholar]
  17. MacPherson D.S. Fung K. Cook B.E. Francesconi L.C. Zeglis B.M. A brief overview of metal complexes as nuclear imaging agents. Dalton Trans. 2019 48 39 14547 14565 10.1039/C9DT03039E 31556418
    [Google Scholar]
  18. Deng X. Rong J. Wang L. Vasdev N. Zhang L. Josephson L. Liang S.H. Chemistry for positron emission tomography: Recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions. Angew. Chem. Int. Ed. 2019 58 9 2580 2605 10.1002/anie.201805501 30054961
    [Google Scholar]
  19. Littich R. Scott P.J.H. Novel strategies for fluorine-18 radiochemistry. Angew. Chem. Int. Ed. 2012 51 5 1106 1109 10.1002/anie.201106785 22213395
    [Google Scholar]
  20. Kostelnik T.I. Orvig C. Radioactive main group and rare earth metals for imaging and therapy. Chem. Rev. 2019 119 2 902 956 10.1021/acs.chemrev.8b00294 30379537
    [Google Scholar]
  21. Dhoundiyal S. Srivastava S. Kumar S. Singh G. Ashique S. Pal R. Mishra N. Taghizadeh-Hesary F. Radiopharmaceuticals: Navigating the frontier of precision medicine and therapeutic innovation. Eur. J. Med. Res. 2024 29 1 26 10.1186/s40001‑023‑01627‑0 38183131
    [Google Scholar]
  22. Price E.W. Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 2014 43 1 260 290 10.1039/C3CS60304K 24173525
    [Google Scholar]
  23. Okoye N.C. Baumeister J.E. Najafi Khosroshahi F. Hennkens H.M. Jurisson S.S. Chelators and metal complex stability for radiopharmaceutical applications. Radiochim. Acta 2019 107 9-11 1087 1120 10.1515/ract‑2018‑3090
    [Google Scholar]
  24. Born K. Comba P. Ferrari R. Lawrance G.A. Wadepohl H. Stability constants: A new twist in transition metal bispidine chemistry. Inorg. Chem. 2007 46 2 458 464 10.1021/ic061501+ 17279825
    [Google Scholar]
  25. Lattuada L. Barge A. Cravotto G. Giovenzana G.B. Tei L. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem. Soc. Rev. 2011 40 5 3019 3049 10.1039/c0cs00199f 21384039
    [Google Scholar]
  26. Wadas T.J. Wong E.H. Weisman G.R. Anderson C.J. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 2010 110 5 2858 2902 10.1021/cr900325h 20415480
    [Google Scholar]
  27. Price E.W. Cawthray J.F. Bailey G.A. Ferreira C.L. Boros E. Adam M.J. Orvig C. H4octapa: An acyclic chelator for 111In radiopharmaceuticals. J. Am. Chem. Soc. 2012 134 20 8670 8683 10.1021/ja3024725 22540281
    [Google Scholar]
  28. Pérez-Malo M. Szabó G. Eppard E. Vagner A. Brücher E. Tóth I. Maiocchi A. Suh E.H. Kovács Z. Baranyai Z. Rösch F. Improved efficacy of synthesizing *MIII-labeled DOTA complexes in binary mixtures of water and organic solvents. A combined radio- and physicochemical study. Inorg. Chem. 2018 57 10 6107 6117 10.1021/acs.inorgchem.8b00669 29746106
    [Google Scholar]
  29. Viitanen R. Moisio O. Lankinen P. Li X.G. Koivumäki M. Suilamo S. Tolvanen T. Taimen K. Mali M. Kohonen I. Koskivirta I. Oikonen V. Virtanen H. Santalahti K. Autio A. Saraste A. Pirilä L. Nuutila P. Knuuti J. Jalkanen S. Roivainen A. First-in-human study of 68Ga-DOTA-Siglec-9, a PET ligand targeting vascular adhesion protein 1. J. Nucl. Med. 2021 62 4 577 583 10.2967/jnumed.120.250696 32817143
    [Google Scholar]
  30. Tircsó G. Kovács Z. Sherry A.D. Equilibrium and formation/dissociation kinetics of some Ln(III)PCTA complexes. Inorg. Chem. 2006 45 23 9269 9280 10.1021/ic0608750 17083226
    [Google Scholar]
