Skip to content
2000
Volume 29, Issue 8
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The Corona virus disease-19 (COVID-19) pandemic challenged the scientific community in the search for developing effective treatments, such as medicine and/or a vaccine candidate. The SARS-CoV-2 virus and its variants, Omega, Omicron, and Delta, remain as a major threat to human health, causing significant morbidity and mortality worldwide. Given that computational methods are thought to be quick, easy, and inexpensive, they have been widely used in this scenario to design new anti-COVID-19 drug candidates. In addition, heterocyclic scaffolds have been explored exhaustively for their biological properties and as fruitful sources of new molecular entities to fulfill the chemical space available.In light of this, we intend to highlight the synthetic techniques used to produce novel heterocyclic derivatives that may serve as effective anti-COVID-19 lead candidates by focusing on important viral proteins and using computational tools. Then, the objective of this article, with a theoretical nature, is to contribute to the delimitation of organic chemistry methods to achieve new anti-COVID-19 agents.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728248762240812075831
2024-09-25
2025-04-15
Loading full text...

Full text loading...

References

  1. CeylanR.F. OzkanB. MulazimogullariE. Historical evidence for economic effects of COVID-19.Eur. J. Health Econ.202021681782310.1007/s10198‑020‑01206‑8 32500243
    [Google Scholar]
  2. LiY. UndurragaE.A. ZubizarretaJ.R. Effectiveness of localized lockdowns in the COVID-19 pandemic.Am. J. Epidemiol.2022191581282410.1093/aje/kwac008 35029649
    [Google Scholar]
  3. ArbelR. PliskinJ. Vaccinations versus lockdowns to prevent COVID-19 mortality.Vaccines (Basel)20221081347135410.3390/vaccines10081347 36016236
    [Google Scholar]
  4. BriceY. MorganL. KirmaniM. KirmaniM. UdehM.C. COVID-19 vaccine evolution and beyond.Neurosci. Insights2023182633105523118054310.1177/26331055231180543 37351483
    [Google Scholar]
  5. HansunS. CharlesV. GhermanT. The role of the mass vaccination programme in combating the COVID-19 pandemic: An LSTM-based analysis of COVID-19 confirmed cases.Heliyon202393e1439710.1016/j.heliyon.2023.e14397 36911879
    [Google Scholar]
  6. HwangJ.H. Uveitis after COVID-19 vaccination.Case Rep. Ophthalmol.202213112412710.1159/000521785 35431883
    [Google Scholar]
  7. ShanshalM. Eruptive angiomatosis triggered by COVID-19 vaccination.Cureus2022143e2290710.7759/cureus.22907 35399409
    [Google Scholar]
  8. ZhangJ. CaoJ. YeQ. Renal side effects of COVID-19 vaccination.Vaccines (Basel)202210111783180110.3390/vaccines10111783 36366292
    [Google Scholar]
  9. GangaK. SolyarA.Y. GangaR. Massive cervical lymphadenopathy post-COVID-19 vaccination.Ear Nose Throat J.2024103425525710.1177/01455613211048984 34601889
    [Google Scholar]
  10. SukockienėE. BrevilleG. FayolleD. NenchaU. UginetM. HübersA. Case series of acute peripheral neuropathies in individuals who received COVID-19 vaccination.Medicina202359350110.3390/medicina59030501
    [Google Scholar]
