Skip to content
2000
image of State-of-Art on the Synthesis of Heterocyclic Compounds Targeting SARS-CoV-2

Abstract

The Corona Virus Disease-19 (COVID-19) pandemic challenged the scientific community in the search for developing effective treatments, such as medicine and/or a vaccine candidate. The SARS-CoV-2 virus and its variants, Omega, Omicron, and Delta, remain as a major threat to human health, causing significant morbidity and mortality worldwide. Given that computational methods are thought to be quick, easy, and inexpensive, they have been widely used in this scenario to design new anti-COVID-19 drug candidates. In addition, heterocyclic scaffolds have been explored exhaustively for their biological properties and as fruitful sources of new molecular entities to fulfill the chemical space available.In light of this, we intend to highlight the synthetic techniques used to produce novel heterocyclic derivatives that may serve as effective anti-COVID-19 lead candidates by focusing on important viral proteins and using computational tools. Then, the objective of this article, with a theoretical nature, is to contribute to the delimitation of organic chemistry methods to achieve new anti-COVID-19 agents.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728248762240812075831
2024-09-25
2025-01-18
Loading full text...

Full text loading...

References

  1. Ceylan R.F. Ozkan B. Mulazimogullari E. Historical evidence for economic effects of COVID-19. Eur. J. Health Econ. 2020 21 6 817 823 10.1007/s10198‑020‑01206‑8 32500243
    [Google Scholar]
  2. Li Y. Undurraga E.A. Zubizarreta J.R. Effectiveness of Localized Lockdowns in the COVID-19 Pandemic. Am. J. Epidemiol. 2022 191 5 812 824 10.1093/aje/kwac008 35029649
    [Google Scholar]
  3. Arbel R. Pliskin J. Vaccinations versus Lockdowns to Prevent COVID-19 Mortality. Vaccines (Basel) 2022 10 8 1347 1354 10.3390/vaccines10081347 36016236
    [Google Scholar]
  4. Brice Y. Morgan L. Kirmani M. Kirmani M. Udeh M.C. COVID-19 Vaccine Evolution and Beyond. Neuroscience Insights 2023 18 26331055231180543 10.1177/26331055231180543 37351483
    [Google Scholar]
  5. Hansun S. Charles V. Gherman T. The role of the mass vaccination programme in combating the COVID-19 pandemic: An LSTM-based analysis of COVID-19 confirmed cases. Heliyon 2023 9 3 e14397 10.1016/j.heliyon.2023.e14397 36911879
    [Google Scholar]
  6. Hwang J.H. Uveitis after COVID-19 Vaccination. Case Rep. Ophthalmol. 2022 13 1 124 127 10.1159/000521785 35431883
    [Google Scholar]
  7. Shanshal M. Eruptive angiomatosis triggered by COVID-19 vaccination. Cureus 2022 14 3 e22907 10.7759/cureus.22907 35399409
    [Google Scholar]
  8. Zhang J. Cao J. Ye Q. Renal Side Effects of COVID-19 Vaccination. Vaccines (Basel) 2022 10 11 1783 1801 10.3390/vaccines10111783 36366292
    [Google Scholar]
  9. Ganga K. Solyar A.Y. Ganga R. Massive Cervical Lymphadenopathy Post-COVID-19 Vaccination. Ear Nose Throat J. 2024 103 4 255 257 10.1177/01455613211048984 34601889
    [Google Scholar]
  10. Sukockienė E. Breville G. Fayolle D. Nencha U. Uginet M. Hübers A. Case series of acute peripheral neuropathies in individuals who received COVID-19 vaccination. Medicina 2023 59 3 501 10.3390/medicina59030501
    [Google Scholar]