  31. Nayak T.K. Regino C.A.S. Wong K.J. Milenic D.E. Garmestani K. Baidoo K.E. Szajek L.P. Brechbiel M.W. PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A″-DTPA-cetuximab. Eur. J. Nucl. Med. Mol. Imaging 2010 37 7 1368 1376 10.1007/s00259‑009‑1370‑z 20155263
    [Google Scholar]
  32. Mannich C. Mohs P. About derivatives of a bicyclic system fused from two piperidine rings. Ber. Dtsch. Chem. Ges. B 1930 63 3 608 612 10.1002/cber.19300630314
    [Google Scholar]
  33. Nonat A.M. Roux A. Sy M. Charbonnière L.J. 2,4-Substituted bispidines as rigid hosts for versatile applications: From κ-opioid receptor to metal coordination. Dalton Trans. 2019 48 44 16476 16492 10.1039/C9DT03480C 31599913
    [Google Scholar]
  34. Grygorenko O.O. Radchenko D.S. Volochnyuk D.M. Tolmachev A.A. Komarov I.V. Bicyclic conformationally restricted diamines. Chem. Rev. 2011 111 9 5506 5568 10.1021/cr100352k 21711015
    [Google Scholar]
  35. Kizirian J.C. Chiral tertiary diamines in asymmetric synthesis. Chem. Rev. 2008 108 1 140 205 10.1021/cr040107v 18081351
    [Google Scholar]
  36. Zhang M. Yan Y. Sun H. Fu X. Huang J. Sparteine family: Privileged chiral ligands in transition metal catalysis. Curr. Org. Chem. 2022 26 5 427 431 10.2174/1385272826666220408105613
    [Google Scholar]
  37. Comba P. Kerscher M. Rück K. Starke M. Bispidines for radiopharmaceuticals. Dalton Trans. 2018 47 28 9202 9220 10.1039/C8DT01108G 29862405
    [Google Scholar]
  38. Comba P. Kubeil M. Pietzsch J. Rudolf H. Stephan H. Zarschler K. Bispidine dioxotetraaza macrocycles: A new class of bispidines for (64)Cu PET imaging. Inorg. Chem. 2014 53 13 6698 6707 10.1021/ic500476u 24906110
    [Google Scholar]
  39. O’Brien P. Basic instinct: Design, synthesis and evaluation of (+)-sparteine surrogates for asymmetric synthesis. Chem. Commun. (Camb.) 2008 6 655 667 10.1039/B711420F 18478687
    [Google Scholar]
  40. Liu J. Yang Z. Wang Z. Wang F. Chen X. Liu X. Feng X. Su Z. Hu C. Asymmetric direct aldol reaction of functionalized ketones catalyzed by amine organocatalysts based on bispidine. J. Am. Chem. Soc. 2008 130 17 5654 5655 10.1021/ja800839w 18380434
    [Google Scholar]
  41. Sun H. Huang L. Huang J. Sparteine thiourea: The synthesis of an N chiral bispidine-quinolizidine-derived organocatalyst and applications in asymmetric synthesis of dihydropyrano[c]chromenes. J. Org. Chem. 2024 89 10 7225 7232 10.1021/acs.joc.4c00638 38712792
    [Google Scholar]
  42. Li G. Wang R. Ye D. Pu M. Feng X. Lin L. Bispidine-based S,N-chiral ligands for palladium-catalyzed asymmetric arylation of cyclic N-sulfonyl ketimines. Eur. J. Org. Chem. 2024 27 10 e202400008 10.1002/ejoc.202400008
    [Google Scholar]
  43. Hoppe D. Hintze F. Tebben P. Chiral lithium-1-oxyalkanides by asymmetric deprotonation - Enantioselective synthesis of 2-hydroxyalkanoic acids and secondary alkanols. Angew. Chem. Int. Ed. Engl. 1990 29 12 1422 1424 10.1002/anie.199014221
    [Google Scholar]
  44. Kerrick S.T. Beak P. Asymmetric deprotonations: Enantioselective syntheses of 2-substituted tert-(butoxycarbonyl)pyrrolidines. J. Am. Chem. Soc. 1991 113 25 9708 9710 10.1021/ja00025a066
    [Google Scholar]
  45. Ndiaye D. Sy M. Pallier A. Même S. de Silva I. Lacerda S. Nonat A.M. Charbonnière L.J. Tóth É. Unprecedented kinetic inertness for a Mn2+‐bispidine chelate: A novel structural entry for Mn2+‐based imaging agents. Angew. Chem. Int. Ed. 2020 59 29 11958 11963 10.1002/anie.202003685 32298021
    [Google Scholar]
