Skip to content
2000
image of The Importance of Stem Cells in the Treatment of Neuropathic Pain

Abstract

Many disorders, including heart, bone, cancer, liver, and brain disease, have been treated using stem cell therapy as a viable alternative. The somatosensory system is affected by a lesion, which leads to neuropathic pain (NP), and just a relatively tiny fraction of patients now receive effective care from existing pharmacological medications. There have been studies to show the effectiveness of various stem cells in reducing or treating experimental neurological pain, although these studies are uncommon in number. In this narrative review, we will summarize the preclinical and clinical research that has been conducted on the effectiveness of several stem cell types, such as mesenchymal stem cells, bone-derived stem cells, and neural stem cells, in reducing neurological pain in this study.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249328823241111101137
2024-12-03
2025-01-18
Loading full text...

Full text loading...

References

  1. Beiranvand S. Hasanzadeh-Kiabi F. Beiranvand S. Hasanzadeh-Kiabi F. Application of Bone Morphogenetic Protein in Spinal Fusion Surgery. Minimally Invasive Spine Surgery - Advances and Innovations. IntechOpen 2021
    [Google Scholar]
  2. Carette S. Chronic pain syndromes. Ann. Rheum. Dis. 1996 55 497 501
    [Google Scholar]
  3. Akhavan O. Ghaderi E. The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation. J. Mater. Chem. B Mater. Biol. Med. 2014 2 34 5602 5611
    [Google Scholar]
  4. Akhavan O. Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J. Mater. Chem. B Mater. Biol. Med. 2016 4 19 3169 3190 10.1039/C6TB00152A
    [Google Scholar]
  5. Wang Y. Lee W.C. Manga K.K. Ang P.K. Lu J. Liu Y.P. Lim C.T. Loh K.P. Fluorinated graphene for promoting neuro‐induction of stem cells. Adv. Mater. 2012 24 31 4285 4290 10.1002/adma.201200846
    [Google Scholar]
  6. Akhavan O. Ghaderi E. Shirazian S.A. Rahighi R. Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 2016 97 71 77
    [Google Scholar]
  7. Tang M. Song Q. Li N. Jiang Z. Huang R. Cheng G. Enhancement of electrical signaling in neural networks on graphene films. Biomaterials 2013 34 27 6402 6411 10.1016/j.biomaterials.2013.05.024
    [Google Scholar]
  8. Akhavan O. Ghaderi E. Differentiation of human neural stem cells into neural networks on graphene nanogrids. J. Mater. Chem. B Mater. Biol. Med. 2013 1 45 6291 6301 10.1039/c3tb21085e
    [Google Scholar]
  9. Akhavan O. Ghaderi E. Shahsavar M. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 2013 59 200 211 10.1016/j.carbon.2013.03.010
    [Google Scholar]
  10. Jalilinejad N. Rabiee M. Baheiraei N. Ghahremanzadeh R. Salarian R. Rabiee N. Akhavan O. Zarrintaj P. Hejna A. Saeb M.R. Zarrabi A. Sharifi E. Yousefiasl S. Zare E.N. Electrically conductive carbon‐based (bio)‐nanomaterials for cardiac tissue engineering. Bioeng. Transl. Med. 2023 8 1 e10347 10.1002/btm2.10347
    [Google Scholar]
  11. Amani H. Mostafavi E. Arzaghi H. Davaran S. Akbarzadeh A. Akhavan O. Pazoki-Toroudi H. Webster T.J. Three-dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomater. Sci. Eng. 2019 5 1 193 214 10.1021/acsbiomaterials.8b00658
    [Google Scholar]