  11. Maftei C.V. Fodor E. Jones P.G. Freytag M. Franz M.H. Kelter G. Fiebig H.H. Tamm M. Neda I. N -heterocyclic carbenes (NHC) with 1,2,4-oxadiazole-substituents related to natural products: Synthesis, structure and potential antitumor activity of some corresponding gold(I) and silver(I) complexes. Eur. J. Med. Chem. 2015 101 431 441 10.1016/j.ejmech.2015.06.053 26185007
    [Google Scholar]
  12. Mihorianu M. Franz M.H. Jones P.G. Freytag M. Kelter G. Fiebig H.H. Tamm M. Neda I. N‐Heterocyclic carbenes derived from imidazo‐[1,5‐ a ]pyridines related to natural products: synthesis, structure and potential biological activity of some corresponding gold(I) and silver(I) complexes Appl. Organomet. Chem. 2016 30 7 581 589 10.1002/aoc.3474
    [Google Scholar]
  13. Maftei E. Maftei C.V. Jones P.G. Freytag M. Franz M.H. Kelter G. Fiebig H.H. Tamm M. Neda I. Trifluoromethylpyridine-Substituted N -Heterocyclic Carbenes Related to Natural Products: Synthesis, Structure, and Potential Antitumor Activity of some Corresponding Gold(I), Rhodium(I), and Iridium(I) Complexes. Helv. Chim. Acta 2016 99 6 469 481 10.1002/hlca.201500529
    [Google Scholar]
  14. Maftei C.V. Fodor E. Jones P.G. Daniliuc C.G. Franz M.H. Kelter G. Fiebig H.H. Tamm M. Neda I. Novel 1,2,4-oxadiazoles and trifluoromethylpyridines related to natural products: synthesis, structural analysis and investigation of their antitumor activity. Tetrahedron 2016 72 9 1185 1199 10.1016/j.tet.2016.01.011
    [Google Scholar]
  15. Maftei C.V. Fodor E. Jones P.G. Franz M.H. Kelter G. Fiebig H. Neda I. Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product analogs bearing the N -phenylmaleimide and N -phenylsuccinimide moieties. Beilstein J. Org. Chem. 2013 9 1 2202 2215 10.3762/bjoc.9.259 24222789
    [Google Scholar]
  16. Filimon S.A. Hrib C.G. Randoll S. Neda I. Jones P.G. Tamm M. Quinine‐Derived Imidazolidin‐2‐imine Ligands: Synthesis, Coordination Chemistry, and Application in Catalytic Transfer Hydrogenation. Z. Anorg. Allg. Chem. 2010 636 5 691 699 10.1002/zaac.200900485
    [Google Scholar]
  17. Maftei C.V. Fodor E. Jones P.G. Franz M.H. Davidescu C.M. Neda I. Asymmetric calixarene derivatives as potential hosts in chiral recognition processes. Pure Appl. Chem. 2015 87 4 415 439 10.1515/pac‑2014‑1121
    [Google Scholar]
  18. Maftei C.V. Franz M.H. Kleeberg C. Neda I. New members of the cinchona alkaloids family: Assembly of the triazole heterocycle at the 6′ position. Molecules 2021 26 11 3357 3372 10.3390/molecules26113357 34199504
    [Google Scholar]
  19. Neda I. Fodor E. Maftei C.V. Mihorianu M. Ambrosi H.D. Franz M.H. New members of the cinchona alkaloid family: 9-aminoquincorine-10-aldehyde and 9-aminoquincoridine-10-aldehyde. Eur. J. Org. Chem. 2013 2013 35 7876 7880 10.1002/ejoc.201301286
    [Google Scholar]
  20. Li C. Wang L. Ren L. Antiviral mechanisms of candidate chemical medicines and traditional Chinese medicines for SARS-CoV-2 infection. Virus Res. 2020 286 198073 10.1016/j.virusres.2020.198073 32592817
    [Google Scholar]
  21. Leneva I. Kartashova N. Poromov A. Gracheva A. Korchevaya E. Glubokova E. Borisova O. Shtro A. Loginova S. Shchukina V. Khamitov R. Faizuloev E. Antiviral activity of umifenovir in vitro against a broad spectrum of coronaviruses, including the novel sars-cov-2 virus. Viruses 2021 13 8 1665 10.3390/v13081665 34452529
    [Google Scholar]
