Skip to content
2000
image of Phthalates Induced Neurotoxicity: A Mechanistic Approach

Abstract

Phthalates play a significant role as plastic modifying additives in everyday items like plastics, pesticides, paints, and cosmetics. This review explores the relationship between phthalates and neurotoxicity and sheds light on the potential risks these ubiquitous chemicals pose to neurological health. The review elucidates the diverse neurotoxic effects of phthalates exposure, spanning developmental neurotoxicity, neuropathy, neurodegenerative diseases, and neurobehavioral toxicity. Mechanistic insights reveal the pathways through which phthalates induce cellular damage, including oxidative stress, disruption of calcium signalling, alteration in lipid metabolism, and interference with thyroid hormone homeostasis. Moreover, the review discusses regulatory measures aimed at restricting phthalate usage and highlights the imperative for further research and awareness to safeguard public health against the neurotoxic effects of phthalates.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249332874241113030902
2024-12-03
2025-01-18
Loading full text...

Full text loading...

References

  1. Cook C.R. Halden R.U. Plastic Waste and Recycling. 2020 10.1016/B978‑0‑12‑817880‑5.00020‑7
    [Google Scholar]
  2. Ke M. Ye Y. Zhang Z. Gillings M. Qu Q. Xu N. Xu L. Lu T. Wang J. Qian H. Synergistic effects of glyphosate and multiwall carbon nanotubes on Arabidopsis thaliana physiology and metabolism. Sci. Total Environ. 2021 769 145156 10.1016/j.scitotenv.2021.145156 33477045
    [Google Scholar]
  3. Vogel N. Frederiksen H. Lange R. Jørgensen N. Koch H.M. Weber T. Andersson A.M. Kolossa-Gehring M. Urinary excretion of phthalates and the substitutes DINCH and DEHTP in Danish young men and German young adults between 2000 and 2017 – A time trend analysis. Int. J. Hyg. Environ. Health 2023 248 114080 10.1016/j.ijheh.2022.114080 36657282
    [Google Scholar]
  4. Small entity compliance guide: establishing an allowable level for di (2-ethylhexyl)phthalate in bottled water. 2018 Available from:https://www.fda.gov/regulatory-information/search-fda-guidance-documents/small-entity-compliance-guide-establishing-allowable-level-di2-ethylhexylphthalate-bottled-water#:~:text=in%20bottled%20water%3F-,The%20allowable%20level%20established%20by%20FDA%20for%20DEHP%20in%20bottled(accessed on 23-10-2024)
  5. FDA limits the use of certain phthalates in food packaging and issues requests for information about current food contact uses and safety. Available from:https://www.fda.gov/food/cfsan-constituent-updates/fda-limits-use-certain-phthalates-food-packaging-and-issues-request-information-about-current-food(accessed on 23-10-2024)
  6. da Silva Costa R. Sainara Maia Fernandes T. de Sousa Almeida E. Tomé Oliveira J. Carvalho Guedes J.A. Julião Zocolo G. Wagner de Sousa F. do Nascimento R.F. Potential risk of BPA and phthalates in commercial water bottles: a minireview. J. Water Health 2021 19 3 411 435 10.2166/wh.2021.202 34152295
    [Google Scholar]
  7. Tumu K. Vorst K. Curtzwiler G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr. Rev. Food Sci. Food Saf. 2023 22 2 1337 1359 10.1111/1541‑4337.13113 36789797
    [Google Scholar]