  12. Rahimnejad M. Boroujeni N. Jahangiri S. Rabiee N. Rabiee M. Makvandi P. Akhavan O. Varma R.S. Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering. Nano-Micro Lett. 2021 13 1 182 10.1007/s40820‑021‑00697‑1
    [Google Scholar]
  13. Beiranvand S. New updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles. Nanoscale Res. Lett. 2016 11 307 10.1186/s11671‑016‑1520‑8
    [Google Scholar]
  14. Lukats I.W. Anticonvulsants for neuropathic pain syndromes. Drugs 2000 60 1029 1052 10.2165/00003495‑200060050‑00005
    [Google Scholar]
  15. Beiranvand S. Karimi A. Effect of Encapsulated Artemisia aucheri. L Magnetic Nanogel Extract on Shoulder Block in Rat. Drug Res. (Stuttg.) 2018 68 2 65 71 10.1055/s‑0043‑117180
    [Google Scholar]
  16. Chen L. Dong S.W. Liu J.P. Tao X. Tang K.L. Xu J.Z. Synergy of tendon stem cells and platelet‐rich plasma in tendon healing. J. Orthop. Res. 2012 30 6 991 997 10.1002/jor.22033
    [Google Scholar]
  17. Thanasas C. Papadimitriou G. Charalambidis C. Paraskevopoulos I. Papanikolaou A. Platelet-Rich Plasma Versus Autologous Whole Blood for the Treatment of Chronic Lateral Elbow Epicondylitis. Am. J. Sports Med. 2011 39 10 2130 2134 10.1177/0363546511417113
    [Google Scholar]
  18. Mayhall E.A. Lugassy N. Zon L.I. The clinical potential of stem cells. Curr. Opin. Cell Biol. 2004 16 6 713 720 10.1016/j.ceb.2004.09.007
    [Google Scholar]
  19. Lodi D. Iannitti T. Palmieri B. Stem cells in clinical practice: applications and warnings. J. Exp. Clin. Cancer Res. 2011 30 1 9 10.1186/1756‑9966‑30‑9
    [Google Scholar]
  20. Rezaee M.M. The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism. Daru 2014 22 1 8 10.1186/2008‑2231‑22‑8
    [Google Scholar]
  21. Wang Q. Mesenchymal stem cells transplantation for neuropathic pain induced by peripheral nerve injury in animal models: A systematic review. Stem Cells Dev. 2020 29 22 1420 1428 10.1089/scd.2020.0131
    [Google Scholar]
  22. Shiran M.R. Gharooee Ahangar S. Rostamkolaee S.H. Sefidgar A.A. Baradaran M. Hashemi M. Baleghi M. Moghadamnia A.A. Phenotyping of CYP3A by Oral Midazolam in Healthy Mazandarani Volunteers (Iran). Majallah-i Danishgah-i Ulum-i Pizishki-i Babul 2011 13 19 25
    [Google Scholar]
  23. Beiranvand S. Moradkhani M. Bupivacaine Versus Liposomal Bupivacaine For Pain Control. Drug Res. (Stuttg.) 2018 68 7 365 369 10.1055/s‑0043‑121142
    [Google Scholar]
  24. Pak J. Autologous adipose tissue-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads. Pain Physician 2012 1 15 75 85 10.36076/ppj.2012/15/75
    [Google Scholar]
  25. Wang X. Luo E. Li Y. Hu J. Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination. Brain Res. 2011 1383 71 80 10.1016/j.brainres.2011.01.098
    [Google Scholar]
  26. Wang Y. Jia H. Li W.Y. Tong X.J. Liu G.B. Kang S.W. Synergistic effects of bone mesenchymal stem cells and chondroitinase ABC on nerve regeneration after acellular nerve allograft in rats. Cell. Mol. Neurobiol. 2012 32 3 361 371 10.1007/s10571‑011‑9764‑4
    [Google Scholar]
  27. Ladak A. Olson J. Tredget E.E. Gordon T. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp. Neurol. 2011 228 2 242 252 10.1016/j.expneurol.2011.01.013
    [Google Scholar]
  28. Hernández J. Torres-Espín A. Navarro X. Adult Stem Cell Transplants for Spinal Cord Injury Repair: Current State in Preclinical Research. Curr. Stem Cell Res. Ther. 2011 6 3 273 287 10.2174/157488811796575323
