Skip to content
2000
image of Neuroprotective Effect of Naturally Occurring Flavonoids

Abstract

Flavonoids have a wide range of neuroprotective effects on the brain, including the capacity to reduce neuroinflammation, shield neurons from harm caused by neurotoxins, and maybe improve memory, learning, and cognitive function. These functions are most likely a result of two similar mechanisms. Inhibiting neurotoxic substance-induced apoptosis and promoting synaptic plasticity and neuronal survival are achieved by first interacting with key protein and lipid kinase signaling pathways in the brain. Second, they have positive effects on the vascular system that alter cerebrovascular blood flow and can result in angiogenesis, neurogenesis, and morphological alterations in neurons. Through these pathways, eating foods high in flavonoids has the potential to avoid or delay age-related impairments in cognitive abilities as well as neurodegeneration. Due to the high level of interest in creating new pharmaceuticals that might improve the cognitive function of the brain, Flavonoids could be important preparatory substances in the development of a new class of brain-improving drugs.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249344284241112184703
2024-12-03
2025-01-18
Loading full text...

Full text loading...

References

  1. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  2. Feigin V.L. Vos T. Nichols E. Owolabi M.O. Carroll W.M. Dichgans M. Deuschl G. Parmar P. Brainin M. Murray C. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol. 2020 19 3 255 265 10.1016/S1474‑4422(19)30411‑9 31813850
    [Google Scholar]
  3. Youdim K.A. Joseph J.A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radic. Biol. Med. 2001 30 6 583 594 10.1016/S0891‑5849(00)00510‑4 11295356
    [Google Scholar]
  4. Maan G. Sikdar B. Kumar A. Shukla R. Mishra A. Role of flavonoids in neurodegenerative diseases: Limitations and future perspectives. Curr. Top. Med. Chem. 2020 20 13 1169 1194 10.2174/1568026620666200416085330 32297582
    [Google Scholar]
  5. Airoldi C. La Ferla B. D’Orazio G. Ciaramelli C. Palmioli A. Flavonoids in the treatment of alzheimer’s and other neurodegenerative diseases. Curr. Med. Chem. 2018 25 27 3228 3246 10.2174/0929867325666180209132125 29424298
    [Google Scholar]
  6. Maher P. The potential of flavonoids for the treatment of neurodegenerative diseases. Int. J. Mol. Sci. 2019 20 12 3056 10.3390/ijms20123056 31234550
    [Google Scholar]
  7. Rehman M.U. Wali A.F. Ahmad A. Shakeel S. Rasool S. Ali R. Rashid S.M. Madkhali H. Ganaie M.A. Khan R. Neuroprotective strategies for neurological disorders by natural products: An update. Curr. Neuropharmacol. 2019 17 3 247 267 10.2174/1570159X16666180911124605 30207234
    [Google Scholar]
  8. Luo Y. Smith J.V. Paramasivam V. Burdick A. Curry K.J. Buford J.P. Khan I. Netzer W.J. Xu H. Butko P. Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc. Natl. Acad. Sci. USA 2002 99 19 12197 12202 10.1073/pnas.182425199 12213959
    [Google Scholar]
  9. Bastianetto S. Zheng W.H. Quirion R. The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: Involvement of its flavonoid constituents and protein kinase C. J. Neurochem. 2000 74 6 2268 2277 10.1046/j.1471‑4159.2000.0742268.x 10820186
    [Google Scholar]
  10. Datla K.P. Christidou M. Widmer W.W. Rooprai H.K. Dexter D.T. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport 2001 12 17 3871 3875 10.1097/00001756‑200112040‑00053 11726811