  11. MafteiC.V. FodorE. JonesP.G. FreytagM. FranzM.H. KelterG. FiebigH.H. TammM. NedaI. N-heterocyclic carbenes (NHC) with 1,2,4-oxadiazole-substituents related to natural products: Synthesis, structure and potential antitumor activity of some corresponding gold(I) and silver(I) complexes.Eur. J. Med. Chem.201510143144110.1016/j.ejmech.2015.06.053 26185007
    [Google Scholar]
  12. MihorianuM. FranzM.H. JonesP.G. FreytagM. KelterG. FiebigH.H. TammM. NedaI. N‐Heterocyclic carbenes derived from imidazo‐[1,5‐a]pyridines related to natural products: Synthesis, structure and potential biological activity of some corresponding gold(I) and silver(I) complexes.Appl. Organomet. Chem.201630758158910.1002/aoc.3474
    [Google Scholar]
  13. MafteiE. MafteiC.V. JonesP.G. FreytagM. FranzM.H. KelterG. FiebigH.H. TammM. NedaI. Trifluoromethylpyridine-substituted N-heterocyclic carbenes related to natural products: synthesis, structure, and potential antitumor activity of some corresponding gold(I), rhodium(I), and iridium(I) Complexes.Helv. Chim. Acta201699646948110.1002/hlca.201500529
    [Google Scholar]
  14. MafteiC.V. FodorE. JonesP.G. DaniliucC.G. FranzM.H. KelterG. FiebigH.H. TammM. NedaI. Novel 1,2,4-oxadiazoles and trifluoromethylpyridines related to natural products: synthesis, structural analysis and investigation of their antitumor activity.Tetrahedron20167291185119910.1016/j.tet.2016.01.011
    [Google Scholar]
  15. MafteiC.V. FodorE. JonesP.G. FranzM.H. KelterG. FiebigH. NedaI. Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties.Beilstein J. Org. Chem.2013912202221510.3762/bjoc.9.259 24222789
    [Google Scholar]
  16. FilimonS.A. HribC.G. RandollS. NedaI. JonesP.G. TammM. Quinine‐derived imidazolidin‐2‐imine ligands: Synthesis, coordination chemistry, and application in catalytic transfer hydrogenation.Z. Anorg. Allg. Chem.2010636569169910.1002/zaac.200900485
    [Google Scholar]
  17. MafteiC.V. FodorE. JonesP.G. FranzM.H. DavidescuC.M. NedaI. Asymmetric calixarene derivatives as potential hosts in chiral recognition processes.Pure Appl. Chem.201587441543910.1515/pac‑2014‑1121
    [Google Scholar]
  18. MafteiC.V. FranzM.H. KleebergC. NedaI. New members of the cinchona alkaloids family: Assembly of the triazole heterocycle at the 6′ position.Molecules202126113357337210.3390/molecules26113357 34199504
    [Google Scholar]
  19. NedaI. FodorE. MafteiC.V. MihorianuM. AmbrosiH.D. FranzM.H. New members of the cinchona alkaloid family: 9-aminoquincorine-10-aldehyde and 9-aminoquincoridine-10-aldehyde.Eur. J. Org. Chem.20132013357876788010.1002/ejoc.201301286
    [Google Scholar]
  20. LiC. WangL. RenL. Antiviral mechanisms of candidate chemical medicines and traditional Chinese medicines for SARS-CoV-2 infection.Virus Res.202028619807310.1016/j.virusres.2020.198073 32592817
    [Google Scholar]
  21. LenevaI. KartashovaN. PoromovA. GrachevaA. KorchevayaE. GlubokovaE. BorisovaO. ShtroA. LoginovaS. ShchukinaV. KhamitovR. FaizuloevE. Antiviral activity of umifenovir in vitro against a broad spectrum of coronaviruses, including the novel SARS-CoV-2 virus.Viruses2021138166510.3390/v13081665 34452529
    [Google Scholar]