    [Google Scholar]
  29. Hibner M. Castellanos M.E. Drachman D. Balducci J. Repeat Operation for Treatment of Persistent Pudendal Nerve Entrapment After Pudendal Neurolysis. J. Minim. Invasive Gynecol. 2012 19 3 325 330 10.1016/j.jmig.2011.12.022
    [Google Scholar]
  30. Andia I. Sánchez M. Maffulli N. Platelet rich plasma therapies for sports muscle injuries: any evidence behind clinical practice? Expert Opin. Biol. Ther. 2011 11 4 509 518 10.1517/14712598.2011.554813
    [Google Scholar]
  31. Pittenger M.F. Mackay A.M. Beck S.C. Jaiswal R.K. Douglas R. Mosca J.D. Moorman M.A. Simonetti D.W. Craig S. Marshak D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999 284 5411 143 147 10.1126/science.284.5411.143
    [Google Scholar]
  32. Farahani P.K. Nanotechnology approaches in abdominal wall reconstruction about scaffold and meshes: A Narrative Review. JPRAS Open 2024 10.1016/j.jpra.2024.06.009
    [Google Scholar]
  33. Farahani P.K. Application of tissue engineering and biomaterials in nose surgery. JPRAS Open 2023
    [Google Scholar]
  34. Aktas M. Buchheiser A. Houben A. Reimann V. Radke T. Jeltsch K. Maier P. Zeller W.J. Kogler G. Good manufacturing practice-grade production of unrestricted somatic stem cell from fresh cord blood. Cytotherapy 2010 12 3 338 348 10.3109/14653241003695034
    [Google Scholar]
  35. Nazarov I. Lee J.W. Soupene E. Etemad S. Knapik D. Green W. Bashkirova E. Fang X. Matthay M.A. Kuypers F.A. Serikov V.B. Multipotent Stromal Stem Cells from Human Placenta Demonstrate High Therapeutic Potential. Stem Cells Transl. Med. 2012 1 5 359 372 10.5966/sctm.2011‑0021
    [Google Scholar]
  36. Gong X. Sun Z. Cui D. Xu X. Zhu H. Wang L. Qian W. Han X. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells. Cell Biol. Int. 2014 38 4 405 411 10.1002/cbin.10240
    [Google Scholar]
  37. Musolino P.L. Coronel M.F. Hökfelt T. Villar M.J. Bone marrow stromal cells induce changes in pain behavior after sciatic nerve constriction. Neurosci. Lett. 2007 418 1 97 101 10.1016/j.neulet.2007.03.001
    [Google Scholar]
  38. Saeidiborojeni H. Asl M.F. Shabrandy A. Ahangar S.G. Dynamic control and timely correction of blood glucose levels in diabetic patients undergoing traumatic spinal vertebral fracture surgery to reduce surgery site infection. Int. J. Surg. Open 2023 54 100618 10.1016/j.ijso.2023.100618
    [Google Scholar]
  39. Shibata T. Naruse K. Kamiya H. Kozakae M. Kondo M. Yasuda Y. Nakamura N. Ota K. Tosaki T. Matsuki T. Nakashima E. Hamada Y. Oiso Y. Nakamura J. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 2008 57 11 3099 3107 10.2337/db08‑0031
    [Google Scholar]
  40. Siniscalco D. Giordano C. Galderisi U. Luongo L. Alessio N. Di Bernardo G. de Novellis V. Rossi F. Maione S. Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell. Mol. Life Sci. 2010 67 4 655 669 10.1007/s00018‑009‑0202‑4
    [Google Scholar]
  41. Siniscalco D. Giordano C. Galderisi U. Luongo L. de Novellis V. Rossi F. Maione S. Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice. Front. Integr. Nuerosci. 2011 5 10.3389/fnint.2011.00079
    [Google Scholar]
