Skip to content
2000
Volume 29, Issue 8
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Dihydrocoumarins play pivotal roles as essential components in biologically active molecules, drugs, and flavor and fragrance compounds. In particular, chiral 3,4-dihydrocoumarins exist in natural products, exhibit less toxicity, and possess structural diversity and stability. Consequently, the asymmetric synthesis of these scaffolds has garnered considerable attention within the chemistry community. Recent advancements have witnessed their synthesis achieved through both metal and organocatalyzed approaches. In this review, we analyze and discuss the advancements made in chiral-organocatalyzed asymmetric synthesis of dihydrocoumarins since 2015. This review is structured according to the type of catalyst employed in the transformation, providing a comprehensive examination of the recent developments in this field.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728331488240828074740
2024-09-23
2025-05-04
Loading full text...

Full text loading...

References

  1. PatelD.M. PatelH.J. PadrónJ.M. PatelH.M. A novel substrate directed multicomponent reaction for the syntheses of tetrahydro-spiro[pyrazolo[4,3-f]quinoline]-8,5′-pyrimidines and tetrahydro-pyrazolo[4,3-f]pyrimido[4,5-b]quinolines via selective multiple C–C bond formation under metal-free conditions.RSC Advances20201033196001960910.1039/D0RA02990D 35515429
    [Google Scholar]
  2. PatelD.M. PatelH.M. Trimethylglycine-betaine-based-catalyst-promoted novel and ecocompatible pseudo-four-component reaction for regioselective synthesis of functionalized 6,8-dihydro-1′H,5H-spiro[[1,3]dioxolo[4,5-g]quinoline-7,5′-pyrimidine]-2′,4′,6′(3′H)-trione derivatives.ACS Sustain. Chem. Eng.2019722186671867610.1021/acssuschemeng.9b05184
    [Google Scholar]
  3. PatelD.M. PatelP.J. PatelH.M. Catalytic stereoselective multicomponent reactions for the synthesis of spiro derivatives: Recent progress.Eur. J. Org. Chem.2022202246e20220111910.1002/ejoc.202201119
    [Google Scholar]
  4. StefanachiA. LeonettiF. PisaniL. CattoM. CarottiA. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds.Molecules201823225010.3390/molecules23020250 29382051
    [Google Scholar]
  5. LiuL. ChenY. ZengR.F. LiuY. XieS.S. LanJ.S. DingY. YangY.T. YangJ. ZhangT. Design and synthesis of novel 3,4-dihydrocoumarins as potent and selective monoamine oxidase-B inhibitors with the neuroprotection against Parkinson’s disease.Bioorg. Chem.202110910468510.1016/j.bioorg.2021.104685 33640631
    [Google Scholar]
  6. AsaiF. IinumaM. TanakaT. MizunoM. Complex flavonoids in farinose exudate from Pityrogramma calomelanos.Phytochemistry19913093091309310.1016/S0031‑9422(00)98259‑1
    [Google Scholar]
  7. BorregoL.G. RecioR. MorenoN. ChelouanA. ÁlvarezE. Sánchez-CoronillaA. CaroC. PearsonJ.R. García-MartínM.L. KhiarN. FernándezI. Enantioselective synthesis of 4-amino-3,4-dihydrocoumarins and their non-cyclic hydroxyester precursors: Biological evaluation for the treatment of glioblastoma multiforme.Eur. J. Med. Chem.202224311473010.1016/j.ejmech.2022.114730 36088758