  8. Ayamba A.A. Ali M. Carboo D. Awuku F.J. Extraction and determination of phthalates content in polyethylene food contact materials on the Ghanaian market. J Natural Sci Res 2018 8 1 6
    [Google Scholar]
  9. Serrano S.E. Braun J. Trasande L. Dills R. Sathyanarayana S. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ Health 2014 13 1 1343 10.1186/1476‑069X‑13‑43
    [Google Scholar]
  10. Sioen I. Fierens T. Van Holderbeke M. Geerts L. Bellemans M. De Maeyer M. Servaes K. Vanermen G. Boon P.E. De Henauw S. Phthalates dietary exposure and food sources for Belgian preschool children and adults. Environ. Int. 2012 48 102 108 10.1016/j.envint.2012.07.004 22885666
    [Google Scholar]
  11. Liu X. Ma J. Guo S. Shi Q. Tang J. The combined effects of nanoplastics and dibutyl phthalate on Streptomyces coelicolor M145. Sci. Total Environ. 2022 826 154151 10.1016/j.scitotenv.2022.154151 35231524
    [Google Scholar]
  12. Li S. Dai J. Zhang L. Zhang J. Zhang Z. Chen B. An association of elevated serum prolactin with phthalate exposure in adult men. Biomed. Environ. Sci. 2011 24 1 31 39 21440837
    [Google Scholar]
  13. Kantor D.B. Kolodkin A.L. Curbing the excesses of youth: molecular insights into axonal pruning. Neuron 2003 38 6 849 852 10.1016/S0896‑6273(03)00364‑7 12818170
    [Google Scholar]
  14. Swan S.H. Main K.M. Liu F. Stewart S.L. Kruse R.L. Calafat A.M. Mao C.S. Redmon J.B. Ternand C.L. Sullivan S. Teague J.L. Study for Future Families Research Team Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ. Health Perspect. 2005 113 8 1056 1061 10.1289/ehp.8100 16079079
    [Google Scholar]
  15. Lyche J.L. Gutleb A.C. Bergman Å. Eriksen G.S. Murk A.J. Ropstad E. Saunders M. Skaare J.U. Reproductive and developmental toxicity of phthalates. J. Toxicol. Environ. Health B Crit. Rev. 2009 12 4 225 249 10.1080/10937400903094091 20183522
    [Google Scholar]
  16. Graham P.R. Phthalate ester plasticizers--why and how they are used. Environ. Health Perspect. 1973 3 3 12 4712540
    [Google Scholar]
  17. Cousins I. Mackay D. Correlating the physical–chemical properties of phthalate esters using the ‘three solubility’ approach. Chemosphere 2000 41 9 1389 1399 10.1016/S0045‑6535(00)00005‑9 11057575
    [Google Scholar]
  18. Holahan M.R. Smith C.A. Phthalates and neurotoxic effects on hippocampal network plasticity. Neurotoxicology 2015 48 21 34 10.1016/j.neuro.2015.02.008 25749100
    [Google Scholar]
  19. Aurela B. Kulmala H. Söderhjelm L. Phthalates in paper and board packaging and their migration into Tenax and sugar. Food Addit. Contam. 1999 16 12 571 577 10.1080/026520399283713 10789379
    [Google Scholar]
  20. Kueseng P. Thavarungkul P. Kanatharana P. Trace phthalate and adipate esters contaminated in packaged food. J. Environ. Sci. Health B 2007 42 5 569 576 10.1080/03601230701389488 17562465
    [Google Scholar]
  21. European Food Safety Authority (EFSA) Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to di-Butylphthalate (DBP) for use in food contact materials. EFSA J. 2005 3 9 242 10.2903/j.efsa.2005.242
    [Google Scholar]
  22. European Food Safety Authority (EFSA) Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Butylbenzylphthalate (BBP) for use in food contact materials. EFSA J. 2005 3 9 241 10.2903/j.efsa.2005.241
    [Google Scholar]