    [Google Scholar]
  11. Ullah A. Munir S. Badshah S.L. Khan N. Ghani L. Poulson B.G. Emwas A.H. Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules 2020 25 22 5243 10.3390/molecules25225243 33187049
    [Google Scholar]
  12. Waheed Janabi A.H. Kamboh A.A. Saeed M. Xiaoyu L. BiBi J. Majeed F. Naveed M. Mughal M.J. Korejo N.A. Kamboh R. Alagawany M. Lv H. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases. Iran. J. Basic Med. Sci. 2020 23 2 140 153 10.22038/IJBMS.2019.35125.8353 32405356
    [Google Scholar]
  13. Guven H. Arici A. Simsek O. Flavonoids in our foods: A short review. J Basic Clin Health Sci. 2019 3 2 96 106 10.30621/jbachs.2019.555
    [Google Scholar]
  14. Kumar S. Pandey A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013 2013 1 162750 10.1155/2013/162750 24470791
    [Google Scholar]
  15. Sun Z.G. Li Z.N. Zhang J.M. Hou X.Y. Yeh S.M. Ming X. Recent developments of flavonoids with various activities. Curr. Top. Med. Chem. 2022 22 4 305 329 10.2174/1568026622666220117111858 35040404
    [Google Scholar]
  16. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010 2 12 1231 1246 10.3390/nu2121231 22254006
    [Google Scholar]
  17. Panche A.N. Diwan A.D. Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016 5 e47 10.1017/jns.2016.41 28620474
    [Google Scholar]
  18. Dajas F. Juan Andres A-C. Florencia A. Carolina E. Felicia R.M. Neuroprotective actions of flavones and flavonols: Mechanisms and relationship to flavonoid structural features. Cent. Nerv. Syst. Agents Med. Chem. 2013 13 1 30 35 10.2174/1871524911313010005 23092407
    [Google Scholar]
  19. Calis Z. Mogulkoc R. Baltaci A.K. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Rev. Med. Chem. 2020 20 15 1475 1488 10.2174/1389557519666190617150051 31288717
    [Google Scholar]
  20. Manach C. Donovan J.L. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic. Res. 2004 38 8 771 785 10.1080/10715760410001727858 15493450
    [Google Scholar]
  21. Walle T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 2004 36 7 829 837 10.1016/j.freeradbiomed.2004.01.002 15019968
    [Google Scholar]
  22. Veitch N.C. Grayer R.J. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 2008 25 3 555 611 10.1039/b718040n 18497898
    [Google Scholar]
  23. Chen L. Cao H. Huang Q. Xiao J. Teng H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022 62 28 7730 7742 10.1080/10408398.2021.1917508 34078189
    [Google Scholar]
  24. Gonzales G.B. Smagghe G. Grootaert C. Zotti M. Raes K. Camp J.V. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab. Rev. 2015 47 2 175 190 10.3109/03602532.2014.1003649 25633078
    [Google Scholar]
  25. Youdim K.A. Dobbie M.S. Kuhnle G. Proteggente A.R. Abbott N.J. Rice-Evans C. Interaction between flavonoids and the blood–brain barrier: In vitro studies. J. Neurochem. 2003 85 1 180 192 10.1046/j.1471‑4159.2003.01652.x 12641740
    [Google Scholar]
  26. Thilakarathna S. Rupasinghe H. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013 5 9 3367 3387 10.3390/nu5093367 23989753
    [Google Scholar]
  27. Fang J. Bioavailability of anthocyanins. Drug Metab. Rev. 2014 46 4 508 520 10.3109/03602532.2014.978080 25347327
    [Google Scholar]
  28. Spencer J.P.E. The impact of flavonoids on memory: Physiological and molecular considerations. Chem. Soc. Rev. 2009 38 4 1152 1161 10.1039/b800422f 19421586
    [Google Scholar]