  22. Shuster A. Pechalrieu D. Jackson C.B. Abegg D. Choe H. Adibekian A. Clinical Antiviral Drug Arbidol Inhibits Infection by SARS-CoV-2 and Variants through Direct Binding to the Spike Protein. ACS Chem. Biol. 2021 16 12 2845 2851 10.1021/acschembio.1c00756 34792325
    [Google Scholar]
  23. Wang Z. Yang B. Li Q. Wen L. Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin. Infect. Dis. 2020 71 15 769 777 10.1093/cid/ciaa272 32176772
    [Google Scholar]
  24. Bond L. McNicholas F. The end of COVID-19: not with a bang but a whimper. Ir. J. Med. Sci. 2024 193 1 335 339 10.1007/s11845‑023‑03435‑1 37386349
    [Google Scholar]
  25. El-Shabasy R.M. Nayel M.A. Taher M.M. Abdelmonem R. Shoueir K.R. Kenawy E.R. Three waves changes, new variant strains, and vaccination effect against COVID-19 pandemic. Int. J. Biol. Macromol. 2022 204 161 168 10.1016/j.ijbiomac.2022.01.118 35074332
    [Google Scholar]
  26. Tolomeu H.V. Fraga C.A.M. Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry. Molecules 2023 28 2 838 865 10.3390/molecules28020838 36677894
    [Google Scholar]
  27. Ma B. Tan W. Zhang J. Mi Y. Miao Q. Guo Z. Preparation and characterization of chitosan derivatives bearing imidazole ring with antioxidant, antibacterial, and antifungal activities. Starch 2023 75 2200204 10.1002/star.202200204
    [Google Scholar]
  28. Andrei G.Ș. Andrei B.F. Roxana P.R. Imidazole Derivatives and their Antibacterial Activity - A Mini-Review. Mini Rev. Med. Chem. 2021 21 11 1380 1392 10.2174/1389557520999201209213648 33302837
    [Google Scholar]
  29. Sharma P. LaRosa C. Antwi J. Govindarajan R. Werbovetz K.A. Imidazoles as potential anticancer agents: An update on recent studies. Molecules 2021 26 14 4213 4279 10.3390/molecules26144213 34299488
    [Google Scholar]
  30. Chhetri A. Chettri S. Rai P. Mishra D.K. Sinha B. Brahman D. Synthesis, characterization and computational study on potential inhibitory action of novel azo imidazole derivatives against COVID-19 main protease (Mpro: 6LU7). J. Mol. Struct. 2021 1225 129230 129243 10.1016/j.molstruc.2020.129230 32963413
    [Google Scholar]
  31. Ahmed Y.M. Omar M.M. Mohamed G.G. Synthesis, spectroscopic characterization, and thermal studies of novel Schiff base complexes: theoretical simulation studies on coronavirus (COVID-19) using molecular docking. J. Indian Chem. Soc. 2022 19 3 901 919 10.1007/s13738‑021‑02359‑w
    [Google Scholar]
  32. Anthony L.A. Nethaji P. Sundararajan G. Rajaraman D. One-pot synthesis, Spectral, X-ray crystal structure, Hirshfeld surface and computational study on potential inhibitory action of novel 1-benzyl-2-(4-methoxynaphthalen-1-yl)-4,5-diphenyl-1H-imidazole derivatives against COVID-19 main protease (Mpro: 6WCF/6Y84). J. Mol. Struct. 2022 1250 131892 131908 10.1016/j.molstruc.2021.131892
    [Google Scholar]
  33. Douche D. Sert Y. Brandán S.A. Kawther A.A. Bilmez B. Dege N. El Louzi A. Bougrin K. Karrouchi K. Himmi B. 5-((1H-imidazol-1-yl)methyl)quinolin-8-ol as potential antiviral COVID-19 candidate. J. Mol. Struct. 2021 1232 130005 130020 10.1016/j.molstruc.2021.130005 33526951
    [Google Scholar]
  34. Mudi P.K. Mahato R.K. Verma H. Panda S.J. Purohit C.S. Silakari O. Biswas B. In silico anti-SARS-CoV-2 activities of five-membered heterocycle-substituted benzimidazoles. J. Mol. Struct. 2022 1261 132869 132879 10.1016/j.molstruc.2022.132869 35340531