  46. Price T.W. Yap S.Y. Gillet R. Savoie H. Charbonnière L.J. Boyle R.W. Nonat A.M. Stasiuk G.J. Evaluation of a bispidine-based chelator for gallium-68 and of the porphyrin conjugate as PET/PDT theranostic. Chemistry 2020 26 34 7602 7608 10.1002/chem.201905776 32068310
    [Google Scholar]
  47. Choudhary N. Dimmling A. Wang X. Southcott L. Radchenko V. Patrick B.O. Comba P. Orvig C. Octadentate oxine-armed bispidine ligand for radiopharmaceutical chemistry. Inorg. Chem. 2019 58 13 8685 8693 10.1021/acs.inorgchem.9b01016 31247868
    [Google Scholar]
  48. Kopp I. Cieslik P. Anger K. Josephy T. Neupert L. Velmurugan G. Gast M. Wadepohl H. Brühlmann S.A. Walther M. Kopka K. Bachmann M. Stephan H. Kubeil M. Comba P. Bispidine chelators for radiopharmaceutical applications with lanthanide, actinide, and main group metal ions. Inorg. Chem. 2023 62 50 20754 20768 10.1021/acs.inorgchem.3c02340 37707798
    [Google Scholar]
  49. Cieslik P. Kubeil M. Zarschler K. Ullrich M. Brandt F. Anger K. Wadepohl H. Kopka K. Bachmann M. Pietzsch J. Stephan H. Comba P. Toward personalized medicine: One chelator for imaging and therapy with lutetium-177 and actinium-225. J. Am. Chem. Soc. 2022 144 47 21555 21567 10.1021/jacs.2c08438 36382991
    [Google Scholar]
  50. Bruchertseifer F. Comba P. Martin B. Morgenstern A. Notni J. Starke M. Wadepohl H. First-generation bispidine chelators for 213 BiIII radiopharmaceutical applications. ChemMedChem 2020 15 16 1591 1600 10.1002/cmdc.202000361 32613737
    [Google Scholar]
  51. Norrehed S. Erdélyi M. Light M.E. Gogoll A. Protonation-triggered conformational modulation of an N,N′-dialkylbispidine: first observation of the elusive boat–boat conformer. Org. Biomol. Chem. 2013 11 37 6292 6299 10.1039/c3ob41122b 23942643
    [Google Scholar]
  52. Comba P. Kerscher M. Schiek W. Bispidine Coordination Chemistry. Progress in Inorganic Chemistry Karlin K.D. John Wiley & Sons, Inc. 2007 613 704 10.1002/9780470144428.ch9
    [Google Scholar]
  53. Stetter H. Schäfer J. Dieminger K. On compounds with urotropin structure, X. On the formation of the 1,3-diaza-adamantane ring system by Mannich condensation. Chem. Ber. 1958 91 3 598 604 10.1002/cber.19580910319
    [Google Scholar]
  54. Stetter H. Dieminger K. Rauscher E. About compounds with urotropin structure, XIII. About sulfur-containing derivatives of 1,3-diaza-adamantane. Chem. Ber. 1959 92 9 2057 2061 10.1002/cber.19590920915
    [Google Scholar]
  55. Stetter H. Hennig H. On compounds with urotropin structure, VI. Communication: Synthesis of 1,3-diaza-adamantane. Chem. Ber. 1955 88 6 789 795 10.1002/cber.19550880608
    [Google Scholar]
  56. Galinovsky F. Langer H. Synthese des 1,3-Diaza-adamantans und des Bispidins. Monatsh. Chem. 1955 86 3 449 453 10.1007/BF00903631
    [Google Scholar]
  57. Comba P. Hunoldt S. Morgen M. Pietzsch J. Stephan H. Wadepohl H. Optimization of pentadentate bispidines as bifunctional chelators for 64Cu Positron Emission Tomography (PET). Inorg. Chem. 2013 52 14 8131 8143 10.1021/ic4008685 23819880
    [Google Scholar]
  58. Abad-Galán L. Cieslik P. Comba P. Gast M. Maury O. Neupert L. Roux A. Wadepohl H. Excited state properties of lanthanide(III) complexes with a nonadentate bispidine ligand. Chemistry 2021 27 40 10303 10312 10.1002/chem.202005459 33780569
    [Google Scholar]
  59. Haller R. Metallchelate pyridyl‐(2)‐substituierter 3,7‐Diaza‐bicyclo‐[3,3,1]‐nonanone. Arch. Pharm. (Weinheim) 1969 302 2 113 118 10.1002/ardp.19693020206 5260840