  23. European Food Safety Authority (EFSA) Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Di-isononylphthalate (DINP) for use in food contact materials. EFSA J. 2005 3 9 244 10.2903/j.efsa.2005.244
    [Google Scholar]
  24. European Food Safety Authority (EFSA) Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Di-isodecylphthalate (DIDP) for use in food contact materials. EFSA J. 2005 3 9 245 10.2903/j.efsa.2005.245
    [Google Scholar]
  25. Clark K. Cousins I.T. Mackay D. Assessment of critical exposure pathways. New York Springer-Verlag 2003 227 262 10.1007/b11468
    [Google Scholar]
  26. Wang W. Kannan K. Leaching of Phthalates from Medical Supplies and Their Implications for Exposure. Environ. Sci. Technol. 2023 57 20 7675 7683 10.1021/acs.est.2c09182 37154399
    [Google Scholar]
  27. Schettler T. Human exposure to phthalates via consumer products. Int. J. Androl. 2006 29 1 134 139 10.1111/j.1365‑2605.2005.00567.x 16466533
    [Google Scholar]
  28. Cao J. Shi Y. Yan M. Zhu H. Chen S. Xu K. Wang L. Sun H. Face Mask: As a Source or Protector of Human Exposure to Microplastics and Phthalate Plasticizers? Toxics 2023 11 2 87 10.3390/toxics11020087 36850963
    [Google Scholar]
  29. Oteef M.D.Y. Otaif K.D. Idris A.M. Personal Protective Equipment as a Potential Source of Phthalate Exposure during the COVID-19 Pandemic. Appl. Sci. (Basel) 2023 13 16 9076 10.3390/app13169076
    [Google Scholar]
  30. Diethyl phthalate. 2003 Available from:http://www.inchem.org/documents/cicads/cicads/cicad52.htm.2003(accessed on 23-10-2024)
  31. Zhao A. Wang L. Pang X. Liu F. Phthalates in skin wipes: Distribution, sources, and exposure via dermal absorption. Environ. Res. 2022 204 Pt B 112041 10.1016/j.envres.2021.112041 34529968
    [Google Scholar]
  32. Gong M. Zhang Y. Weschler C.J. Measurement of phthalates in skin wipes: estimating exposure from dermal absorption. Environ. Sci. Technol. 2014 48 13 7428 7435 10.1021/es501700u 24911978
    [Google Scholar]
  33. Sugino M. Hatanaka T. Todo H. Mashimo Y. Suzuki T. Kobayashi M. Hosoya O. Jinno H. Juni K. Sugibayashi K. Safety evaluation of dermal exposure to phthalates: Metabolism-dependent percutaneous absorption. Toxicol. Appl. Pharmacol. 2017 328 10 17 10.1016/j.taap.2017.05.009 28506834
    [Google Scholar]
  34. Saab Y. Oueis E. Mehanna S. Nakad Z. Stephan R. Khnayzer R.S. Risk assessment of phthalates and their metabolites in hospitalized patients: a focus on di-and mono-(2-ethylhexyl) phthalates exposure from intravenous plastic bags. Toxics 2022 10 7 357 10.3390/toxics10070357 35878262
    [Google Scholar]
  35. Cory-Slechta D.A. Merrill A. Sobolewski M. Air pollution–related neurotoxicity across the life span. Annu. Rev. Pharmacol. Toxicol. 2023 63 1 143 163 10.1146/annurev‑pharmtox‑051921‑020812 36028225
    [Google Scholar]
  36. Dhanya C.R. Indu A.R. Deepadevi K.V. Kurup P.A. Inhibition of membrane Na(+)-K+ Atpase of the brain, liver and RBC in rats administered di(2-ethyl hexyl) phthalate (DEHP) a plasticizer used in polyvinyl chloride (PVC) blood storage bags. Indian J. Exp. Biol. 2003 41 8 814 820 15248477
    [Google Scholar]
  37. Xiao A.Y. Wang X.Q. Yang A. Yu S.P. Slight impairment of Na+,K+-ATPase synergistically aggravates ceramide- and β-amyloid-induced apoptosis in cortical neurons. Brain Res. 2002 955 1-2 253 259 10.1016/S0006‑8993(02)03472‑8 12419544
    [Google Scholar]