    [Google Scholar]
  35. Seck I. Nguemo F. Triazole, imidazole, and thiazole-based compounds as potential agents against coronavirus. Results in Chemistry 2021 3 100132 100141 10.1016/j.rechem.2021.100132 33907666
    [Google Scholar]
  36. Niu Z.X. Wang Y.T. Zhang S.N. Li Y. Chen X.B. Wang S.Q. Liu H.M. Application and synthesis of thiazole ring in clinically approved drugs. Eur. J. Med. Chem. 2023 250 115172 11517 10.1016/j.ejmech.2023.115172 36758304
    [Google Scholar]
  37. Said M.A. Riyadh S.M. Al-Kaff N.S. Nayl A.A. Khalil K.D. Bräse S. Gomha S.M. Synthesis and greener pastures biological study of bis-thiadiazoles as potential Covid-19 drug candidates. Arab. J. Chem. 2022 15 9 104101 104116 10.1016/j.arabjc.2022.104101 35845755
    [Google Scholar]
  38. Konno S. Thanigaimalai P. Yamamoto T. Nakada K. Kakiuchi R. Takayama K. Yamazaki Y. Yakushiji F. Akaji K. Kiso Y. Kawasaki Y. Chen S.E. Freire E. Hayashi Y. Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety. Bioorg. Med. Chem. 2013 21 2 412 424 10.1016/j.bmc.2012.11.017 23245752
    [Google Scholar]
  39. Alghamdi A. Abouzied A.S. Alamri A. Anwar S. Ansari M. Khadra I. Zaki Y.H. Gomha S.M. Synthesis, Molecular Docking, and Dynamic Simulation Targeting Main Protease (Mpro) of New, Thiazole Clubbed Pyridine Scaffolds as Potential COVID-19 Inhibitors. Curr. Issues Mol. Biol. 2023 45 2 1422 1442 10.3390/cimb45020093 36826038
    [Google Scholar]
  40. Gomha S.M. Riyadh S.M. Abdellattif M.H. Abolibda T.Z. Abdel-aziz H.M. Nayl A.A. Elgohary A.M. Elfiky A.A. Synthesis and In Silico Study of Some New bis-[1,3,4]thiadiazolimines and bis-Thiazolimines as Potential Inhibitors for SARS-CoV-2 Main Protease. Curr. Issues Mol. Biol. 2022 44 10 4540 4556 10.3390/cimb44100311 36286026
    [Google Scholar]
  41. Abu-Melha S. Edrees M.M. Riyadh S.M. Abdelaziz M.R. Elfiky A.A. Gomha S.M. Clean grinding technique: A facile synthesis and in silico antiviral activity of hydrazones, pyrazoles, and pyrazines bearing thiazole moiety against SARS-CoV-2 main protease (Mpro). Molecules 2020 25 19 4565 4578 10.3390/molecules25194565 33036293
    [Google Scholar]
  42. Abbas G. Irfan A. Ahmed I. Al-Zeidaneen F.K. Muthu S. Fuhr O. Thomas R. Synthesis and investigation of anti-COVID19 ability of ferrocene Schiff base derivatives by quantum chemical and molecular docking. J. Mol. Struct. 2022 1253 132242 132254 10.1016/j.molstruc.2021.132242 34975177
    [Google Scholar]
  43. Sondhi S.M. Arya S. Rani R. Kumar N. Roy P. Synthesis, anti-inflammatory and anticancer activity evaluation of some mono- and bis-Schiff’s bases. Med. Chem. Res. 2012 21 11 3620 3628 10.1007/s00044‑011‑9899‑3
    [Google Scholar]
  44. Mahal A. Wu P. Jiang Z.H. Wei X. Schiff Bases of Tetrahydrocurcumin as Potential Anticancer Agents. ChemistrySelect 2019 4 1 366 369 10.1002/slct.201803159
    [Google Scholar]
  45. Pahlavani E. Kargar H. Synthesis, Characterization, and Study of Anti-Tubercular and Anti-Microbial Activity of Isonicotinohydrazide Tridentate Schiff Base Ligands. Iranian Journal of Chemistry and Chemical Engineering 2021 40 1 201 206 10.21‑9986/2021/1/201‑206
    [Google Scholar]
  46. Anush S.M. Vishalakshi B. Kalluraya B. Manju N. Synthesis of pyrazole-based Schiff bases of Chitosan: Evaluation of antimicrobial activity. Int. J. Biol. Macromol. 2018 119 446 452 10.1016/j.ijbiomac.2018.07.129 30036622