  42. Jean-Toussaint R. Tian Y. Chaudhuri A.D. Haughey N.J. Sacan A. Ajit S.K. Proteome characterization of small extracellular vesicles from spared nerve injury model of neuropathic pain. J. Proteomics 2020 211 103540 10.1016/j.jprot.2019.103540
    [Google Scholar]
  43. Shiue S.J. Rau R.H. Shiue H.S. Hung Y.W. Li Z.X. Yang K.D. Cheng J.K. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury–induced pain in rats. Pain 2019 160 1 210 223 10.1097/j.pain.0000000000001395
    [Google Scholar]
  44. Hsu J.M. Shiue S.J. Yang K.D. Shiue H.S. Hung Y.W. Pannuru P. Poongodi R. Lin H.Y. Cheng J.K. Locally applied stem cell exosome-scaffold attenuates nerve injury-induced pain in rats. J. Pain Res. 2020 13 3257 3268 10.2147/JPR.S286771
    [Google Scholar]
  45. D’Agnelli S. Gerra M.C. Bignami E. Arendt-Nielsen L. Exosomes as a new pain biomarker opportunity. Mol. Pain 2020 16 1744806920957800 10.1177/1744806920957800
    [Google Scholar]
  46. Takamura H. Terashima T. Mori K. Katagi M. Okano J. Suzuki Y. Imai S. Kojima H. Bone-marrow-derived mononuclear cells relieve neuropathic pain after spinal nerve injury in mice. Mol. Ther. Methods Clin. Dev. 2020 17 657 665 10.1016/j.omtm.2020.03.020
    [Google Scholar]
  47. Klass M. Gavrikov V. Drury D. Stewart B. Hunter S. Denson D.D. Hord A. Csete M. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth. Analg. 2007 104 4 944 948 10.1213/01.ane.0000258021.03211.d0
    [Google Scholar]
  48. Usach V. Malet M. López M. Lavalle L. Piñero G. Saccoliti M. Cueto A. Brumovsky P. Brusco A. Setton-Avruj P. Systemic transplantation of bone marrow mononuclear cells promotes axonal regeneration and analgesia in a model of wallerian degeneration. Transplantation 2017 101 7 1573 1586 10.1097/TP.0000000000001478
    [Google Scholar]
  49. Naruse K. Sato J. Funakubo M. Hata M. Nakamura N. Kobayashi Y. Kamiya H. Shibata T. Kondo M. Himeno T. Matsubara T. Oiso Y. Nakamura J. Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy. PLoS One 2011 6 11 e27458 10.1371/journal.pone.0027458
    [Google Scholar]
  50. Viejo M. Menendez Y. Gelaz M.A. Gutierrez A. Rodriguez M.A. Gala J. Hernandez J. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant Proc. 2013 45 434 439 10.1016/j.transproceed.2012.05.091
    [Google Scholar]
  51. Vickers R. Karsten E. Lilischkis R. Flood J. A preliminary report on stem cell therapy for neuropathic pain in humans. J. Pain Res. 2014 ••• 255 263 10.2147/JPR.S63361
    [Google Scholar]
  52. Maccario R. Podestà M. Moretta A. Cometa A. Comoli P. Montagna D. Daudt L. Ibatici A. Piaggio G. Pozzi S. Frassoni F. Locatelli F. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4 + T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005 90 516 525
    [Google Scholar]
  53. Doetsch F. Caillé I. Lim D.A. García-Verdugo J.M. Alvarez-Buylla A. Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell 1999 97 6 703 716 10.1016/S0092‑8674(00)80783‑7
    [Google Scholar]
  54. Reynolds B.A. Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992 255 1707 10.1126/science.1553558
    [Google Scholar]
  55. Neural stem cells of the subventricular zone: from neurogenesis to glioblastoma origin. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2021.750116/(accessed on 23-10-2024)