  22. ShusterA. PechalrieuD. JacksonC.B. AbeggD. ChoeH. AdibekianA. Clinical antiviral drug arbidol inhibits infection by SARS-CoV-2 and variants through direct binding to the spike protein.ACS Chem. Biol.202116122845285110.1021/acschembio.1c00756 34792325
    [Google Scholar]
  23. WangZ. YangB. LiQ. WenL. ZhangR. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China.Clin. Infect. Dis.2020711576977710.1093/cid/ciaa272 32176772
    [Google Scholar]
  24. BondL. McNicholasF. The end of COVID-19: Not with a bang but a whimper.Ir. J. Med. Sci.2024193133533910.1007/s11845‑023‑03435‑1 37386349
    [Google Scholar]
  25. El-ShabasyR.M. NayelM.A. TaherM.M. AbdelmonemR. ShoueirK.R. KenawyE.R. Three waves changes, new variant strains, and vaccination effect against COVID-19 pandemic.Int. J. Biol. Macromol.202220416116810.1016/j.ijbiomac.2022.01.118 35074332
    [Google Scholar]
  26. TolomeuH.V. FragaC.A.M. Imidazole: Synthesis, functionalization and physicochemical properties of a privileged structure in medicinal chemistry.Molecules202328283886510.3390/molecules28020838 36677894
    [Google Scholar]
  27. MaB. TanW. ZhangJ. MiY. MiaoQ. GuoZ. Preparation and characterization of chitosan derivatives bearing imidazole ring with antioxidant, antibacterial, and antifungal activities.Starch202375220020410.1002/star.202200204
    [Google Scholar]
  28. AndreiG.Ș. AndreiB.F. RoxanaP.R. Imidazole derivatives and their antibacterial activity - A mini-review.Mini Rev. Med. Chem.202121111380139210.2174/1389557520999201209213648 33302837
    [Google Scholar]
  29. SharmaP. LaRosaC. AntwiJ. GovindarajanR. WerbovetzK.A. Imidazoles as potential anticancer agents: An update on recent studies.Molecules202126144213427910.3390/molecules26144213 34299488
    [Google Scholar]
  30. ChhetriA. ChettriS. RaiP. MishraD.K. SinhaB. BrahmanD. Synthesis, characterization and computational study on potential inhibitory action of novel azo imidazole derivatives against COVID-19 main protease (Mpro: 6LU7).J. Mol. Struct.2021122512923012924310.1016/j.molstruc.2020.129230 32963413
    [Google Scholar]
  31. AhmedY.M. OmarM.M. MohamedG.G. Synthesis, spectroscopic characterization, and thermal studies of novel Schiff base complexes: Theoretical simulation studies on coronavirus (COVID-19) using molecular docking.J. Indian Chem. Soc.202219390191910.1007/s13738‑021‑02359‑w
    [Google Scholar]
  32. AnthonyL.A. NethajiP. SundararajanG. RajaramanD. One-pot synthesis, Spectral, X-ray crystal structure, Hirshfeld surface and computational study on potential inhibitory action of novel 1-benzyl-2-(4-methoxynaphthalen-1-yl)-4,5-diphenyl-1H-imidazole derivatives against COVID-19 main protease (Mpro: 6WCF/6Y84).J. Mol. Struct.2022125013189213190810.1016/j.molstruc.2021.131892
    [Google Scholar]
  33. DoucheD. SertY. BrandánS.A. KawtherA.A. BilmezB. DegeN. El LouziA. BougrinK. KarrouchiK. HimmiB. 5-((1H-imidazol-1-yl)methyl)quinolin-8-ol as potential antiviral COVID-19 candidate.J. Mol. Struct.2021123213000513002010.1016/j.molstruc.2021.130005 33526951
    [Google Scholar]
  34. MudiP.K. MahatoR.K. VermaH. PandaS.J. PurohitC.S. SilakariO. BiswasB. In silico anti-SARS-CoV-2 activities of five-membered heterocycle-substituted benzimidazoles.J. Mol. Struct.2022126113286913287910.1016/j.molstruc.2022.132869 35340531