    [Google Scholar]
  47. Chen G. Meng M. Zhang Y. Hao X. Wang Y. Mu S. Synthesis, Cytoprotective and Anti-Tumor Activities of Isatin Schiff Bases. Lett. Drug Des. Discov. 2015 12 10 802 805 10.2174/1570180812666150514234029
    [Google Scholar]
  48. Shabbir M. Akhter Z. Ahmad I. Ahmed S. Bolte M. Ismail H. Mirza B. Ferrocene-based Schiff bases copper (II) complexes: Synthesis, characterization, biological and electrochemical analysis. Inorg. Chim. Acta 2017 463 102 111 10.1016/j.ica.2017.04.034
    [Google Scholar]
  49. Husain A. Varshney M.M. Parcha V. Ahmad A. Khan S.A. Nalidixic Acid Schiff Bases: Synthesis and Biological Evaluation. Lett. Drug Des. Discov. 2018 15 1 103 111 10.2174/1570180814666170710160751
    [Google Scholar]
  50. El-Gammal O.A. El-Bindary A.A. Mohamed F.S. Rezk G.N. El-Bindary M.A. Synthesis, characterization, design, molecular docking, anti COVID-19 activity, DFT calculations of novel Schiff base with some transition metal complexes. J. Mol. Liq. 2022 346 117850 117869 10.1016/j.molliq.2021.117850
    [Google Scholar]
  51. G S. K D. P S. N B. DFT calculations, molecular docking, in vitro antimicrobial and antidiabetic studies of green synthesized Schiff bases: as Covid-19 inhibitor. J. Biomol. Struct. Dyn. 2023 41 22 12997 13014 10.1080/07391102.2023.2175039 36752337
    [Google Scholar]
  52. Said M.A. Khan D.J.O. Al-blewi F.F. Al-Kaff N.S. Ali A.A. Rezki N. Aouad M.R. Hagar M. New 1,2,3-triazole scaffold schiff bases as potential anti-covid-19: Design, synthesis, dft-molecular docking, and cytotoxicity aspects. Vaccines (Basel) 2021 9 9 1012 1032 10.3390/vaccines9091012 34579249
    [Google Scholar]
  53. Ünlü A. Özmen Ü.Ö. Alyar S. Öztürk A. Alyar H. Gündüzalp A.B. Biological evaluation of Schiff bases containing dopamine as antibacterial /antifungal and potential Anti COVID-19 agents: Design, synthesis, characterization, molecular docking studies, and ADME properties. J. Mol. Struct. 2023 1293 136318 136331 10.1016/j.molstruc.2023.136318
    [Google Scholar]
  54. O’Donnell F. Smyth T.J.P. Ramachandran V.N. Smyth W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int. J. Antimicrob. Agents 2010 35 1 30 38 10.1016/j.ijantimicag.2009.06.031 19748233
    [Google Scholar]
  55. Al-Bari M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect. 2017 5 1 e00293 e00306 10.1002/prp2.293 28596841
    [Google Scholar]
  56. Zhao J. Zhang Y. Wang M. Liu Q. Lei X. Wu M. Guo S. Yi D. Li Q. Ma L. Liu Z. Guo F. Wang J. Li X. Wang Y. Cen S. Quinoline and Quinazoline Derivatives Inhibit Viral RNA Synthesis by SARS-CoV-2 RdRp. ACS Infect. Dis. 2021 7 6 1535 1544 10.1021/acsinfecdis.1c00083 34038639
    [Google Scholar]
  57. Srivastava S.K. Jha A. Agarwal S.K. Mukherjee R. Burman A.C. Synthesis and structure-activity relationships of potent antitumor active quinoline and naphthyridine derivatives. Anticancer. Agents Med. Chem. 2007 7 6 685 709 10.2174/187152007784111313 18045063
    [Google Scholar]
  58. Musiol R. Serda M. Hensel-Bielowka S. Polanski J. Quinoline-Based Antifungals. Curr. Med. Chem. 2010 17 18 1960 1973 10.2174/092986710791163966 20377510
    [Google Scholar]