    [Google Scholar]
  60. Stetter H. Merten R. On compounds with urotropin structure, IX. About bispidine. Chem. Ber. 1957 90 6 868 875 10.1002/cber.19570900605
    [Google Scholar]
  61. Hosken G.D. Allan C.C. Boeyens J.C.A. Hancock R.D. Structure of the copper(II) complex of a highly preorganised tetradentate ligand based on bispidine (3,7-diazabicyclo[3.3.1]nonane). J. Chem. Soc., Dalton Trans. 1995 22 3705 3708 10.1039/dt9950003705
    [Google Scholar]
  62. Comba P. Nuber B. Ramlow A. The design of a new type of very rigid tetradentate ligand. J. Chem. Soc., Dalton Trans. 1997 3 347 352 10.1039/a603635j
    [Google Scholar]
  63. Townsend D.W. Positron emission tomography/computed tomography. Semin. Nucl. Med. 2008 38 3 152 166 10.1053/j.semnuclmed.2008.01.003 18396176
    [Google Scholar]
  64. Hosken G.D. Hancock R.D. Very strong and selective complexation of small metal lons by a highly preorganised open-chain bispidine-based ligand. J. Chem. Soc. Chem. Commun. 1994 11 1363 1364 10.1039/c39940001363
    [Google Scholar]
  65. Comba P. Juran S. Kerscher M. Pietzsch H-J. Spies H. Stephan H. Radio Metal Complexes Based on Bispidine and the Derivatives Thereof as Chelating Agents, and Use Thereof for Nuclear Medical Diagnosis and Therapy. US Patent 0,193,378 2008
  66. Juran S. Walther M. Stephan H. Bergmann R. Steinbach J. Kraus W. Emmerling F. Comba P. Hexadentate bispidine derivatives as versatile bifunctional chelate agents for copper(II) radioisotopes. Bioconjug. Chem. 2009 20 2 347 359 10.1021/bc800461e 19173600
    [Google Scholar]
  67. Avila-Rodriguez M.A. Nye J.A. Nickles R.J. Simultaneous production of high specific activity 64Cu and 61Co with 11.4MeV protons on enriched 64Ni nuclei. Appl. Radiat. Isot. 2007 65 10 1115 1120 10.1016/j.apradiso.2007.05.012 17669663
    [Google Scholar]
  68. Boschi A. Martini P. Janevik-Ivanovska E. Duatti A. The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov. Today 2018 23 8 1489 1501 10.1016/j.drudis.2018.04.002 29635027
    [Google Scholar]
  69. Bartholomä M.D. Recent developments in the design of bifunctional chelators for metal-based radiopharmaceuticals used in Positron Emission Tomography. Inorg. Chim. Acta 2012 389 36 51 10.1016/j.ica.2012.01.061
    [Google Scholar]
  70. Motekaitis R.J. Rogers B.E. Reichert D.E. Martell A.E. Welch M.J. Stability and structure of activated macrocycles. Ligands with biological applications. Inorg. Chem. 1996 35 13 3821 3827 10.1021/ic960067g 11666570
    [Google Scholar]
  71. Parker D. Tumour targeting with radiolabelled macrocycle–antibody conjugates. Chem. Soc. Rev. 1990 19 3 271 291 10.1039/CS9901900271
    [Google Scholar]
  72. Smith C.J. Volkert W.A. Hoffman T.J. Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: A concise update. Nucl. Med. Biol. 2003 30 8 861 868 10.1016/S0969‑8051(03)00116‑1 14698790
    [Google Scholar]
  73. Ferreira C.A. Fuscaldi L.L. Townsend D.M. Rubello D. Barros A.L.B. Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed. Pharmacother. 2017 87 58 72 10.1016/j.biopha.2016.12.083 28040598
    [Google Scholar]
  74. Singh G. Zarschler K. Hunoldt S. Martínez I.I.S. Ruehl C.L. Matterna M. Bergmann R. Máthé D. Hegedüs N. Bachmann M. Comba P. Stephan H. Versatile bispidine‐based bifunctional chelators for 64CuII‐labelling of biomolecules. Chemistry 2020 26 9 1989 2001 10.1002/chem.201904654 31755596
    [Google Scholar]