    [Google Scholar]
  8. JinJ.H. LiX.Y. LuoX. FosseyJ.S. DengW.P. Asymmetric synthesis of cis-3,4-dihydrocoumarins via [4 + 2] cycloadditions catalyzed by amidine derivatives.J. Org. Chem.201782105424543210.1021/acs.joc.7b00367 28441490
    [Google Scholar]
  9. JeonJ.H. YangD.M. JunJ.G. Selective synthesis of 3,4-dihydrocoumarins and chalcones from substituted aryl cinnamic esters.Bull. Korean Chem. Soc.2011321657010.5012/bkcs.2011.32.1.65
    [Google Scholar]
  10. ZeitlerK. RoseC.A. An efficient carbene-catalyzed access to 3,4-dihydrocoumarins.J. Org. Chem.20097441759176210.1021/jo802285r 19170540
    [Google Scholar]
  11. UenishiK. SudoA. EndoT. Anionic alternating copolymerization of 3,4‐dihydrocoumarin and glycidyl ethers: A new approach to polyester synthesis.J. Polym. Sci. A Polym. Chem.200846124092410210.1002/pola.22752
    [Google Scholar]
  12. ZhangH. HuS. ZhaoJ. ZhangG. Phosphazene-catalyzed alternating copolymerization of dihydrocoumarin and ethylene oxide: Weaker is better.Macromolecules201750114198420510.1021/acs.macromol.7b00599
    [Google Scholar]
  13. KimD.Y. One-pot synthesis of 3,4-dihydrocoumarins via C-H oxidation/conjugate addition/cyclization cascade reaction.Molecules20232819685310.3390/molecules28196853 37836696
    [Google Scholar]
  14. SatoK. AmakasuT. AbeS. Direct synthesis of dihydrocoumarin and its derivatives.J. Org. Chem.196429102971297210.1021/jo01033a040
    [Google Scholar]
  15. ShaabaniA. SarvaryA. SoleimaniE. RezayanA.H. HeidaryM. A novel method for the synthesis of substituted 3,4-dihydrocoumarin derivatives via isocyanide-based three-component reaction.Mol. Divers.2008123-419720210.1007/s11030‑008‑9090‑z 18830678
    [Google Scholar]
  16. SerraS. CastagnaA. ValentinoM. Biocatalytic synthesis of natural dihydrocoumarin by microbial reduction of coumarin.Catalysts20199866510.3390/catal9080665
    [Google Scholar]
  17. AokiS. AmamotoC. OyamadaJ. KitamuraT. A convenient synthesis of dihydrocoumarins from phenols and cinnamic acid derivatives.Tetrahedron200561399291929710.1016/j.tet.2005.07.062
    [Google Scholar]
  18. ZengH. YeZ. ChaiA. JiangY. ZouY. WuF. LiZ. ZhouL. Direct oxidative cyclization of 3-arylpropionic acids to 3,4-dihydrocoumarins: reinvestigation of the reaction mechanism.J. Org. Chem.20248985287529710.1021/acs.joc.3c02645 38568740
    [Google Scholar]
  19. PengS. WangL. GuoH. SunS. WangJ. Facile synthesis of 4-substituted 3,4-dihydrocoumarins via an organocatalytic double decarboxylation process.Org. Biomol. Chem.201210132537254110.1039/c2ob25075f 22366754
    [Google Scholar]
  20. AlbrechtA. BojanowskiJ. KotA. SierońL. Decarboxylative, trienamine mediated cycloaddition for the synthesis of 3,4-dihydrocoumarin derivatives.Org. Biomol. Chem.201917174238424210.1039/C9OB00386J 30957816
    [Google Scholar]
  21. MatsudaT. ShigenoM. MurakamiM. Asymmetric synthesis of 3,4-dihydrocoumarins by rhodium-catalyzed reaction of 3-(2-hydroxyphenyl)cyclobutanones.J. Am. Chem. Soc.200712940120861208710.1021/ja075141g 17877354
    [Google Scholar]