  29. Vauzour D. Effect of flavonoids on learning, memory and neurocognitive performance: Relevance and potential implications for Alzheimer’s disease pathophysiology. J. Sci. Food Agric. 2014 94 6 1042 1056 10.1002/jsfa.6473 24338740
    [Google Scholar]
  30. Rendeiro C. Rhodes J.S. Spencer J.P.E. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem. Int. 2015 89 126 139 10.1016/j.neuint.2015.08.002 26260546
    [Google Scholar]
  31. Roohbakhsh A. Parhiz H. Soltani F. Rezaee R. Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin — A mini-review. Life Sci. 2014 113 1-2 1 6 10.1016/j.lfs.2014.07.029 25109791
    [Google Scholar]
  32. Scoditti E. Neuroinflammation and neurodegeneration: The promising protective role of the citrus flavanone hesperetin. Nutrients 2020 12 8 2336 10.3390/nu12082336 32764233
    [Google Scholar]
  33. Babaei F. Mirzababaei M. Nassiri-Asl M. Quercetin in food: Possible mechanisms of its effect on memory. J. Food Sci. 2018 83 9 2280 2287 10.1111/1750‑3841.14317 30103275
    [Google Scholar]
  34. Suganthy N. Devi K. P. Nabavi S. F. Braidy N. Nabavi S. M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother. 2016 84 892 908 10.1016/j.biopha.2016.10.011
    [Google Scholar]
  35. Nouri Z. Fakhri S. El-Senduny F.F. Sanadgol N. Abd-ElGhani G.E. Farzaei M.H. Chen J.T. On the neuroprotective effects of naringenin: Pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules 2019 9 11 690 10.3390/biom9110690 31684142
    [Google Scholar]
  36. Fuloria S. Yusri M.A.A. Sekar M. Gan S.H. Rani N.N.I.M. Lum P.T. Ravi S. Subramaniyan V. Azad A.K. Jeyabalan S. Wu Y.S. Meenakshi D.U. Sathasivam K.V. Fuloria N.K. Genistein: A potential natural lead molecule for new drug design and development for treating memory impairment. Molecules 2022 27 1 265 10.3390/molecules27010265 35011497
    [Google Scholar]
  37. Li J. Xiang H. Huang C. Lu J. Pharmacological actions of myricetin in the nervous system: A comprehensive review of preclinical studies in animals and cell models. Front. Pharmacol. 2021 12 797298 10.3389/fphar.2021.797298 34975495
    [Google Scholar]
  38. Farzaei M.H. Rahimi R. Nikfar S. Abdollahi M. Effect of resveratrol on cognitive and memory performance and mood: A meta-analysis of 225 patients. Pharmacol. Res. 2018 128 338 344 10.1016/j.phrs.2017.08.009 28844841
    [Google Scholar]
  39. Zhou D.D. Luo M. Huang S.Y. Saimaiti A. Shang A. Gan R.Y. Li H.B. Effects and mechanisms of resveratrol on aging and age‐related diseases. Oxid. Med. Cell. Longev. 2021 2021 1 9932218 10.1155/2021/9932218 34336123
    [Google Scholar]
  40. Cho J. Kang J.S. Long P.H. Jing J. Back Y. Chung K.S. Antioxidant and memory enhancing effects of purple sweet potato anthocyanin and cordyceps mushroom extract. Arch. Pharm. Res. 2003 26 10 821 825 10.1007/BF02980027 14609130
    [Google Scholar]
  41. Xu B. Li X.X. He G.R. Hu J.J. Mu X. Tian S. Du G.H. Luteolin promotes long-term potentiation and improves cognitive functions in chronic cerebral hypoperfused rats. Eur. J. Pharmacol. 2010 627 1-3 99 105 10.1016/j.ejphar.2009.10.038 19857483
    [Google Scholar]
  42. Dong X. Zhou S. Nao J. Kaempferol as a therapeutic agent in Alzheimer’s disease: Evidence from preclinical studies. Ageing Res. Rev. 2023 87 101910 10.1016/j.arr.2023.101910 36924572
    [Google Scholar]
  43. Salehi B. Venditti A. Sharifi-Rad M. Kręgiel D. Sharifi-Rad J. Durazzo A. Lucarini M. Santini A. Souto E.B. Novellino E. Antolak H. Azzini E. Setzer W.N. Martins N. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019 20 6 1305 10.3390/ijms20061305 30875872
    [Google Scholar]