  38. Wu S.N. Yang W.H. Yeh C.C. Huang H.C. The inhibition by di(2-ethylhexyl)-phthalate of erg-mediated K+ current in pituitary tumor (GH3) cells. Arch. Toxicol. 2012 86 5 713 723 10.1007/s00204‑012‑0805‑7 22314968
    [Google Scholar]
  39. Xu S. Zhang H. Pao P.C. Lee A. Wang J. Suen Chan Y. Manno F.A.M. III Wan Chan S. Han Cheng S. Chen X. Exposure to phthalates impaired neurodevelopment through estrogenic effects and induced DNA damage in neurons. Aquat. Toxicol. 2020 222 105469 10.1016/j.aquatox.2020.105469 32179334
    [Google Scholar]
  40. Tran C. Do T. Kim K.T. Comparative analysis of neurotoxicity of six phthalates in zebrafish embryos. Toxics 2021 9 1 5 10.3390/toxics9010005 33430197
    [Google Scholar]
  41. Li X.J. Jiang L. Chen L. Chen H.S. Li X. Neurotoxicity of dibutyl phthalate in brain development following perinatal exposure: A study in rats. Environ. Toxicol. Pharmacol. 2013 36 2 392 402 10.1016/j.etap.2013.05.001 23736097
    [Google Scholar]
  42. Qian X. Li J. Xu S. Wan Y. Li Y. Jiang Y. Zhao H. Zhou Y. Liao J. Liu H. Sun X. Liu W. Peng Y. Hu C. Zhang B. Lu S. Cai Z. Xia W. Prenatal exposure to phthalates and neurocognitive development in children at two years of age. Environ. Int. 2019 131 105023 10.1016/j.envint.2019.105023 31351385
    [Google Scholar]
  43. Engel S.M. Zhu C. Berkowitz G.S. Calafat A.M. Silva M.J. Miodovnik A. Wolff M.S. Prenatal phthalate exposure and performance on the Neonatal Behavioral Assessment Scale in a multiethnic birth cohort. Neurotoxicology 2009 30 4 522 528 10.1016/j.neuro.2009.04.001 19375452
    [Google Scholar]
  44. Kim Y. Ha E.H. Kim E.J. Park H. Ha M. Kim J.H. Hong Y.C. Chang N. Kim B.N. Prenatal exposure to phthalates and infant development at 6 months: prospective Mothers and Children’s Environmental Health (MOCEH) study. Environ. Health Perspect. 2011 119 10 1495 1500 10.1289/ehp.1003178 21737372
    [Google Scholar]
  45. Gascon M. Valvi D. Forns J. Casas M. Martínez D. Júlvez J. Monfort N. Ventura R. Sunyer J. Vrijheid M. Prenatal exposure to phthalates and neuropsychological development during childhood. Int. J. Hyg. Environ. Health 2015 218 6 550 558 10.1016/j.ijheh.2015.05.006 26095249
    [Google Scholar]
  46. Xu H. Shao X. Zhang Z. Zou Y. Chen Y. Han S. Wang S. Wu X. Yang L. Chen Z. Effects of di-n-butyl phthalate and diethyl phthalate on acetylcholinesterase activity and neurotoxicity related gene expression in embryonic zebrafish. Bull. Environ. Contam. Toxicol. 2013 91 6 635 639 10.1007/s00128‑013‑1101‑9 24042840
    [Google Scholar]
  47. Ghassabian A. van den Dries M. Trasande L. Lamballais S. Spaan S. Martinez-Moral M.P. Kannan K. Jaddoe V.W.V. Engel S.M. Pronk A. White T. Tiemeier H. Guxens M. Prenatal exposure to common plasticizers: a longitudinal study on phthalates, brain volumetric measures, and IQ in youth. Mol. Psychiatry 2023 28 11 4814 4822 10.1038/s41380‑023‑02225‑6 37644173
    [Google Scholar]
  48. Olesen T.S. Bleses D. Andersen H.R. Grandjean P. Frederiksen H. Trecca F. Bilenberg N. Kyhl H.B. Dalsager L. Jensen I.K. Andersson A.M. Jensen T.K. Prenatal phthalate exposure and language development in toddlers from the Odense Child Cohort. Neurotoxicol. Teratol. 2018 65 34 41 10.1016/j.ntt.2017.11.004 29198963
    [Google Scholar]