  22. HongB.C. KotameP. LeeG.H. Asymmetric synthesis of 3,4-dihydrocoumarin motif with an all-carbon quaternary stereocenter via a Michael-acetalization sequence with bifunctional amine-thiourea organocatalysts.Org. Lett.201113215758576110.1021/ol202331j 21985707
    [Google Scholar]
  23. KaurR. SinghD. SinghR.P. Stereoselective synthesis of dihydrocoumarins via [1,2]-phospha-brook rearrangement in three-component coupling reaction of α-ketoesters, o-quinone methides, and dialkyl phosphites.J. Org. Chem.20218621157021571110.1021/acs.joc.1c01414 34637300
    [Google Scholar]
  24. LiX.H. FangP. ChenD. HouX.L. Kinetic resolution of 4-substituted-3,4-dihydrocoumarins via Pd-catalyzed asymmetric allylic alkylation reaction: Enantioselective synthesis of trans-3,4-disubstituted-3,4-dihydrocoumarins.Org. Chem. Front.20141896997310.1039/C4QO00178H
    [Google Scholar]
  25. KimH. YunJ. Copper‐catalyzed asymmetric 1,4‐hydroboration of coumarins with pinacolborane: asymmetric synthesis of dihydrocoumarins.Adv. Synth. Catal.201035211-121881188510.1002/adsc.201000310
    [Google Scholar]
  26. HuH. LiuY. GuoJ. LinL. XuY. LiuX. FengX. Enantioselective synthesis of dihydrocoumarin derivatives by chiral scandium(III)-complex catalyzed inverse-electron-demand hetero-Diels–Alder reaction.Chem. Commun. (Camb.)201551183835383710.1039/C4CC10343B 25649623
    [Google Scholar]
  27. LaiJ. YangC. CsukR. SongB. LiS. Palladium catalyzed enantioselective hayashi–miyaura reaction for pharmaceutically important 4-aryl-3,4-dihydrocoumarins.Org. Lett.20222461329133410.1021/acs.orglett.1c04366 35133842
    [Google Scholar]
  28. LvH. YouL. YeS. Enantioselective synthesis of dihydrocoumarins via N‐heterocyclic carbene‐catalyzed cycloaddition of ketenes and o‐quinone methides.Adv. Synth. Catal.2009351172822282610.1002/adsc.200900544
    [Google Scholar]
  29. MoreiraN.M. MartelliL.S.R. CorrêaA.G. Asymmetric organocatalyzed synthesis of coumarin derivatives.Beilstein J. Org. Chem.2021171952198010.3762/bjoc.17.128 34386105
    [Google Scholar]
  30. JacobsenC.B. AlbrechtŁ. UdmarkJ. JørgensenK.A. Enantioselective formation of substituted 3,4-dihydrocoumarins by a multicatalytic one-pot process.Org. Lett.201214215526552910.1021/ol302627u 23075268
    [Google Scholar]
  31. ZhaoB.L. LiJ.H. DuD.M. Squaramide‐catalyzed asymmetric reactions.Chem. Rec.20171710994101810.1002/tcr.201600140 28266131
    [Google Scholar]
  32. HouX.Q. DuD.M. Recent advances in squaramide‐catalyzed asymmetric Mannich reactions.Adv. Synth. Catal.2020362214487451210.1002/adsc.202000842
    [Google Scholar]
  33. PopovaE.A. ProninaY.A. DavtianA.V. NepochatyiG.D. PetrovM.L. BoitsovV.M. StepakovA.V. Squaramide-based catalysts in organic synthesis (A review).Russ. J. Gen. Chem.202292328734710.1134/S107036322203001X
    [Google Scholar]
  34. RoufA. TanyeliC. Squaramide based organocatalysts in organic transformations.Curr. Org. Chem.201620282996301310.2174/1385272820666160805113749
    [Google Scholar]
  35. SunnyS. MaingleM. SethK. Advances in bifunctional squaramide-catalyzed asymmetric sulfa-michael addition: A decade update.Synlett202334657260010.1055/a‑1921‑0748