  44. Wang Y. Wang Q. Bao X. Ding Y. Shentu J. Cui W. Chen X. Wei X. Xu S. Taxifolin prevents β-amyloid-induced impairments of synaptic formation and deficits of memory via the inhibition of cytosolic phospholipase A2/prostaglandin E2 content. Metab. Brain Dis. 2018 33 4 1069 1079 10.1007/s11011‑018‑0207‑5 29542038
    [Google Scholar]
  45. Baranwal A. Aggarwal P. Rai A. Kumar N. Pharmacological actions and underlying mechanisms of catechin: A review. Mini Rev. Med. Chem. 2022 22 5 821 833 10.2174/1389557521666210902162120 34477517
    [Google Scholar]
  46. Jin G. Bai D. Yin S. Yang Z. Zou D. Zhang Z. Li X. Sun Y. Zhu Q. Silibinin rescues learning and memory deficits by attenuating microglia activation and preventing neuroinflammatory reactions in SAMP8 mice. Neurosci. Lett. 2016 629 256 261 10.1016/j.neulet.2016.06.008 27276653
    [Google Scholar]
  47. Gu X.H. Xu L.J. Liu Z.Q. Wei B. Yang Y.J. Xu G.G. Yin X.P. Wang W. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease. Behav. Brain Res. 2016 311 309 321 10.1016/j.bbr.2016.05.052 27233830
    [Google Scholar]
  48. Mansuri M.L. Parihar P. Solanki I. Parihar M.S. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr. 2014 9 3 400 10.1007/s12263‑014‑0400‑z 24682883
    [Google Scholar]
  49. Youdim K.A. Spencer J.P.E. Schroeter H. Rice-Evans C. Dietary flavonoids as potential neuroprotectants. Biol. Chem. 2002 383 3-4 503 519 10.1515/BC.2002.052 12033439
    [Google Scholar]
  50. Williams R.J. Spencer J.P.E. Rice-Evans C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004 36 7 838 849 10.1016/j.freeradbiomed.2004.01.001 15019969
    [Google Scholar]
  51. Erkkinen M.G. Kim M.O. Geschwind M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2018 10 4 a033118 10.1101/cshperspect.a033118 28716886
    [Google Scholar]
  52. Gutierrez-Merino C. Lopez-Sanchez C. Lagoa R. Samhan-Arias A.K. Bueno C. Garcia-Martinez V. Neuroprotective actions of flavonoids. Curr. Med. Chem. 2011 18 8 1195 1212 10.2174/092986711795029735 21291366
    [Google Scholar]
  53. Di Paolo M. Papi L. Gori F. Turillazzi E. Natural products in neurodegenerative diseases: A great promise but an ethical challenge. Int. J. Mol. Sci. 2019 20 20 5170 10.3390/ijms20205170 31635296
    [Google Scholar]
  54. Minocha T. Birla H. Obaid A.A. Rai V. Sushma P. Shivamallu C. Moustafa M. Al-Shehri M. Al-Emam A. Tikhonova M.A. Yadav S.K. Poeggeler B. Singh D. Singh S.K. Flavonoids as promising neuroprotectants and their therapeutic potential against alzheimer’s disease. Oxid. Med. Cell. Longev. 2022 2022 1 13 10.1155/2022/6038996 36071869
    [Google Scholar]
  55. Uddin M.S. Kabir M.T. Niaz K. Jeandet P. Clément C. Mathew B. Rauf A. Rengasamy K.R.R. Sobarzo-Sánchez E. Ashraf G.M. Aleya L. Molecular insight into the therapeutic promise of flavonoids against alzheimer’s disease. Molecules 2020 25 6 1267 10.3390/molecules25061267 32168835
    [Google Scholar]
  56. Bakhtiari M. Panahi Y. Ameli J. Darvishi B. Protective effects of flavonoids against Alzheimer's disease-related neural dysfunctions. Biomed. Pharmacother. 2017 93 218 229 10.1016/j.biopha.2017.06.010
    [Google Scholar]
  57. Devi L. Ohno M. 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer's disease. Neuropsychopharmacology 2012 37 2 434 444 10.1038/npp.2011.191
    [Google Scholar]
  58. Zhang Z. Liu X. Schroeder J. P. Chan C. B. Song M. Yu S. P. Weinshenker D. Ye K. 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 2014 39 3 638 650 10.1038/npp.2013.243