  49. Tu W. Li W. Zhu X. Xu L. Di-2-ethylhexyl phthalate (DEHP) induces apoptosis of mouse HT22 hippocampal neuronal cells via oxidative stress. Toxicol. Ind. Health 2020 36 11 844 851 10.1177/0748233720947205 32909914
    [Google Scholar]
  50. Lee D.G. Kim K.M. Lee H.S. Bae Y.C. Huh J.W. Lee S.R. Lee D.S. Peroxiredoxin 5 prevents diethylhexyl phthalate-induced neuronal cell death by inhibiting mitochondrial fission in mouse hippocampal HT-22 cells. Neurotoxicology 2019 74 242 251 10.1016/j.neuro.2019.08.003 31408635
    [Google Scholar]
  51. Wójtowicz A.K. Szychowski K.A. Wnuk A. Kajta M. Dibutyl phthalate (DBP)-induced apoptosis and neurotoxicity are mediated via the aryl hydrocarbon receptor (AhR) but not by estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), or peroxisome proliferator-activated receptor gamma (PPARγ) in mouse cortical neurons. Neurotox. Res. 2017 31 1 77 89 10.1007/s12640‑016‑9665‑x 27581038
    [Google Scholar]
  52. Sellinger E.P. Riesgo V.R. Brinks A.S. Willing J. Juraska J.M. Perinatal phthalate exposure increases developmental apoptosis in the rat medial prefrontal cortex. Neurotoxicology 2021 87 167 173 10.1016/j.neuro.2021.09.007 34599995
    [Google Scholar]
  53. Kougias D.G. Sellinger E.P. Willing J. Juraska J.M. Perinatal exposure to an environmentally relevant mixture of phthalates results in a lower number of neurons and synapses in the medial prefrontal cortex and decreased cognitive flexibility in adult male and female rats. J. Neurosci. 2018 38 31 6864 6872 10.1523/JNEUROSCI.0607‑18.2018 30012688
    [Google Scholar]
  54. Zayas B. Acevedo A. Rivera A. Rios K. Gonzalez R. Diaz A. Mechanism involved in cell death induced by DEHP (Di-ethylhexyl phthalate) on primary brain cells from Zebrafish (Danio rerio). Pharm. Pharmacol. Int. J. 2022 10 6 218 223 10.15406/ppij.2022.10.00390
    [Google Scholar]
  55. Zayas B. Carrasquillo G. Pinet-Velez N. Velez C. Ortiz J.G. Cell death induction of dibutyl phthalate (DBP) on primary brain cells from adult zebrafish. Pharm. Pharmacol. Int. J. 2021 9 5 219 225 10.15406/ppij.2021.09.00348
    [Google Scholar]
  56. Wu M. Xu L. Teng C. Xiao X. Hu W. Chen J. Tu W. Involvement of oxidative stress in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis of mouse NE-4C neural stem cells. Neurotoxicology 2019 70 41 47 10.1016/j.neuro.2018.10.013 30395871
    [Google Scholar]
  57. Aung K.H. Win-Shwe T.T. Kanaya M. Takano H. Tsukahara S. Involvement of hemeoxygenase-1 in di(2-ethylhexyl) phthalate (DEHP)-induced apoptosis of Neuro-2a cells. J. Toxicol. Sci. 2014 39 2 217 229 10.2131/jts.39.217 24646702
    [Google Scholar]
  58. Zhang W. Sun X. Qi X. Liu X. Zhang Y. Qiao S. Lin H. Di-(2-ethylhexyl) phthalate and microplastics induced neuronal apoptosis through the PI3K/AKT pathway and mitochondrial dysfunction. J. Agric. Food Chem. 2022 70 35 10771 10781 10.1021/acs.jafc.2c05474 36006862
    [Google Scholar]
  59. Lin C.H. Chen T.J. Chen S.S. Hsiao P.C. Yang R.C. Activation of Trim17 by PPARγ is involved in Di(2-ethylhexyl) phthalate (DEHP)-induced apoptosis on Neuro-2a cells. Toxicol. Lett. 2011 206 3 245 251 10.1016/j.toxlet.2011.08.002 21856391
    [Google Scholar]
  60. Guida N. Laudati G. Galgani M. Santopaolo M. Montuori P. Triassi M. Di Renzo G. Canzoniero L.M.T. Formisano L. Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death. Toxicol. Appl. Pharmacol. 2014 280 1 190 198 10.1016/j.taap.2014.07.014 25068794