    [Google Scholar]
  36. Ian StorerR. AciroC. JonesL.H. Squaramides: Physical properties, synthesis and applications.Chem. Soc. Rev.20114052330234610.1039/c0cs00200c 21399835
    [Google Scholar]
  37. HanX. ZhouH.B. DongC. Applications of chiral squaramides: From asymmetric organocatalysis to biologically active compounds.Chem. Rec.201616289790610.1002/tcr.201500266 26969213
    [Google Scholar]
  38. ChauhanP. MahajanS. KayaU. HackD. EndersD. Bifunctional amine‐squaramides: powerful hydrogen‐bonding organocatalysts for asymmetric domino/cascade reactions.Adv. Synth. Catal.20153572-325328110.1002/adsc.201401003
    [Google Scholar]
  39. KarahanS. TanyeliC. Squaramide catalyzed α-chiral amine synthesis.Tetrahedron Lett.201859423725373710.1016/j.tetlet.2018.08.034
    [Google Scholar]
  40. MarchettiL.A. KumawatL.K. MaoN. StephensJ.C. ElmesR.B.P. The versatility of squaramides: From supramolecular chemistry to chemical biology.Chem2019561398148510.1016/j.chempr.2019.02.027
    [Google Scholar]
  41. GharuiC. ParidaC. PanS.C. Organocatalytic asymmetric addition of aromatic α-cyanoketones to o-quinone methides: Synthesis of 3,4-dihydrocoumarins and tetrasubstituted chromans.J. Org. Chem.20218618130711308110.1021/acs.joc.1c00435 34464133
    [Google Scholar]
  42. ZhangZ.P. ChenL. LiX. ChengJ.P. Organocatalytic asymmetric sequential 1,6-addition/acetalization of 1-oxotetralin-2-carbaldehyde to ortho-hydroxyphenyl-substituted para-quinone methides for synthesis of spiro-3,4-dihydrocoumarins.J. Org. Chem.20188352714272410.1021/acs.joc.7b03177 29406716
    [Google Scholar]
  43. HejmanowskaJ. AlbrechtA. PiętaJ. AlbrechtŁ. Asymmetric synthesis of 3,4‐dihydrocoumarins bearing an α,α‐disubstituted amino acid moiety.Adv. Synth. Catal.2015357183843384810.1002/adsc.201500598
    [Google Scholar]
  44. ZhaoY.L. LouQ.X. WangL.S. HuW.H. ZhaoJ.L. Organocatalytic friedel–crafts alkylation/lactonization reaction of naphthols with 3‐trifluoroethylidene oxindoles: The asymmetric synthesis of dihydrocoumarins.Angew. Chem. Int. Ed.201756133834210.1002/anie.201609390 27900837
    [Google Scholar]
  45. WuB. YuZ. GaoX. LanY. ZhouY.G. Regioselective α‐addition of deconjugated butenolides: Enantioselective synthesis of dihydrocoumarins.Angew. Chem. Int. Ed.201756144006401010.1002/anie.201700437 28247568
    [Google Scholar]
  46. ZhouJ. WangM.L. GaoX. JiangG.F. ZhouY.G. Bifunctional squaramide-catalyzed synthesis of chiral dihydrocoumarins via ortho-quinone methides generated from 2-(1-tosylalkyl)phenols.Chem. Commun. (Camb.)201753253531353410.1039/C7CC01072A 28289737
    [Google Scholar]
  47. LvD. ZhaoM. WangY. ZhouZ. 3-Nitro-3,4-dihydrocoumarins: Valuable precursors for the synthesis of enantiomerically enriched masked quaternary α-amino acid derivatives with a 3,4-dihydrocoumarin scaffold.Org. Biomol. Chem.201917449636964510.1039/C9OB02089F 31670332
    [Google Scholar]
  48. KimK.S. JangJ. KimD.Y. Organocatalytic enantioselective cycloaddition of o-quinone methides with oxazolones: asymmetric synthesis of dihydrocoumarins.ChemSelect202051325913262