    [Google Scholar]
  35. SeckI. NguemoF. Triazole, imidazole, and thiazole-based compounds as potential agents against coronavirus.Results Chem.2021310013210014110.1016/j.rechem.2021.100132 33907666
    [Google Scholar]
  36. NiuZ.X. WangY.T. ZhangS.N. LiY. ChenX.B. WangS.Q. LiuH.M. Application and synthesis of thiazole ring in clinically approved drugs.Eur. J. Med. Chem.20232501151721151710.1016/j.ejmech.2023.115172 36758304
    [Google Scholar]
  37. SaidM.A. RiyadhS.M. Al-KaffN.S. NaylA.A. KhalilK.D. BräseS. GomhaS.M. Synthesis and greener pastures biological study of bis-thiadiazoles as potential COVID-19 drug candidates.Arab. J. Chem.202215910410110411610.1016/j.arabjc.2022.104101 35845755
    [Google Scholar]
  38. KonnoS. ThanigaimalaiP. YamamotoT. NakadaK. KakiuchiR. TakayamaK. YamazakiY. YakushijiF. AkajiK. KisoY. KawasakiY. ChenS.E. FreireE. HayashiY. Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety.Bioorg. Med. Chem.201321241242410.1016/j.bmc.2012.11.017 23245752
    [Google Scholar]
  39. AlghamdiA. AbouziedA.S. AlamriA. AnwarS. AnsariM. KhadraI. ZakiY.H. GomhaS.M. Synthesis, molecular docking, and dynamic simulation targeting main protease (Mpro) of new, thiazole clubbed pyridine scaffolds as potential COVID-19 inhibitors.Curr. Issues Mol. Biol.20234521422144210.3390/cimb45020093 36826038
    [Google Scholar]
  40. GomhaS.M. RiyadhS.M. AbdellattifM.H. AbolibdaT.Z. Abdel-azizH.M. NaylA.A. ElgoharyA.M. ElfikyA.A. Synthesis and in silico study of some new bis-[1,3,4]thiadiazolimines and bis-thiazolimines as potential inhibitors for SARS-CoV-2 main protease.Curr. Issues Mol. Biol.202244104540455610.3390/cimb44100311 36286026
    [Google Scholar]
  41. Abu-MelhaS. EdreesM.M. RiyadhS.M. AbdelazizM.R. ElfikyA.A. GomhaS.M. Clean grinding technique: A facile synthesis and in silico antiviral activity of hydrazones, pyrazoles, and pyrazines bearing thiazole moiety against SARS-CoV-2 main protease (Mpro).Molecules202025194565457810.3390/molecules25194565 33036293
    [Google Scholar]
  42. AbbasG. IrfanA. AhmedI. Al-ZeidaneenF.K. MuthuS. FuhrO. ThomasR. Synthesis and investigation of anti-COVID-19 ability of ferrocene Schiff base derivatives by quantum chemical and molecular docking.J. Mol. Struct.2022125313224213225410.1016/j.molstruc.2021.132242 34975177
    [Google Scholar]
  43. SondhiS.M. AryaS. RaniR. KumarN. RoyP. Synthesis, anti-inflammatory and anticancer activity evaluation of some mono- and bis-Schiff’s bases.Med. Chem. Res.201221113620362810.1007/s00044‑011‑9899‑3
    [Google Scholar]
  44. MahalA. WuP. JiangZ.H. WeiX. Schiff bases of tetrahydrocurcumin as potential anticancer agents.ChemistrySelect20194136636910.1002/slct.201803159
    [Google Scholar]
  45. PahlavaniE. KargarH. Synthesis, characterization, and study of anti-tubercular and anti-microbial activity of isonicotinohydrazide tridentate Schiff base ligands.Iran. J. Chem. Chem. Eng.202140120120610.30492/ijcce.2019.37299
    [Google Scholar]
  46. AnushS.M. VishalakshiB. KallurayaB. ManjuN. Synthesis of pyrazole-based Schiff bases of chitosan: Evaluation of antimicrobial activity.Int. J. Biol. Macromol.201811944645210.1016/j.ijbiomac.2018.07.129 30036622