  56. Franchi S. Valsecchi A.E. Borsani E. Procacci P. Ferrari D. Zaffa C. Sartori P. Rodella L.F. Vescovi A. Maione S. Rossi F. Sacerdote P. Colleoni M. Panerai A.E. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain 2012 153 4 850 861 10.1016/j.pain.2012.01.008
    [Google Scholar]
  57. Ferrari D. Binda E. Filippis L.D. Vescovi A.L. Isolation of neural stem cells from neural tissues using the neurosphere technique. Curr. Protoc. Stem Cell Biol. 2010 15 1 10.1002/9780470151808.sc02d06s15
    [Google Scholar]
  58. Beiranvand S. Pain management using nanotechnology approaches. Artif. Cells, Nanomed. Biotechnol. 2019 47 1 462 468 10.1080/21691401.2018.1553885
    [Google Scholar]
  59. Xu Q. Zhang M. Liu J. Li W. Intrathecal transplantation of neural stem cells appears to alleviate neuropathic pain in rats through release of GDNF. Ann. Clin. Lab. Sci. 2013 43 154 162
    [Google Scholar]
  60. Wang D. Allcca A.E.L. Chung T.F. Kildishev A.V. Chen Y.P. Boltasseva A. Shalaev V.M. Enhancing the graphene photocurrent using surface plasmons and a p-n junction. Light Sci. Appl. 2020 9 1 126 10.1038/s41377‑020‑00344‑1
    [Google Scholar]
  61. Roh D.H. Seo M.S. Choi H.S. Park S.B. Han H.J. Beitz A.J. Kang K.S. Lee J.H. Transplantation of Human Umbilical Cord Blood or Amniotic Epithelial Stem Cells Alleviates Mechanical Allodynia after Spinal Cord Injury in Rats. Cell Transplant. 2013 22 9 1577 1590 10.3727/096368912X659907
    [Google Scholar]
  62. Yang C.C. Shih Y.H. Ko M.H. Hsu S.Y. Cheng H. Fu Y.S. Transplantation of human umbilical mesenchymal stem cells from wharton’s jelly after complete transection of the rat spinal cord. PLoS One 2008 3 10 e3336 10.1371/journal.pone.0003336
    [Google Scholar]
  63. Hassanzadeh-kiabi F. Antinociceptive synergistic interaction between Achillea millefolium and Origanum vulgare L. extract encapsulated in liposome in rat. Artif. Cells Nanomed. Biotechnol. 2017 46 5 994 1000 10.1080/21691401.2017.1354303
    [Google Scholar]
  64. Franchi S. Castelli M. Amodeo G. Niada S. Ferrari D. Vescovi A. Brini A.T. Panerai A.E. Sacerdote P. Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. BioMed Res. Int. 2014 2014 1 10 10.1155/2014/470983
    [Google Scholar]
  65. Mendonça M.V.P. Larocca T.F. de Freitas Souza B.S. Villarreal C.F. Silva L.F.M. Matos A.C. Novaes M.A. Bahia C.M.P. de Oliveira Melo Martinez A.C. Kaneto C.M. Furtado S.B.C. Sampaio G.P. Soares M.B.P. dos Santos R.R. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res. Ther. 2014 5 6 126 10.1186/scrt516
    [Google Scholar]
  66. Vaquero J. Zurita M. Rico M.A. Aguayo C. Bonilla C. Marin E. Tapiador N. Sevilla M. Vazquez D. Carballido J. Fernandez C. Rodriguez-Boto G. Ovejero M. Vaquero J. Zurita M. Bonilla C. Rico M.A. Aguayo C. Rodríguez A. Martínez P. de la Calle S. Fernández M.V. Fernández C. Rodríguez-Boto G. de Reina L. Saab A. Cotua C. Santander X.A. Gutiérrez R. Saldaña C. Hassan R. Ortega C. Madrid A. Mariscal M. Marín E. López L.F. Pérez A. Ebrat E.E. Vaquero M. Martín M. Mayoral I. Canales D. Carballido J. Vazquez D. Serrano R. Saucedo G. Tapiador N. Sevilla M. Cabrera R. Begoña Pérez de Camino M.E.M. Alarcón A. Naya D. Alonso R. Alamo J.R. Romera I. Mourelle I. Sánchez C. Segovia R. Gutiérrez A. Guillo V. del Valle S. Rey P. Mucientes J. Rodríguez B. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy 2018 20 6 806 819 10.1016/j.jcyt.2018.03.032