    [Google Scholar]
  49. CuiL. LvD. WangY. FanZ. LiZ. ZhouZ. Asymmetric formal [4 + 2] annulation of o-quinone methides with β-keto acylpyrazoles: A general approach to optically active trans-3,4-dihydrocoumarins.J. Org. Chem.20188374221422810.1021/acs.joc.8b00234 29533621
    [Google Scholar]
  50. AkiyamaT. MoriK. Stronger Brønsted acids: Recent progress.Chem. Rev.2015115179277930610.1021/acs.chemrev.5b00041 26182163
    [Google Scholar]
  51. WoldegiorgisA.G. HanZ. LinX. Recent advances in chiral phosphoric acid catalyzed asymmetric organic reactions: An overview.J. Mol. Struct.2024129713691910.1016/j.molstruc.2023.136919
    [Google Scholar]
  52. WoldegiorgisA.G. LinX. Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds.Beilstein J. Org. Chem.2021172729276410.3762/bjoc.17.185 34876929
    [Google Scholar]
  53. ShaoY.D. ChengD.J. Chiral phosphoric acid: A powerful organocatalyst for the asymmetric synthesis of heterocycles with chiral atropisomerism.ChemCatChem20211351271128910.1002/cctc.202001750
    [Google Scholar]
  54. WoldegiorgisA.G. MustafaiA. MuhammadF.Y. FarooqiR. TolesaL.D. AimunK. Stereoselective synthesis of axially chiral allenes and styrenes via chiral phosphoric acid catalysis: An overview.ACS Omega2024931333513336410.1021/acsomega.4c04206 39130561
    [Google Scholar]
  55. WoldegiorgisA.G. GuH. LinX. Atroposelective synthesis of axially chiral styrenes connecting an axially chiral naphthyl-indole moiety using chiral phosphoric acid catalysis.Org. Lett.202325122068207210.1021/acs.orglett.3c00425 36940485
    [Google Scholar]
  56. WoldegiorgisA.G. GuH. LinX. Enantioselective synthesis of indole‐based unnatural β‐Alkynyl α‐amino acid derivatives via chiral phosphoric acid catalysis.Chirality202234467869310.1002/chir.23422 35128727
    [Google Scholar]
  57. RahmanA. LinX. Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis.Org. Biomol. Chem.201816264753477710.1039/C8OB00900G 29893395
    [Google Scholar]
  58. LinX. WangL. HanZ. ChenZ. Chiral spirocyclic phosphoric acids and their growing applications.Chin. J. Chem.202139480282410.1002/cjoc.202000446
    [Google Scholar]
  59. WoldegiorgisA.G. SulemanM. LinX. Asymmetric cycloaddition/annulation reactions by chiral phosphoric acid catalysis: Recent advances.Eur. J. Org. Chem.2022202234e20220062410.1002/ejoc.202200624
    [Google Scholar]
  60. DebeliD.K. GashawA. ChemedaM. Asymmetric C-H and N-H functionalization of indoles involving central chirality via chiral phosphoric acid catalysis.Mini Rev. Org. Chem.202219565467410.2174/1570193X18666211006162836
    [Google Scholar]
  61. ZhangZ.P. XieK.X. YangC. LiM. LiX. Asymmetric synthesis of dihydrocoumarins through chiral phosphoric acid-catalyzed cycloannulation of para-quinone methides and azlactones.J. Org. Chem.201883136437310.1021/acs.joc.7b02750 29212323
    [Google Scholar]
  62. SpankaM. SchneiderC. Phosphoric acid catalyzed aldehyde addition to in situ generated o-quinone methides: An enantio-and diastereoselective entry toward cis-3,4-diaryl dihydrocoumarins.Org. Lett.201820164769477210.1021/acs.orglett.8b01865 30074397