    [Google Scholar]
  47. ChenG. MengM. ZhangY. HaoX. WangY. MuS. Synthesis, cytoprotective and anti-tumor activities of isatin Schiff bases.Lett. Drug Des. Discov.2015121080280510.2174/1570180812666150514234029
    [Google Scholar]
  48. ShabbirM. AkhterZ. AhmadI. AhmedS. BolteM. IsmailH. MirzaB. Ferrocene-based Schiff bases copper (II) complexes: Synthesis, characterization, biological and electrochemical analysis.Inorg. Chim. Acta201746310211110.1016/j.ica.2017.04.034
    [Google Scholar]
  49. HusainA. VarshneyM.M. ParchaV. AhmadA. KhanS.A. Nalidixic acid Schiff bases: Synthesis and biological evaluation.Lett. Drug Des. Discov.201815110311110.2174/1570180814666170710160751
    [Google Scholar]
  50. El-GammalO.A. El-BindaryA.A. MohamedF.S. RezkG.N. El-BindaryM.A. Synthesis, characterization, design, molecular docking, anti COVID-19 activity, DFT calculations of novel Schiff base with some transition metal complexes.J. Mol. Liq.202234611785011786910.1016/j.molliq.2021.117850
    [Google Scholar]
  51. SaranyaG. DevendraprasadK. ShanmugapriyaP. BhuvaneshwariN. DFT calculations, molecular docking, in vitro antimicrobial and antidiabetic studies of green synthesized Schiff bases: As COVID-19 inhibitor.J. Biomol. Struct. Dyn.20234122129971301410.1080/07391102.2023.2175039 36752337
    [Google Scholar]
  52. SaidM.A. KhanD.J.O. Al-blewiF.F. Al-KaffN.S. AliA.A. RezkiN. AouadM.R. HagarM. New 1,2,3-triazole scaffold Schiff bases as potential anti-COVID-19: Design, synthesis, dft-molecular docking, and cytotoxicity aspects.Vaccines (Basel)2021991012103210.3390/vaccines9091012 34579249
    [Google Scholar]
  53. ÜnlüA. ÖzmenÜ.Ö. AlyarS. ÖztürkA. AlyarH. GündüzalpA.B. Biological evaluation of Schiff bases containing dopamine as antibacterial/antifungal and potential Anti COVID-19 agents: Design, synthesis, characterization, molecular docking studies, and ADME properties.J. Mol. Struct.2023129313631813633110.1016/j.molstruc.2023.136318
    [Google Scholar]
  54. O’DonnellF. SmythT.J.P. RamachandranV.N. SmythW.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines.Int. J. Antimicrob. Agents2010351303810.1016/j.ijantimicag.2009.06.031 19748233
    [Google Scholar]
  55. Al-BariM.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases.Pharmacol. Res. Perspect.201751e00293e0030610.1002/prp2.293 28596841
    [Google Scholar]
  56. ZhaoJ. ZhangY. WangM. LiuQ. LeiX. WuM. GuoS. YiD. LiQ. MaL. LiuZ. GuoF. WangJ. LiX. WangY. CenS. Quinoline and quinazoline derivatives inhibit viral RNA synthesis by SARS-CoV-2 RdRp.ACS Infect. Dis.2021761535154410.1021/acsinfecdis.1c00083 34038639
    [Google Scholar]
  57. SrivastavaS.K. JhaA. AgarwalS.K. MukherjeeR. BurmanA.C. Synthesis and structure-activity relationships of potent antitumor active quinoline and naphthyridine derivatives.Anticancer. Agents Med. Chem.20077668570910.2174/187152007784111313 18045063
    [Google Scholar]
  58. MusiolR. SerdaM. Hensel-BielowkaS. PolanskiJ. Quinoline-based antifungals.Curr. Med. Chem.201017181960197310.2174/092986710791163966 20377510
    [Google Scholar]