  75. Mitsudomi T. Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 277 2 301 308 10.1111/j.1742‑4658.2009.07448.x 19922469
    [Google Scholar]
  76. Zarschler K. Witecy S. Kapplusch F. Foerster C. Stephan H. High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli . Microb. Cell Fact. 2013 12 1 97 10.1186/1475‑2859‑12‑97 24161153
    [Google Scholar]
  77. Stephan H. Walther M. Fähnemann S. Ceroni P. Molloy J.K. Bergamini G. Heisig F. Müller C.E. Kraus W. Comba P. Bispidines for dual imaging. Chemistry 2014 20 51 17011 17018 10.1002/chem.201404086 25345969
    [Google Scholar]
  78. Bleiholder C. Börzel H. Comba P. Ferrari R. Heydt M. Kerscher M. Kuwata S. Laurenczy G. Lawrance G.A. Lienke A. Martin B. Merz M. Nuber B. Pritzkow H. Coordination chemistry of a new rigid, hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand. Inorg. Chem. 2005 44 22 8145 8155 10.1021/ic0513383 16241165
    [Google Scholar]
  79. Comba P. Grimm L. Orvig C. Rück K. Wadepohl H. Synthesis and coordination chemistry of hexadentate picolinic acid based bispidine ligands. Inorg. Chem. 2016 55 24 12531 12543 10.1021/acs.inorgchem.6b01787 27989192
    [Google Scholar]
  80. Comba P. Jakob M. Rück K. Wadepohl H. Tuning of the properties of a picolinic acid-based bispidine ligand for stable copper(II) complexation. Inorg. Chim. Acta 2018 481 98 105 10.1016/j.ica.2017.08.022
    [Google Scholar]
  81. Roux A. Nonat A.M. Brandel J. Hubscher-Bruder V. Charbonnière L.J. Kinetically inert bispidol-based Cu(II) chelate for potential application to 64/67Cu nuclear medicine and diagnosis. Inorg. Chem. 2015 54 9 4431 4444 10.1021/acs.inorgchem.5b00207 25866934
    [Google Scholar]
  82. Gillet R. Roux A. Brandel J. Huclier-Markai S. Camerel F. Jeannin O. Nonat A.M. Charbonnière L.J. A Bispidol chelator with a phosphonate pendant arm: Synthesis, Cu(II) complexation, and 64Cu labeling. Inorg. Chem. 2017 56 19 11738 11752 10.1021/acs.inorgchem.7b01731 28915014
    [Google Scholar]
  83. Roux A. Gillet R. Huclier-Markai S. Ehret-Sabatier L. Charbonnière L.J. Nonat A.M. Bifunctional bispidine derivatives for copper-64 labelling and positron emission tomography. Org. Biomol. Chem. 2017 15 6 1475 1483 10.1039/C6OB02712A 28116378
    [Google Scholar]
  84. Medved’ko A.V. Egorova B.V. Komarova A.A. Rakhimov R.D. Krut’ko D.P. Kalmykov S.N. Vatsadze S.Z. Copper-bispidine complexes: Synthesis and complex stability study. ACS Omega 2016 1 5 854 867 10.1021/acsomega.6b00237 31457168
    [Google Scholar]
  85. Lin C.T. Rorabacher D.B. Cayley G.R. Margerum D.W. Steric effects in the complexation kinetics of cyclic and open-chain polyamines with copper(II) in basic aqueous media. Inorg. Chem. 1975 14 4 919 925 10.1021/ic50146a040
    [Google Scholar]
  86. Drumhiller J.A. Montavon F. Lehn J.M. Taylor R.W. Complexation kinetics of highly substituted acyclic, monocyclic, and bicyclic tetraamines with copper(II) in basic aqueous media. Inorg. Chem. 1986 25 21 3751 3757 10.1021/ic00241a009
    [Google Scholar]
  87. Diaddario L.L. Jr Ochrymowycz L.A. Rorabacher D.B. Effect of “noncomplexing” anions on copper(II)-macrocyclic tetrathiaether complexes. Evaluation of dissociation kinetics in aqueous solution using mercury(II) ion as scavenger. Inorg. Chem. 1992 31 12 2347 2353 10.1021/ic00038a011
    [Google Scholar]
