Skip to content
2000
image of Identification of Phytoconstituents from Natural Product Database as SIRT2 Inhibitors for Potential Role in Alzheimer’s Disease: An In-Silico Screening

Abstract

Aim

We aimed to conduct screening of the potential phytoconstituent from a natural product database to find SIRT2 inhibitors.

Background

Alzheimer's disease (AD) is the most prevalent type of dementia, characterized by behavioral and mental symptoms as well as a progressive loss of cognitive ability. Since SIRT2 may be detrimental to neurological illnesses, it is a prime target for research into SIRT2 inhibitors.

Objective

To identify the SIRT2 inhibitors and their role in AD.

Methods

We have utilized NPAtlas database and screened using pharmacophore-based virtual screening, molecular docking, and simulation. The Natural Products Atlas provides unrestricted access to various natural products derived from bacteria and fungi, allowing researchers to investigate and visualize the extensive chemical diversity in the natural world.

Results

From screening data, we have found phytoconstituents that could function as SIRT2 inhibitors. Six phytoconstituents were identified using pharmacophore-based virtual screening. According to molecular docking, Kurasoin B outperformed the reference molecule regarding binding energy. Kurasoin B exhibited a binding affinity of -12.543 kcal/mol, whereas the binding affinity of the reference molecule was -12.089 kcal/mol. The Kurasoin B complex with SIRT2 was determined to be stable throughout the simulation by performing MD simulation, with an RMSD of 2.88 (Å), whereas the reference and free protein displayed RMSDs of 3.74 and 4.70 (Å), respectively.

Conclusion

studies and data analysis, suggest that Kurasoin B may be able to suppress the SIRT2 protein for managing AD.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249319554240930050002
2024-10-24
2025-04-04
Loading full text...

Full text loading...