  59. HuS. ChenJ. CaoJ.X. ZhangS.S. GuS.X. ChenF.E. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities.Bioorg. Chem.202313610654910657010.1016/j.bioorg.2023.106549 37119785
    [Google Scholar]
  60. SinghV.K. ChaurasiaH. KumariP. SomA. MishraR. SrivastavaR. NaazF. SinghA. SinghR.K. Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2.J. Biomol. Struct. Dyn.20224021105191054210.1080/07391102.2021.1946716 34253149
    [Google Scholar]
  61. ShinY.S. LeeJ.Y. JeonS. MyungS. GongH.J. KimS. KimH.R. JeongL.S. ParkC.M. Discovery of 2-aminoquinolone acid derivatives as potent inhibitors of SARS-CoV-2.Bioorg. Med. Chem. Lett.20238512921412921910.1016/j.bmcl.2023.129214 36870624
    [Google Scholar]
  62. SeliemI.A. PandaS.S. GirgisA.S. MoatasimY. KandeilA. MostafaA. AliM.A. NossierE.S. RasslanF. SrourA.M. SakhujaR. IbrahimT.S. Abdel-samiiZ.K.M. Al-MahmoudyA.M.M. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2.Bioorg. Chem.202111410511710512510.1016/j.bioorg.2021.105117 34214752
    [Google Scholar]
  63. BekheitM.S. MohamedH.A. Abdel-WahabB.F. FouadM.A. Design and synthesis of new 1,4,5-trisubstituted triazole-bearing benzenesulphonamide moiety as selective COX-2 inhibitors.Med. Chem. Res.20213051125113810.1007/s00044‑021‑02716‑7
    [Google Scholar]
  64. HerrmannL. HahnF. WangenC. MarschallM. TsogoevaS.B. Anti‐SARS‐CoV‐2 inhibitory profile of new quinoline compounds in cell culture‐based infection models.Chemistry2022284e202103861e20210386510.1002/chem.202103861 34859926
    [Google Scholar]
  65. PillaiyarT. ManickamM. NamasivayamV. HayashiY. JungS.H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy.J. Med. Chem.201659146595662810.1021/acs.jmedchem.5b01461 26878082
    [Google Scholar]
  66. AnandK. ZiebuhrJ. WadhwaniP. MestersJ.R. HilgenfeldR. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs.Science200330056261763176710.1126/science.1085658 12746549
    [Google Scholar]
  67. KarypidouK. RiboneS.R. QuevedoM.A. PersoonsL. PannecouqueC. HelsenC. ClaessensF. DehaenW. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents.Bioorg. Med. Chem. Lett.201828213472347610.1016/j.bmcl.2018.09.019 30286952
    [Google Scholar]
  68. LiP. WangY. LavrijsenM. LamersM.M. de VriesA.C. RottierR.J. BrunoM.J. PeppelenboschM.P. HaagmansB.L. PanQ. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination.Cell Res.202232332232410.1038/s41422‑022‑00618‑w 35058606
    [Google Scholar]
  69. Al-HumaidiJ.Y. ShaabanM.M. RezkiN. AouadM.R. ZakariaM. JaremkoM. HagarM. ElwakilB.H. 1,2,3-Triazole-benzofused molecular conjugates as potential antiviral agents against SARS-CoV-2 virus variants.Life (Basel)20221291341134410.3390/life12091341 36143380
    [Google Scholar]
  70. ZhouC-H. WangY. Recent researches in triazole compounds as medicinal drugs.Curr. Med. Chem.201219223928010.2174/092986712803414213 22320301
    [Google Scholar]
  71. RezkiN. AlmehmadiM.A. IhmaidS. ShehataA.M. OmarA.M. AhmedH.E.A. AouadM.R. Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1,2,3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses.Bioorg. Chem.202010310413310414710.1016/j.bioorg.2020.104133 32745759
    [Google Scholar]