  59. Hu S. Chen J. Cao J.X. Zhang S.S. Gu S.X. Chen F.E. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities. Bioorg. Chem. 2023 136 106549 106570 10.1016/j.bioorg.2023.106549 37119785
    [Google Scholar]
  60. Singh V.K. Chaurasia H. Kumari P. Som A. Mishra R. Srivastava R. Naaz F. Singh A. Singh R.K. Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2. J. Biomol. Struct. Dyn. 2022 40 21 10519 10542 10.1080/07391102.2021.1946716 34253149
    [Google Scholar]
  61. Shin Y.S. Lee J.Y. Jeon S. Myung S. Gong H.J. Kim S. Kim H.R. Jeong L.S. Park C.M. Discovery of 2-aminoquinolone acid derivatives as potent inhibitors of SARS-CoV-2. Bioorg. Med. Chem. Lett. 2023 85 129214 129219 10.1016/j.bmcl.2023.129214 36870624
    [Google Scholar]
  62. Seliem I.A. Panda S.S. Girgis A.S. Moatasim Y. Kandeil A. Mostafa A. Ali M.A. Nossier E.S. Rasslan F. Srour A.M. Sakhuja R. Ibrahim T.S. Abdel-samii Z.K.M. Al-Mahmoudy A.M.M. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2. Bioorg. Chem. 2021 114 105117 105125 10.1016/j.bioorg.2021.105117 34214752
    [Google Scholar]
  63. Bekheit M.S. Mohamed H.A. Abdel-Wahab B.F. Fouad M.A. Design and synthesis of new 1,4,5-trisubstituted triazole-bearing benzenesulphonamide moiety as selective COX-2 inhibitors. Med. Chem. Res. 2021 30 5 1125 1138 10.1007/s00044‑021‑02716‑7
    [Google Scholar]
  64. Herrmann L. Hahn F. Wangen C. Marschall M. Tsogoeva S.B. Anti‐SARS‐CoV‐2 Inhibitory Profile of New Quinoline Compounds in Cell Culture‐Based Infection Models. Chemistry 2022 28 4 e202103861 e202103865 10.1002/chem.202103861 34859926
    [Google Scholar]
  65. Pillaiyar T. Manickam M. Namasivayam V. Hayashi Y. Jung S.H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem. 2016 59 14 6595 6628 10.1021/acs.jmedchem.5b01461 26878082
    [Google Scholar]
  66. Anand K. Ziebuhr J. Wadhwani P. Mesters J.R. Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003 300 5626 1763 1767 10.1126/science.1085658 12746549
    [Google Scholar]
  67. Karypidou K. Ribone S.R. Quevedo M.A. Persoons L. Pannecouque C. Helsen C. Claessens F. Dehaen W. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorg. Med. Chem. Lett. 2018 28 21 3472 3476 10.1016/j.bmcl.2018.09.019 30286952
    [Google Scholar]
  68. Li P. Wang Y. Lavrijsen M. Lamers M.M. de Vries A.C. Rottier R.J. Bruno M.J. Peppelenbosch M.P. Haagmans B.L. Pan Q. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 2022 32 3 322 324 10.1038/s41422‑022‑00618‑w 35058606
    [Google Scholar]
  69. Al-Humaidi J.Y. Shaaban M.M. Rezki N. Aouad M.R. Zakaria M. Jaremko M. Hagar M. Elwakil B.H. 1,2,3-Triazole-Benzofused Molecular Conjugates as Potential Antiviral Agents against SARS-CoV-2 Virus Variants. Life (Basel) 2022 12 9 1341 1344 10.3390/life12091341 36143380
    [Google Scholar]
  70. Zhou C-H. Wang Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem. 2012 19 2 239 280 10.2174/092986712803414213 22320301
    [Google Scholar]
  71. Rezki N. Almehmadi M.A. Ihmaid S. Shehata A.M. Omar A.M. Ahmed H.E.A. Aouad M.R. Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1,2,3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorg. Chem. 2020 103 104133 104147 10.1016/j.bioorg.2020.104133 32745759
    [Google Scholar]
  72. da Silva F.C. de Souza M.C.B.V. Frugulhetti I.I.P. Castro H.C. Souza S.L.O. de Souza T.M.L. Rodrigues D.Q. Souza A.M.T. Abreu P.A. Passamani F. Rodrigues C.R. Ferreira V.F. Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur. J. Med. Chem. 2009 44 1 373 383 10.1016/j.ejmech.2008.02.047 18486994