    [Google Scholar]
  67. Helen M.B. Stem cells in the treatment of disease. N. Engl. J. Med. 2019 380 1748 1760 10.1056/NEJMra1716145
    [Google Scholar]
  68. Saadati M. Akhavan O. Fazli H. Nemati S. Baharvand H. Controlled differentiation of human neural progenitor cells on molybdenum disulfide/graphene oxide heterojunction scaffolds by photostimulation. ACS Appl. Mater. Interfaces 2023 15 3 3713 3730 10.1021/acsami.2c15431
    [Google Scholar]
  69. Andrews P.J. Poirrier A.L. Lund V.J. Choi D. Safety of human olfactory mucosal biopsy for the purpose of olfactory ensheathing cell harvest and nerve repair: a prospective controlled study in patients undergoing endoscopic sinus surgery. Rhinology 2016 54 2 183 191 10.4193/Rhino15.365
    [Google Scholar]
  70. Zhang J. Wang B. Xiao Z. Zhao Y. Chen B. Han J. Gao Y. Ding W. Zhang H. Dai J. Olfactory ensheathing cells promote proliferation and inhibit neuronal differentiation of neural progenitor cells through activation of Notch signaling. Neuroscience 2008 153 2 406 413 10.1016/j.neuroscience.2008.02.067
    [Google Scholar]
  71. Lang B.C. Zhang Z. Lv L.Y. Liu J. Wang T.Y. Yang L.H. Liao D.Q. Zhang W.S. Wang T.H. OECs transplantation results in neuropathic pain associated with BDNF regulating ERK activity in rats following cord hemisection. BMC Neurosci. 2013 14 1 80 10.1186/1471‑2202‑14‑80
    [Google Scholar]
  72. Cao T. Matyas J.J. Renn C.L. Faden A.I. Dorsey S.G. Wu J. Function and mechanisms of truncated BDNF receptor TrkB. T1 in neuropathic pain. Cells 2020 9 5 1194 10.3390/cells9051194
    [Google Scholar]
  73. Féron F. Perry C. Cochrane J. Licina P. Nowitzke A. Urquhart S. Geraghty T. Mackay-Sim A. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 2005 128 12 2951 2960 10.1093/brain/awh657
    [Google Scholar]
  74. Tabakow P. Jarmundowicz W. Czapiga B. Fortuna W. Miedzybrodzki R. Czyz M. Huber J. Szarek D. Okurowski S. Szewczyk P. Gorski A. Raisman G. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013 22 9 1591 1612 10.3727/096368912X663532
    [Google Scholar]
  75. Dugan E.A. Jergova S. Sagen J. Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury. Exp. Neurol. 2020 327 113208 10.1016/j.expneurol.2020.113208
    [Google Scholar]
  76. Mason B.J. Quello S. Shadan F. Gabapentin for the treatment of alcohol use disorder. Expert Opin. Investig. Drugs 2018 27 1 113 124 10.1080/13543784.2018.1417383
    [Google Scholar]
  77. Hwang I. Hahm S.C. Choi K.A. Park S.H. Jeong H. Yea J.H. Kim J. Hong S. Intrathecal transplantation of embryonic stem cell-derived spinal GABAergic neural precursor cells attenuates neuropathic pain in a spinal cord injury rat model. Cell Transplant. 2016 25 3 593 607 10.3727/096368915X689460
    [Google Scholar]
  78. Manion J. Khuong T. Harney D. Littleboy J.B. Ruan T. Loo L. Costigan M. Larance M. Caron L. Neely G.G. Human induced pluripotent stem cell-derived GABAergic interneuron transplants attenuate neuropathic pain. Pain 2020 161 2 379 387 10.1097/j.pain.0000000000001733
    [Google Scholar]
  79. Askarian-Amiri S. Maleki S.N. Alavi S.N.R. Neishaboori A.M. Toloui A. Gubari M.I.M. Sarveazad A. Hosseini M. Yousefifard M. The efficacy of GABAergic precursor cells transplantation in alleviating neuropathic pain in animal models: a systematic review and meta-analysis. Korean J. Pain 2022 35 1 43 58 10.3344/kjp.2022.35.1.43