  72. da SilvaF.C. de SouzaM.C.B.V. FrugulhettiI.I.P. CastroH.C. SouzaS.L.O. de SouzaT.M.L. RodriguesD.Q. SouzaA.M.T. AbreuP.A. PassamaniF. RodriguesC.R. FerreiraV.F. Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates.Eur. J. Med. Chem.200944137338310.1016/j.ejmech.2008.02.047 18486994
    [Google Scholar]
  73. RezkiN. Green microwave synthesis and antimicrobial evaluation of novel triazoles.Org. Prep. Proced. Int.201749652554110.1080/00304948.2017.1384262
    [Google Scholar]
  74. Al-blewiF.F. AlmehmadiM.A. AouadM.R. BardaweelS.K. SahuP.K. MessaliM. RezkiN. El AshryE.S.H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents.Chem. Cent. J.201812111010.1186/s13065‑018‑0479‑1 30387018
    [Google Scholar]
  75. AouadM.R. AlmehmadiM.A. RezkiN. Al-blewiF.F. MessaliM. AliI. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzofused heterocycles.J. Mol. Struct.2019118815316410.1016/j.molstruc.2019.04.005
    [Google Scholar]
  76. NegiM. ChawlaP.A. FarukA. ChawlaV. Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic.Bioorg. Chem.202010410431510432610.1016/j.bioorg.2020.104315 33007742
    [Google Scholar]
  77. Cortés-GarcíaC.J. Chacón-GarcíaL. Mejía-BenavidesJ.E. Díaz-CervantesE. Tackling the SARS-CoV-2 main protease using hybrid derivatives of 1,5-disubstituted tetrazole-1,2,3-triazoles: An in silico assay.PeerJ Phys. Chem.20202e10e2510.7717/peerj‑pchem.10
    [Google Scholar]
  78. KaoukabiH. KabriY. CurtiC. TaourirteM. Rodriguez-UbisJ.C. SnoeckR. AndreiG. VanelleP. LazrekH.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation.Eur. J. Med. Chem.201815577278110.1016/j.ejmech.2018.06.028 29945100
    [Google Scholar]
  79. ObakachiV.A. KushwahaN.D. KushwahaB. MahlalelaM.C. ShindeS.R. KehindeI. KarpoormathR. Design and synthesis of pyrazolone-based compounds as potent blockers of SARS-CoV-2 viral entry into the host cells.J. Mol. Struct.2021124113066513068010.1016/j.molstruc.2021.130665 34007088
    [Google Scholar]
  80. ZhaoZ. DaiX. LiC. WangX. TianJ. FengY. XieJ. MaC. NieZ. FanP. QianM. HeX. WuS. ZhangY. ZhengX. Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect.Eur. J. Med. Chem.202018611189311191710.1016/j.ejmech.2019.111893 31761383
    [Google Scholar]
  81. KumarV. TanK.P. WangY.M. LinS.W. LiangP.H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors.Bioorg. Med. Chem.201624133035304210.1016/j.bmc.2016.05.013 27240464
    [Google Scholar]
  82. MusaA. AbulkhairH.S. AljuhaniA. RezkiN. AbdelgawadM.A. ShalabyK. El-GhorabA.H. AouadM.R. Phenylpyrazolone-1,2,3-triazole hybrids as potent antiviral agents with promising SARS-CoV-2 main protease inhibition potential.Pharmaceuticals (Basel)202316346348510.3390/ph16030463 36986562
    [Google Scholar]
  83. RichardsonC. BhaganiS. PollaraG. Antiviral treatment for COVID-19: the evidence supporting remdesivir.Clin. Med. (Lond.)2020206e215e21710.7861/clinmed.2020‑0524 32863273
    [Google Scholar]
  84. DineshT.V. MalgijaB. PonrajM.R. MuralakarP. ThathapudiJ.J. KandasamyR. AlagarmalaiJ. BalakrishnanA.B. RamarP.S. JamesJ.V. BhagavathsinghJ. Design of novel pyrimidine based remdesivir analogues with dual target specificity for SARS CoV-2: A computational approach.Int. J. Biol. Macromol.2023242Pt 1124443124445710.1016/j.ijbiomac.2023.124443 37148943