    [Google Scholar]
  59. Zhao L. Wang J.L. Liu R. Li X.X. Li J.F. Zhang L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 2013 18 8 9949 9965 10.3390/molecules18089949 23966081
    [Google Scholar]
  60. Zhang S.Q. Obregon D. Ehrhart J. Deng J. Tian J. Hou H. Giunta B. Sawmiller D. Tan J. Baicalein reduces β‐amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J. Neurosci. Res. 2013 91 9 1239 1246 10.1002/jnr.23244 23686791
    [Google Scholar]
  61. Currais A. Prior M. Dargusch R. Armando A. Ehren J. Schubert D. Quehenberger O. Maher P. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in A lzheimer’s disease transgenic mice. Aging Cell 2014 13 2 379 390 10.1111/acel.12185 24341874
    [Google Scholar]
  62. Ahmad A. Ali T. Park H.Y. Badshah H. Rehman S.U. Kim M.O. Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol. Neurobiol. 2017 54 3 2269 2285 10.1007/s12035‑016‑9795‑4 26944285
    [Google Scholar]
  63. Zaplatic E. Bule M. Shah S.Z.A. Uddin M.S. Niaz K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci. 2019 224 109 119 10.1016/j.lfs.2019.03.055 30914316
    [Google Scholar]
  64. Sabogal-Guáqueta A.M. Muñoz-Manco J.I. Ramírez-Pineda J.R. Lamprea-Rodriguez M. Osorio E. Cardona-Gómez G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015 93 134 145 10.1016/j.neuropharm.2015.01.027 25666032
    [Google Scholar]
  65. Ide K. Matsuoka N. Yamada H. Furushima D. Kawakami K. Effects of tea catechins on alzheimer’s disease: Recent updates and perspectives. Molecules 2018 23 9 2357 10.3390/molecules23092357 30223480
    [Google Scholar]
  66. Li C. Zug C. Qu H. Schluesener H. Zhang Z. Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice. Behav. Brain Res. 2015 281 32 42 10.1016/j.bbr.2014.12.012 25510196
    [Google Scholar]
  67. Nejabati H.R. Roshangar L. Kaempferol as a potential neuroprotector in Alzheimer’s disease. J. Food Biochem. 2022 46 12 e14375 10.1111/jfbc.14375 35929364
    [Google Scholar]
  68. Mohammadi N. Asle-Rousta M. Rahnema M. Amini R. Morin attenuates memory deficits in a rat model of Alzheimer’s disease by ameliorating oxidative stress and neuroinflammation. Eur. J. Pharmacol. 2021 910 174506 10.1016/j.ejphar.2021.174506 34534533
    [Google Scholar]
  69. Dhaliwal N. Dhaliwal J. Chopra K. 7, 8-dihydroxyflavone ameliorates cholinergic dysfunction, inflammation, oxidative stress, and apoptosis in a rat model of vascular dementia. Neurochem. Res. 2024 49 5 1137 1149 10.1007/s11064‑023‑04090‑9 38300457
    [Google Scholar]
  70. Guo J. Cao Y. Zhang T. Xu C. Liu Z. Li W. Wang Q. Multisensory fusion training and 7, 8-dihydroxyflavone improve amyloid-β-induced cognitive impairment, anxiety, and depression-like behavior in mice through multiple mechanisms. Neuropsychiatr. Dis. Treat. 2024 20 1247 1270 10.2147/NDT.S459891 38883414
    [Google Scholar]
  71. Xu M. Xia L. Li J. Du Y. Dong Z. 7,8-Dihydroxyflavone ameliorates cognitive impairment induced by repeated neonatal sevoflurane exposures in mice through increasing tau O-GlcNAcylation. Neurosci. Lett. 2024 818 137559 10.1016/j.neulet.2023.137559 37984484
    [Google Scholar]
  72. Chiu Y.J. Teng Y.S. Chen C.M. Sun Y.C. Hsieh-Li H.M. Chang K.H. Lee-Chen G.J. A neuroprotective action of quercetin and apigenin through inhibiting aggregation of aβ and activation of trkb signaling in a cellular experiment. Biomol. Ther. 2023 31 3 285 297 10.4062/biomolther.2022.136 36646447
    [Google Scholar]