  88. Aronne L. Yu Q. Ochrymowycz L.A. Rorabacher D.B. Effect of macrocyclic ligand constraints upon the kinetics of complex formation and dissociation and metal Ion exchange. Copper (II) complexes with cyclohexanediyl derivatives of the cyclic tetrathiaether [14] aneS4 in 80% methanol. Inorg. Chem. 1995 34 7 1844 1851 10.1021/ic00111a036
    [Google Scholar]
  89. Cieslik P. Comba P. Dittmar B. Ndiaye D. Tóth É. Velmurugan G. Wadepohl H. Exceptional manganese(II) stability and manganese(II)/zinc(II) selectivity with rigid polydentate ligands. Angew. Chem. Int. Ed. 2022 61 10 e202115580 10.1002/anie.202115580 34979049
    [Google Scholar]
  90. Ndiaye D. Cieslik P. Wadepohl H. Pallier A. Même S. Comba P. Tóth É. Mn2+ bispidine complex combining exceptional stability, inertness, and MRI efficiency. J. Am. Chem. Soc. 2022 144 48 22212 22220 10.1021/jacs.2c10108 36445192
    [Google Scholar]
  91. Ndiaye D. Sy M. Thor W. Charbonnière L.J. Nonat A.M. Tóth É. Structural variations in carboxylated bispidine ligands: Influence of positional isomerism and rigidity on the conformation, stability, inertness and relaxivity of their Mn2+complexes. Chemistry 2023 29 62 e202301880 10.1002/chem.202301880 37470713
    [Google Scholar]
  92. Wadas T.J. Pandya D.N. Solingapuram Sai K.K. Mintz A. Molecular targeted α-particle therapy for oncologic applications. AJR Am. J. Roentgenol. 2014 203 2 253 260 10.2214/AJR.14.12554 25055256
    [Google Scholar]
  93. George S.C. Samuel E.J.J. Developments in 177Lu-based radiopharmaceutical therapy and dosimetry. Front Chem. 2023 11 1218670 10.3389/fchem.2023.1218670 37583569
    [Google Scholar]
  94. Mittra E.S. Neuroendocrine tumor therapy: 177Lu-DOTATATE. AJR Am. J. Roentgenol. 2018 211 2 278 285 10.2214/AJR.18.19953 29949416
    [Google Scholar]
  95. McDevitt M.R. Ma D. Simon J. Frank R.K. Scheinberg D.A. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl. Radiat. Isot. 2002 57 6 841 847 10.1016/S0969‑8043(02)00167‑7 12406626
    [Google Scholar]
  96. Comba P. Jermilova U. Orvig C. Patrick B.O. Ramogida C.F. Rück K. Schneider C. Starke M. Octadentate picolinic acid-based bispidine ligand for radiometal ions. Chemistry 2017 23 63 15945 15956 10.1002/chem.201702284 28815804
    [Google Scholar]
  97. Kovács A. Theoretical study of heptadentate bispidine ligands for radiopharmaceutic applications. Comput. Theor. Chem. 2022 1212 113716 10.1016/j.comptc.2022.113716
    [Google Scholar]
  98. Kovács A. Metal-ligand bonding in bispidine chelate complexes for radiopharmaceutical applications. Struct. Chem. 2023 34 1 5 15 10.1007/s11224‑022‑01902‑6
    [Google Scholar]
  99. Hu A. Brown V. MacMillan S.N. Radchenko V. Yang H. Wharton L. Ramogida C.F. Wilson J.J. Chelating the alpha therapy radionuclides 225Ac3+ and 213Bi3+ with 18-membered macrocyclic ligands macrodipa and py-macrodipa. Inorg. Chem. 2022 61 2 801 806 10.1021/acs.inorgchem.1c03670 34965102
    [Google Scholar]
  100. Geenen L. Nonnekens J. Konijnenberg M. Baatout S. De Jong M. Aerts A. Overcoming nephrotoxicity in peptide receptor radionuclide therapy using [177Lu]Lu-DOTA-TATE for the treatment of neuroendocrine tumours. Nucl. Med. Biol. 2021 102-103 1 11 10.1016/j.nucmedbio.2021.06.006 34242948
    [Google Scholar]
/content/journals/coc/10.2174/0113852728346887240924050723
Loading
/content/journals/coc/10.2174/0113852728346887240924050723
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: imaging ; radiometals ; bifunctional chelators ; Bispidine ; targeted therapy ; radiopharmaceuticals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test