    [Google Scholar]
  85. HashemianS.M. FarhadiT. VelayatiA.A. A review on remdesivir: A possible promising agent for the treatment of COVID-19.Drug Des. Devel. Ther.2020143215322210.2147/DDDT.S261154 32821086
    [Google Scholar]
  86. GalmariniC.M. JordheimL. DumontetC. Pyrimidine nucleoside analogs in cancer treatment.Expert Rev. Anticancer Ther.20033571772810.1586/14737140.3.5.717 14599094
    [Google Scholar]
  87. AjaniO.O. IsaacJ.T. OwoeyeT.F. AkinsikuA.A. Exploration of the chemistry and biological properties of pyrimidine as a privilege pharmacophore in therapeutics.Int. J. Biol. Chem.20159414817710.3923/ijbc.2015.148.177
    [Google Scholar]
  88. SelvamT.P. JamesC.R. DniandevP.V. ValzitaS.K. A mini review of pyrimidine and fused pyrimidine marketed drugs.Res. Pharm.20122419
    [Google Scholar]
  89. Abu-ZaiedM.A. ElgemeieG.H. MahmoudN.M. Anti-COVID-19 drug analogues: Synthesis of novel pyrimidine thioglycosides as antiviral agents against SARS-CoV-2 and avian influenza H5N1 viruses.ACS Omega2021626168901690410.1021/acsomega.1c01501 34250348
    [Google Scholar]
  90. Abu-ZaiedM.A. ElgemeieG.H. HalaweishF.T. HammadS.F. Synthesis of novel pyridine and pyrimidine thioglycoside phosphoramidates for the treatment of COVID-19 and influenza A viruses.Nucleosides Nucleotides Nucleic Acids202241985187710.1080/15257770.2022.2085293 35737369
    [Google Scholar]
  91. PismataroM.C. FelicettiT. BertagninC. NiziM.G. BonominiA. BarrecaM.L. CecchettiV. JochmansD. De JongheS. NeytsJ. LoregianA. TabarriniO. MassariS. 1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors.Eur. J. Med. Chem.202122111349411351010.1016/j.ejmech.2021.113494 33962311
    [Google Scholar]
  92. QureshiF. NawazM. HisaindeeS. AlmoftyS.A. AnsariM.A. JamalQ.M.S. UllahN. TahaM. AlshehriO. HuwaimelB. Bin BreakM.K. Microwave assisted synthesis of 2-amino-4-chloro-pyrimidine derivatives: Anticancer and computational study on potential inhibitory action against COVID-19.Arab. J. Chem.2022151210436610438210.1016/j.arabjc.2022.104366 36276298
    [Google Scholar]
  93. MatyuginaE. PetushkovI. SurzhikovS. KezinV. MaslovaA. IvanovaO. SmirnovaO. KirillovI. FedyakinaI. KulbachinskiyA. KochetkovS. KhandazhinskayaA. Nucleoside analogs that inhibit SARS-CoV-2 replication by blocking interaction of virus polymerase with RNA.Int. J. Mol. Sci.20232443361337910.3390/ijms24043361 36834771
    [Google Scholar]
  94. MousaviH. ZeynizadehB. RimazM. Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3-d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 Mpro and PLpro.Bioorg. Chem.202313510639010640910.1016/j.bioorg.2023.106390 37037129
    [Google Scholar]
  95. VermaV.A. SaundaneA.R. MetiR.S. VennapuD.R. Synthesis of novel indolo[3,2-c]isoquinoline derivatives bearing pyrimidine, piperazine rings and their biological evaluation and docking studies against COVID-19 virus main protease.J. Mol. Struct.2021122912982912984310.1016/j.molstruc.2020.129829 33390613
    [Google Scholar]
/content/journals/coc/10.2174/0113852728248762240812075831
Loading
/content/journals/coc/10.2174/0113852728248762240812075831
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test