  73. Gong Q. Wang Y. Wang X. Pan H. Yan C. Baicalein promotes the microglia M2 polarization and suppresses apoptosis by targeting HMOX1/PDE4D to alleviate Alzheimer’s disease. Immunobiology 2023 228 6 152761 10.1016/j.imbio.2023.152761 38006681
    [Google Scholar]
  74. Jadhav R. Kulkarni Y.A. The combination of baicalein and memantine reduces oxidative stress and protects against β-amyloid-induced alzheimer’s disease in rat model. Antioxidants 2023 12 3 707 10.3390/antiox12030707 36978955
    [Google Scholar]
  75. Wang Y. Wu X. Ren W. Liu Y. Dai X. Wang S. Huo Q. Sun Y. Protective effects of fisetin in an Aβ1-42-induced rat model of Alzheimer’s disease. Folia Neuropathol. 2023 61 2 196 208 10.5114/fn.2023.126893 37587894
    [Google Scholar]
  76. Kuşi M. Becer E. Vatansever H.S. Yücecan S. Neuroprotective effects of hesperidin and naringin in SK-N-AS cell as an in vitro model for alzheimer’s disease. J. Am. Nutr. Assoc. 2023 42 4 418 426 10.1080/07315724.2022.2062488 35776430
    [Google Scholar]
  77. Yilmazer U.T. Pehlivan B. Guney S. Yar-Saglam A.S. Balabanli B. Kaltalioglu K. Coskun-Cevher S. The combined effect of morin and hesperidin on memory ability and oxidative/nitrosative stress in a streptozotocin-induced rat model of Alzheimer’s disease. Behav. Brain Res. 2024 471 115131 10.1016/j.bbr.2024.115131 38942085
    [Google Scholar]
  78. Alexander C. Parsaee A. Vasefi M. Polyherbal and multimodal treatments: Kaempferol- and quercetin-rich herbs alleviate symptoms of alzheimer’s disease. Biology 2023 12 11 1453 10.3390/biology12111453 37998052
    [Google Scholar]
  79. Jin S. Zhang L. Wang L. Kaempferol, a potential neuroprotective agent in neurodegenerative diseases: From chemistry to medicine. Biomed. Pharmacother. 2023 165 115215 10.1016/j.biopha.2023.115215
    [Google Scholar]
  80. Simon D.K. Tanner C.M. Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 2020 36 1 1 12 10.1016/j.cger.2019.08.002 31733690
    [Google Scholar]
  81. Jung U.J. Kim S.R. Beneficial effects of flavonoids against parkinson’s disease. J. Med. Food 2018 21 5 421 432 10.1089/jmf.2017.4078 29412767
    [Google Scholar]
  82. Costa S.L. Silva V.D.A. dos Santos Souza C. Santos C.C. Paris I. Muñoz P. Segura-Aguilar J. Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotox. Res. 2016 30 1 41 52 10.1007/s12640‑016‑9600‑1 26951456
    [Google Scholar]
  83. Huang J. Zhang X. Yang X. Yv Q. Ye F. Chen S. Cui Y. Gu L. Zhu M. Li W. Baicalin exerts neuroprotective actions by regulating the Nrf2-NLRP3 axis in toxin-induced models of Parkinson’s disease. Chem. Biol. Interact. 2024 387 110820 10.1016/j.cbi.2023.110820 38016618
    [Google Scholar]
  84. Li X. Deng Q. Kuang Y. Mao H. Yao M. Lin C. Luo X. Xu P. Identifying NFKB1, STAT3, and CDKN1A as baicalein’s potential hub targets in parkinson’s disease-related α-synuclein-mediated pathways by integrated bioinformatics strategies. Curr. Pharm. Des. 2023 29 30 2426 2437 10.2174/0113816128259065231011114116 37859325
    [Google Scholar]
  85. Hao S.H. Jia R.F. Wang J.R. Gao L. Qin X.M. Exploring the mechanism of anti-hereditary Parkinson's disease of baicalein based on PINK1 RNAi Drosophila model. Acta Pharmaceutica Sinica 2023 672 678 10.16438/j.0513‑4870.2022‑0949
    [Google Scholar]
  86. Ahmed Y.R. Aboul Naser A.F. Elbatanony M.M. El-Feky A.M. Khalil W.K.B. Hamed M.A.A. Gene expression, oxidative stress, and neurotransmitters in rotenone-induced parkinson’s disease in rats: Role of naringin from citrus aurantium via blocking adenosine A2A receptor. Curr. Bioact. Compd. 2024 20 5 e101023221984 10.2174/0115734072268296231002060839