    [Google Scholar]
  73. Rezki N. Green Microwave Synthesis and Antimicrobial Evaluation of Novel Triazoles. Org. Prep. Proced. Int. 2017 49 6 525 541 10.1080/00304948.2017.1384262
    [Google Scholar]
  74. Al-blewi F.F. Almehmadi M.A. Aouad M.R. Bardaweel S.K. Sahu P.K. Messali M. Rezki N. El Ashry E.S.H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent. J. 2018 12 1 110 10.1186/s13065‑018‑0479‑1 30387018
    [Google Scholar]
  75. Aouad M.R. Almehmadi M.A. Rezki N. Al-blewi F.F. Messali M. Ali I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzofused heterocycles. J. Mol. Struct. 2019 1188 153 164 10.1016/j.molstruc.2019.04.005
    [Google Scholar]
  76. Negi M. Chawla P.A. Faruk A. Chawla V. Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic. Bioorg. Chem. 2020 104 104315 104326 10.1016/j.bioorg.2020.104315 33007742
    [Google Scholar]
  77. Cortés-García C.J. Chacón-García L. Mejía-Benavides J.E. Díaz-Cervantes E. Tackling the SARS-CoV-2 main protease using hybrid derivatives of 1,5-disubstituted tetrazole-1,2,3-triazoles: an in silico assay. PeerJ Physical Chemistry 2020 2 e10 e25 10.7717/peerj‑pchem.10
    [Google Scholar]
  78. Kaoukabi H. Kabri Y. Curti C. Taourirte M. Rodriguez-Ubis J.C. Snoeck R. Andrei G. Vanelle P. Lazrek H.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur. J. Med. Chem. 2018 155 772 781 10.1016/j.ejmech.2018.06.028 29945100
    [Google Scholar]
  79. Obakachi V.A. Kushwaha N.D. Kushwaha B. Mahlalela M.C. Shinde S.R. Kehinde I. Karpoormath R. Design and synthesis of pyrazolone-based compounds as potent blockers of SARS-CoV-2 viral entry into the host cells. J. Mol. Struct. 2021 1241 130665 130680 10.1016/j.molstruc.2021.130665 34007088
    [Google Scholar]
  80. Zhao Z. Dai X. Li C. Wang X. Tian J. Feng Y. Xie J. Ma C. Nie Z. Fan P. Qian M. He X. Wu S. Zhang Y. Zheng X. Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect. Eur. J. Med. Chem. 2020 186 111893 111917 10.1016/j.ejmech.2019.111893 31761383
    [Google Scholar]
  81. Kumar V. Tan K.P. Wang Y.M. Lin S.W. Liang P.H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorg. Med. Chem. 2016 24 13 3035 3042 10.1016/j.bmc.2016.05.013 27240464
    [Google Scholar]
  82. Musa A. Abulkhair H.S. Aljuhani A. Rezki N. Abdelgawad M.A. Shalaby K. El-Ghorab A.H. Aouad M.R. Phenylpyrazolone-1,2,3-triazole Hybrids as Potent Antiviral Agents with Promising SARS-CoV-2 Main Protease Inhibition Potential. Pharmaceuticals (Basel) 2023 16 3 463 485 10.3390/ph16030463 36986562
    [Google Scholar]
  83. Richardson C. Bhagani S. Pollara G. Antiviral treatment for COVID-19: the evidence supporting remdesivir. Clin. Med. (Lond.) 2020 20 6 e215 e217 10.7861/clinmed.2020‑0524 32863273
    [Google Scholar]
  84. Dinesh T.V. Malgija B. Ponraj M.R. Muralakar P. Thathapudi J.J. Kandasamy R. Alagarmalai J. Balakrishnan A.B. Ramar P.S. James J.V. Bhagavathsingh J. Design of novel pyrimidine based remdesivir analogues with dual target specificity for SARS CoV-2: A computational approach. Int. J. Biol. Macromol. 2023 242 Pt 1 124443 1244457 10.1016/j.ijbiomac.2023.124443 37148943
    [Google Scholar]