References

  1. Cummings J. Cognitive and behavioral heterogeneity in Alzheimer’s disease: Seeking the neurobiological basis. Neurobiol. Aging 2000 21 6 845 861 10.1016/S0197‑4580(00)00183‑4 11124429
    [Google Scholar]
  2. Trani J.F. Zhu Y. Park S. Khuram D. Azami R. Fazal M.R. Babulal G.M. Multidimensional poverty is associated with dementia among adults in Afghanistan. eClinicalMedicine 2023 58 101906 10.1016/j.eclinm.2023.101906
    [Google Scholar]
  3. Ossenkoppele R. van der Kant R. Hansson O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol. 2022 21 8 726 734 10.1016/S1474‑4422(22)00168‑5 35643092
    [Google Scholar]
  4. Wisniewski T. Konietzko U. Amyloid-β immunisation for Alzheimer’s disease. Lancet Neurol. 2008 7 9 805 811 10.1016/S1474‑4422(08)70170‑4 18667360
    [Google Scholar]
  5. Perry E. Walker M. Grace J. Perry R. Acetylcholine in mind: A neurotransmitter correlate of consciousness? Trends Neurosci. 1999 22 6 273 280 10.1016/S0166‑2236(98)01361‑7 10354606
    [Google Scholar]
  6. Zhu X. Raina A.K. Perry G. Smith M.A. Alzheimer’s disease: The two-hit hypothesis. Lancet Neurol. 2004 3 4 219 226 10.1016/S1474‑4422(04)00707‑0 15039034
    [Google Scholar]
  7. Bonda D.J. Lee H. Camins A. Pallàs M. Casadesus G. Smith M.A. Zhu X. The sirtuin pathway in ageing and Alzheimer disease: Mechanistic and therapeutic considerations. Lancet Neurol. 2011 10 3 275 279 10.1016/S1474‑4422(11)70013‑8 21349442
    [Google Scholar]
  8. Zhang Y. Anoopkumar-Dukie S. Arora D. Davey A.K. Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. Eur. J. Pharmacol. 2020 867 172847 10.1016/j.ejphar.2019.172847 31812544
    [Google Scholar]
  9. Chen X. Lu W. Wu D. Sirtuin 2 (SIRT2): Confusing roles in the pathophysiology of neurological disorders. Front. Neurosci. 2021 15 614107 10.3389/fnins.2021.614107 34108853
    [Google Scholar]
  10. Zivari-Ghader T. Valioglu F. Eftekhari A. Aliyeva I. Beylerli O. Davran S. Cho W.C. Beilerli A. Khalilov R. Javadov S. Recent progresses in natural based therapeutic materials for Alzheimer’s disease. Heliyon 2024 10 4 e26351 10.1016/j.heliyon.2024.e26351 38434059
    [Google Scholar]
  11. Miryusifova K. Malikova G. Allahverdiyeva A. Huseynova N. Umudlu A. >The saffron effects on the dynamics of experimental epilepsy. Adv. Biol. Earth Sci. 2024 9 1 196 202 10.62476/abes9196
    [Google Scholar]
  12. Gashimova U. Guliyeva R. Javadova K. Ibishova A. Panakhova E. Histological examination of retinal function and the effects of Curcuma longa on memory correction in experimental olfactory bulbectomy rat models. Adv. Biol. Earth Sci. 2024 9 1 216 222 10.62476/abes9216
    [Google Scholar]
  13. Tuzimski T. Petruczynik A. Determination of anti-alzheimer’s disease activity of selected plant ingredients. Molecules 2022 27 10 3222 10.3390/molecules27103222 35630702
    [Google Scholar]
  14. Sunseri J. Koes D.R. Pharmit: Interactive exploration of chemical space. Nucleic Acids Res. 2016 44 W1 W442 W448 10.1093/nar/gkw287 27095195
    [Google Scholar]
  15. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera — A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  16. van Santen J.A. Poynton E.F. Iskakova D. McMann E. Alsup T.A. Clark T.N. Fergusson C.H. Fewer D.P. Hughes A.H. McCadden C.A. Parra J. Soldatou S. Rudolf J.D. Janssen E.M.L. Duncan K.R. Linington R.G. The Natural Products Atlas 2.0: A database of microbially-derived natural products. Nucleic Acids Res. 2022 50 D1 D1317 D1323 10.1093/nar/gkab941 34718710
    [Google Scholar]
  17. Agarwal D. Kumar S. Ambatwar R. Bhanwala N. Chandrakar L. Khatik G.L. Lead identification through in silico studies: Targeting acetylcholinesterase enzyme against Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 2 219 242 10.2174/0118715249268585240107184956 38288823
    [Google Scholar]
  18. Kumar H. Datusalia A.K. Khatik G.L. Virtual screening of acetylcholinesterase inhibitors through pharmacophore-based 3D-QSAR modeling, ADMET, molecular docking, and MD simulation studies. In Silico Pharmacol. 2024 12 1 13 10.1007/s40203‑024‑00189‑1 38370859
    [Google Scholar]
  19. Rostkowski M. Olsson M.H.M. Søndergaard C.R. Jensen J.H. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct. Biol. 2011 11 1 6 10.1186/1472‑6807‑11‑6 21269479
    [Google Scholar]
  20. Christoffer C. Kihara D. Domain-based protein docking with extremely large conformational changes. J. Mol. Biol. 2022 434 21 167820 10.1016/j.jmb.2022.167820 36089054
    [Google Scholar]
  21. Rumpf T. Schiedel M. Karaman B. Roessler C. North B.J. Lehotzky A. Oláh J. Ladwein K.I. Schmidtkunz K. Gajer M. Pannek M. Steegborn C. Sinclair D.A. Gerhardt S. Ovádi J. Schutkowski M. Sippl W. Einsle O. Jung M. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat. Commun. 2015 6 1 6263 10.1038/ncomms7263 25672491
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249319554240930050002
Loading
/content/journals/cnsamc/10.2174/0118715249319554240930050002
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Virtual screening ; Phytoconstituent ; SIRT2 ; Drug-design ; Brain ; Alzheimer's disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test