    [Google Scholar]
  87. Madiha S. Batool Z. Shahzad S. Tabassum S. Liaquat L. Afzal A. Sadir S. Sajid I. Mehdi B.J. Ahmad S. Haider S. Naringenin, a functional food component, improves motor and non-motor symptoms in animal model of parkinsonism induced by rotenone. Plant Foods Hum. Nutr. 2023 78 4 654 661 10.1007/s11130‑023‑01103‑4 37796415
    [Google Scholar]
  88. Qin P. Liu M. Wang X. Ma J. Kaempferol ameliorated levodopa-induced dyskinesia in experimental rats: A role of brain monoamines, cFOS, FosB, Parkin, Pdyn, TH, and p-JNK. Biocell 2024 48 3 513 523 10.32604/biocell.2023.045640
    [Google Scholar]
  89. Liu Z. Zhuang W. Cai M. Lv E. Wang Y. Wu Z. Wang H. Fu W. Kaemperfol protects dopaminergic neurons by promoting mtor-mediated autophagy in parkinson’s disease models. Neurochem. Res. 2022 48 5 1395 1411 10.1007/s11064‑022‑03819‑2 36469163
    [Google Scholar]
  90. Lin H. Wang X. Zhao J. Lin Z. Protective effect of kaempferol against cognitive and neurological disturbances induced by d-galactose and aluminum chloride in mice. J. Funct. Foods 2023 100 105385 10.1016/j.jff.2022.105385
    [Google Scholar]
  91. McColgan P. Tabrizi S.J. Huntington’s disease: A clinical review. Eur. J. Neurol. 2018 25 1 24 34 10.1111/ene.13413 28817209
    [Google Scholar]
  92. Tabrizi S.J. Estevez-Fraga C. van Roon-Mom W.M.C. Flower M.D. Scahill R.I. Wild E.J. Muñoz-Sanjuan I. Sampaio C. Rosser A.E. Leavitt B.R. Potential disease-modifying therapies for Huntington’s disease: Lessons learned and future opportunities. Lancet Neurol. 2022 21 7 645 658 10.1016/S1474‑4422(22)00121‑1 35716694
    [Google Scholar]
  93. Khan H. Ullah H. Tundis R. Belwal T. Devkota H.P. Daglia M. Cetin Z. Saygili E.I. Campos M.G. Capanoglu E. Du M. Dar P. Xiao J. Dietary flavonoids in the management of huntington’s disease: Mechanism and clinical perspective. eFood 2020 1 1 38 52 10.2991/efood.k.200203.001
    [Google Scholar]
  94. Feldman E.L. Goutman S.A. Petri S. Mazzini L. Savelieff M.G. Shaw P.J. Sobue G. Amyotrophic lateral sclerosis. Lancet 2022 400 10360 1363 1380 10.1016/S0140‑6736(22)01272‑7 36116464
    [Google Scholar]
  95. Rokade A.V. Yelne P. Giri A. Riluzole and Edavarone: The hope against amyotrophic lateral sclerosis. Cureus 2022 14 10 e30035 10.7759/cureus.30035 36381733
    [Google Scholar]
  96. Korkmaz O.T. Aytan N. Carreras I. Choi J.K. Kowall N.W. Jenkins B.G. Dedeoglu A. 7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis. Neurosci. Lett. 2014 566 286 291 10.1016/j.neulet.2014.02.058 24637017
    [Google Scholar]
  97. Maher P. Preventing and treating neurological disorders with the flavonol fisetin. Brain Plasticity 2021 6 2 155 166 10.3233/BPL‑200104
    [Google Scholar]
  98. Ueda T. Inden M. Shirai K. Sekine S. Masaki Y. Kurita H. Ichihara K. Inuzuka T. Hozumi I. The effects of Brazilian green propolis that contains flavonols against mutant copper-zinc superoxide dismutase-mediated toxicity. Sci. Rep. 2017 7 1 2882 10.1038/s41598‑017‑03115‑y 28588226
    [Google Scholar]
  99. Bhatia N.K. Modi P. Sharma S. Deep S. Quercetin and baicalein act as potent antiamyloidogenic and fibril destabilizing agents for SOD1 fibrils. ACS Chem. Neurosci. 2020 11 8 1129 1138 10.1021/acschemneuro.9b00677 32208672
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249344284241112184703
Loading
/content/journals/cnsamc/10.2174/0118715249344284241112184703
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test