  85. Hashemian S.M. Farhadi T. Velayati A.A. A review on remdesivir: A possible promising agent for the treatment of COVID-19. Drug Des. Devel. Ther. 2020 14 3215 3222 10.2147/DDDT.S261154 32821086
    [Google Scholar]
  86. Galmarini C.M. Jordheim L. Dumontet C. Pyrimidine nucleoside analogs in cancer treatment. Expert Rev. Anticancer Ther. 2003 3 5 717 728 10.1586/14737140.3.5.717 14599094
    [Google Scholar]
  87. Ajani O.O. Isaac J.T. Owoeye T.F. Akinsiku A.A. Exploration of the chemistry and biological properties of pyrimidine as a privilege pharmacophore in therapeutics. International Journal of Biological Chemistry 2015 9 4 148 177 10.3923/ijbc.2015.148.177
    [Google Scholar]
  88. Selvam T.P. James C.R. Dniandev P.V. Valzita S.K. A mini review of pyrimidine and fused pyrimidine marketed drugs. Res. Pharm. 2012 2 4 1 9
    [Google Scholar]
  89. Abu-Zaied M.A. Elgemeie G.H. Mahmoud N.M. Anti-Covid-19 Drug Analogues: Synthesis of Novel Pyrimidine Thioglycosides as Antiviral Agents Against SARS-COV-2 and Avian Influenza H5N1 Viruses. ACS Omega 2021 6 26 16890 16904 10.1021/acsomega.1c01501 34250348
    [Google Scholar]
  90. Abu-Zaied M.A. Elgemeie G.H. Halaweish F.T. Hammad S.F. Synthesis of novel pyridine and pyrimidine thioglycoside phosphoramidates for the treatment of COVID-19 and influenza A viruses. Nucleosides Nucleotides Nucleic Acids 2022 41 9 851 877 10.1080/15257770.2022.2085293 35737369
    [Google Scholar]
  91. Pismataro M.C. Felicetti T. Bertagnin C. Nizi M.G. Bonomini A. Barreca M.L. Cecchetti V. Jochmans D. De Jonghe S. Neyts J. Loregian A. Tabarrini O. Massari S. 1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. Eur. J. Med. Chem. 2021 221 113494 113510 10.1016/j.ejmech.2021.113494 33962311
    [Google Scholar]
  92. Qureshi F. Nawaz M. Hisaindee S. Almofty S.A. Ansari M.A. Jamal Q.M.S. Ullah N. Taha M. Alshehri O. Huwaimel B. Bin Break M.K. Microwave assisted synthesis of 2-amino-4-chloro-pyrimidine derivatives: Anticancer and computational study on potential inhibitory action against COVID-19. Arab. J. Chem. 2022 15 12 104366 104382 10.1016/j.arabjc.2022.104366 36276298
    [Google Scholar]
  93. Matyugina E. Petushkov I. Surzhikov S. Kezin V. Maslova A. Ivanova O. Smirnova O. Kirillov I. Fedyakina I. Kulbachinskiy A. Kochetkov S. Khandazhinskaya A. Nucleoside Analogs That Inhibit SARS-CoV-2 Replication by Blocking Interaction of Virus Polymerase with RNA. Int. J. Mol. Sci. 2023 24 4 3361 3379 10.3390/ijms24043361 36834771
    [Google Scholar]
  94. Mousavi H. Zeynizadeh B. Rimaz M. Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3-d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorg. Chem. 2023 135 106390 106409 10.1016/j.bioorg.2023.106390 37037129
    [Google Scholar]
  95. Verma V.A. Saundane A.R. Meti R.S. Vennapu D.R. Synthesis of novel indolo[3,2-c]isoquinoline derivatives bearing pyrimidine, piperazine rings and their biological evaluation and docking studies against COVID-19 virus main protease. J. Mol. Struct. 2021 1229 129829 129843 10.1016/j.molstruc.2020.129829 33390613
    [Google Scholar]
/content/journals/coc/10.2174/0113852728248762240812075831
Loading
/content/journals/coc/10.2174/0113852728248762240812075831
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: drug discovery ; SARS-CoV-2 ; lead compounds ; COVID-19 ; heterocyclic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test