    [Google Scholar]
  63. ZhangL. LiuY. LiuK. LiuZ. HeN. LiW. Asymmetric synthesis of dihydrocoumarins via the organocatalytic hetero-Diels–Alder reaction of ortho-quinone methides.Org. Biomol. Chem.201715418743874710.1039/C7OB02325A 28991314
    [Google Scholar]
  64. YuX. WangW. Hydrogen-bond-mediated asymmetric catalysis.Chem. Asian J.20083351653210.1002/asia.200700415 18286564
    [Google Scholar]
  65. TakemotoY. Development of chiral thiourea catalysts and its application to asymmetric catalytic reactions.Chem. Pharm. Bull. (Tokyo)201058559360110.1248/cpb.58.593 20460782
    [Google Scholar]
  66. ParvinT. YadavR. ChoudhuryL.H. Recent applications of thiourea-based organocatalysts in asymmetric multicomponent reactions (AMCRs).Org. Biomol. Chem.202018295513553210.1039/D0OB00595A 32644077
    [Google Scholar]
  67. SiauW.Y. WangJ. Asymmetric organocatalytic reactions by bifunctional amine-thioureas.Catal. Sci. Technol.2011181298131010.1039/c1cy00271f
    [Google Scholar]
  68. ZhangS.Y. LvM. YinS.J. LiN.K. ZhangJ.Q. WangX.W. Asymmetric synthesis of dihydrocoumarins containing contiguous quaternary and tertiary stereogenic centers catalyzed by a cinchona‐alkaloid‐based bifunctional thiourea derivative.Adv. Synth. Catal.2016358114315310.1002/adsc.201500666
    [Google Scholar]
  69. JinH. ChoS.M. HwangG.S. RyuD.H. Construction of 3,4‐dihydrocoumarin derivatives with adjacent quaternary and tertiary stereocenters: Organocatalytic asymmetric michael addition of 2‐oxochroman‐3‐carboxylate esters to trans‐β‐nitroolefins.Adv. Synth. Catal.2017359116316710.1002/adsc.201600825
    [Google Scholar]
  70. HopkinsonM.N. RichterC. SchedlerM. GloriusF. An overview of N-heterocyclic carbenes.Nature2014510750648549610.1038/nature13384 24965649
    [Google Scholar]
  71. HerrmannW.A. N-heterocyclic carbenes: A new concept in organometallic catalysis.Angew. Chem. Int. Ed.20024181290130910.1002/1521‑3773(20020415)41:8<1290::AID‑ANIE1290>3.0.CO;2‑Y 19750753
    [Google Scholar]
  72. EndersD. NiemeierO. HenselerA. Organocatalysis by N-heterocyclic carbenes.Chem. Rev.2007107125606565510.1021/cr068372z 17956132
    [Google Scholar]
  73. LiG.T. LiZ.K. GuQ. YouS.L. Asymmetric synthesis of 4-aryl-3,4-dihydrocoumarins by N-heterocyclic carbene catalyzed annulation of phenols with enals.Org. Lett.20171961318132110.1021/acs.orglett.7b00088 28233489
    [Google Scholar]
  74. WangY. PanJ. DongJ. YuC. LiT. WangX.S. ShenS. YaoC. N -Heterocyclic carbene-catalyzed [4 + 2] cyclization of saturated carboxylic acid with o-quinone methides through in situ activation: Enantioselective synthesis of dihydrocoumarins.J. Org. Chem.20178231790179510.1021/acs.joc.6b02444 28074651
    [Google Scholar]
  75. ChenX. SongR. LiuY. OoiC.Y. JinZ. ZhuT. WangH. HaoL. ChiY.R. Carbene and acid cooperative catalytic reactions of aldehydes and o-hydroxybenzhydryl amines for highly enantioselective access to dihydrocoumarins.Org. Lett.201719215892589510.1021/acs.orglett.7b02883 29068212
    [Google Scholar]