    [Google Scholar]
  80. Berta T. Qadri Y. Tan P.H. Ji R.R. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin. Ther. Targets 2017 21 7 695 703 10.1080/14728222.2017.1328057
    [Google Scholar]
  81. Fernandes V. Sharma D. Vaidya S. PA S, Guan Y, Kalia K, Tiwari V. Cellular and molecular mechanisms driving neuropathic pain: recent advancements and challenges. Expert Opin. Ther. Targets 2018 22 2 131 142 10.1080/14728222.2018.1420781
    [Google Scholar]
  82. Zhang W. Zhu Z. Liu Z. The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Res. Bull. 2020 155 19 28 10.1016/j.brainresbull.2019.11.006
    [Google Scholar]
  83. Zhong Z. Chen A. Fa Z. Ding Z. Xiao L. Wu G. Wang Q. Zhang R. Bone marrow mesenchymal stem cells upregulate PI3K/AKT pathway and down-regulate NF-κB pathway by secreting glial cell-derived neurotrophic factors to regulate microglial polarization and alleviate deafferentation pain in rats. Neurobiol. Dis. 2020 143 104945 10.1016/j.nbd.2020.104945
    [Google Scholar]
  84. Watanabe S. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells 2020 33 6 1902 1914 10.1002/stem.2006
    [Google Scholar]
  85. Luo Y. Zou Y. Yang L. Liu J. Liu S. Liu J. Zhou X. Zhang W. Wang T. Transplantation of NSCs with OECs alleviates neuropathic pain associated with NGF downregulation in rats following spinal cord injury. Neurosci. Lett. 2013 549 103 108 10.1016/j.neulet.2013.06.005
    [Google Scholar]
  86. Karimi-Abdolrezaee S. Eftekharpour E. Wang J. Schut D. Fehlings M.G. Synergistic Effects of Transplanted Adult Neural Stem/Progenitor Cells, Chondroitinase, and Growth Factors Promote Functional Repair and Plasticity of the Chronically Injured Spinal Cord. J. Neurosci. 2010 30 5 1657 1676 10.1523/JNEUROSCI.3111‑09.2010
    [Google Scholar]
  87. Hofstetter C.P. Holmström N.A.V. Lilja J.A. Schweinhardt P. Hao J. Spenger C. Wiesenfeld-Hallin Z. Kurpad S.N. Frisén J. Olson L. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat. Neurosci. 2005 8 3 346 353 10.1038/nn1405
    [Google Scholar]
  88. Macias M. Syring M. Pizzi M. Crowe M. Alexanian A. Kurpad S. Pain with no gain: Allodynia following neural stem cell transplantation in spinal cord injury. Exp. Neurol. 2006 201 2 335 348 10.1016/j.expneurol.2006.04.035
    [Google Scholar]
  89. Waterman R.S. Morgenweck J. Nossaman B.D. Scandurro A.E. Scandurro S.A. Betancourt A.M. Anti-Inflammatory Mesenchymal Stem Cells ( MSC2 ) Attenuate Symptoms of Painful Diabetic Peripheral Neuropathy. Stem Cells Transl. Med. 2012 1 7 557 565 10.5966/sctm.2012‑0025
    [Google Scholar]
  90. Sacerdote P. Niada S. Franchi S. Arrigoni E. Rossi A. Yenagi V. de Girolamo L. Panerai A.E. Brini A.T. Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy. Stem Cells Dev. 2013 22 8 1252 1263 10.1089/scd.2012.0398
    [Google Scholar]
  91. In Choi J. Tae Cho H. Ki Jee M. Kyung Kang S. Core-shell nanoparticle controlled hATSCs neurogenesis for neuropathic pain therapy. Biomaterials 2013 34 21 4956 4970 10.1016/j.biomaterials.2013.02.037
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249328823241111101137
Loading
/content/journals/cnsamc/10.2174/0118715249328823241111101137
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test