  76. LeeA. ScheidtK.A. N-Heterocyclic carbene-catalyzed enantioselective annulations: A dual activation strategy for a formal [4+2] addition for dihydrocoumarins.Chem. Commun. (Camb.)201551163407341010.1039/C4CC09590A 25623173
    [Google Scholar]
  77. KowalczykD. AlbrechtŁ. Organocatalytic doubly annulative approach to 3,4-dihydrocoumarins bearing a fused pyrrolidine scaffold.J. Org. Chem.201681156800680710.1021/acs.joc.6b00975 27351069
    [Google Scholar]
  78. ZhangX.Z. GanK.J. LiuX.X. DengY.H. WangF.X. YuK.Y. ZhangJ. FanC.A. Enantioselective synthesis of functionalized 4-aryl hydrocoumarins and 4-aryl hydroquinolin-2-ones via intramolecular vinylogous rauhut–currier reaction of para-quinone methides.Org. Lett.201719123207321010.1021/acs.orglett.7b01331 28581760
    [Google Scholar]
  79. ZhangH. LuoY. LiD. YaoQ. DongS. LiuX. FengX. Enantioselective synthesis of 4-hydroxy-dihydrocoumarins via catalytic ring opening/cycloaddition of cyclobutenones.Org. Lett.20192172388239210.1021/acs.orglett.9b00670 30900904
    [Google Scholar]
  80. EndersD. WangC. YangX. RaabeG. Asymmetric synthesis of cis‐3,4‐disubstituted chromans and dihydrocoumarins via an organocatalytic Michael addition/Hemiacetalization reaction.Adv. Synth. Catal.2010352172869287410.1002/adsc.201000659
    [Google Scholar]
  81. BojanowskiJ. SkrzyńskaA. AlbrechtA. Dearomatizative and decarboxylative reaction cascade in the aminocatalytic synthesis of 3,4‐dihydrocou-marins.Asian J. Org. Chem.20198684484810.1002/ajoc.201900222
    [Google Scholar]
  82. RuanS. LinX. XieL. LinL. FengX. LiuX. Asymmetric synthesis of 3-aminodihydrocoumarins via the chiral guanidine catalyzed cascade reaction of azlactones.Org. Chem. Front.201851323510.1039/C7QO00768J
    [Google Scholar]
  83. JakkampudiS. ParellaR. ZhaoJ.C.G. Stereoselective synthesis of chromane derivatives via a domino reaction catalyzed by modularly designed organocatalysts.Org. Biomol. Chem.201917115115510.1039/C8OB02677G 30525178
    [Google Scholar]
  84. ZhaoM.X. XiangJ. ZhaoZ.Q. ZhaoX.L. ShiM. Asymmetric synthesis of dihydrocoumarins via catalytic sequential 1,6-addition/transesterification of α-isocyanoacetates with para-quinone methides.Org. Biomol. Chem.20201881637164610.1039/C9OB02652E 32037417
    [Google Scholar]
  85. EnglO.D. FritzS.P. KäslinA. WennemersH. Organocatalytic route to dihydrocoumarins and dihydroquinolinones in all stereochemical configurations.Org. Lett.201416205454545710.1021/ol502697s 25290528
    [Google Scholar]
  86. LiJ.L. WangX.H. SunJ.C. PengY.Y. JiC.B. ZengX.P. Chiral tertiary amine catalyzed asymmetric [4+2] cyclization of 3-aroylcoumarines with 2, 3-butadienoate.Molecules202126248910.3390/molecules26020489 33477686
    [Google Scholar]
  87. MartzelT. AnnibalettoJ. LevacherV. BrièreJ.F. OudeyerS. C5‐disubstituted meldrum’s acid derivatives as platform for the organocatalytic synthesis of C3‐alkylated dihydrocoumarins.Adv. Synth. Catal.20193615995100010.1002/adsc.201801453
    [Google Scholar]
/content/journals/coc/10.2174/0113852728331488240828074740
Loading
/content/journals/coc/10.2174/0113852728331488240828074740
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test