    [Google Scholar]
  61. Zhou T. He S. Ye X. Wei Z. Wan J. Zhang H. Ding S. Exposure to dibutyl phthalate adsorbed to multi-walled carbon nanotubes causes neurotoxicity in mice by inducing the release of BDNF. Sci. Tot. Environ. 2022 852 158319
    [Google Scholar]
  62. Gaur K. Siddique Y.H. Effect of apigenin on neurodegenerative diseases. CNS. Neurolog. Disord. Drug Targ. 2024 23 4 468 475
    [Google Scholar]
  63. Siddique Y.H. Rahul Ara G. Afzal M. Varshney H. Gaur K. Subhan I. Mantasha I. Shahid M. Beneficial effects of apigenin on the transgenic Drosophila model of Alzheimer’s disease. Chem. Biol. Interact. 2022 366 110120 10.1016/j.cbi.2022.110120 36027948
    [Google Scholar]
  64. Yen P.L. How C.M. Hsiu-Chuan Liao V. Early-life and chronic exposure to di(2-ethylhexyl) phthalate enhances amyloid-β toxicity associated with an autophagy-related gene in Caenorhabditis elegans Alzheimer’s disease models. Chemosphere 2021 273 128594 10.1016/j.chemosphere.2020.128594 33066971
    [Google Scholar]
  65. Sun W. Ban J.B. Zhang N. Zu Y.K. Sun W.X. Perinatal exposure to di‐(2‐ethylhexyl)‐phthalate leads to cognitive dysfunction and phospho‐tau level increase in aged rats. Environ. Toxicol. 2014 29 5 596 603 10.1002/tox.21785 22610992
    [Google Scholar]
  66. Darley J. Phthalate Esters Exacerbate Neurodegeneration in a Caenorhabditis elegans Parkinson’s Disease Model. 2015 Available from:https://digitalcommons.cwu.edu/source/2015/oralpresentations/89(accessed on 23-10-2024)
  67. Huang M.L. Yen P.L. Chang C.H. Liao V.H.C. Chronic di(2-ethylhexyl) phthalate exposure leads to dopaminergic neuron degeneration through mitochondrial dysfunction in C. elegans. Environ. Pollut. 2022 307 119574 10.1016/j.envpol.2022.119574 35671892
    [Google Scholar]
  68. Barakat R. Lin P.C. Park C.J. Best-Popescu C. Bakry H.H. Abosalem M.E. Abdelaleem N.M. Flaws J.A. Ko C. Prenatal exposure to DEHP induces neuronal degeneration and neurobehavioral abnormalities in adult male mice. Toxicol. Sci. 2018 164 2 439 452 10.1093/toxsci/kfy103 29688563
    [Google Scholar]
  69. Tran N.Q.V. Miyake K. Neurodevelopmental disorders and environmental toxicants: epigenetics as an underlying mechanism. Int. J. Genomics 2017 2017 1 23 10.1155/2017/7526592 28567415
    [Google Scholar]
  70. Farzanehfar V. Naderi N. Kobarfard F. Faizi M. Determination of dibutyl phthalate neurobehavioral toxicity in mice. Food Chem. Toxicol. 2016 94 221 226 10.1016/j.fct.2016.05.006 27311797
    [Google Scholar]
  71. Li Y. Zhuang M. Li T. Shi N. Neurobehavioral toxicity study of dibutyl phthalate on rats following in utero and lactational exposure. J. Appl. Toxicol. 2009 29 7 603 611 10.1002/jat.1447 19533667
    [Google Scholar]
  72. Tanaka T. Reproductive and neurobehavioural toxicity study of bis(2-ethylhexyl) phthalate (DEHP) administered to mice in the diet. Food Chem. Toxicol. 2002 40 10 1499 1506 10.1016/S0278‑6915(02)00073‑X 12387315
    [Google Scholar]
  73. Tang J. Yuan Y. Wei C. Liao X. Yuan J. Nanberg E. Zhang Y. Bornehag C.G. Yang X. Neurobehavioral changes induced by di(2-ethylhexyl) phthalate and the protective effects of vitamin E in Kunming mice. Toxicol. Res. (Camb.) 2015 4 4 1006 1015 10.1039/C4TX00250D
    [Google Scholar]
  74. Khalifa M. Fayed R.H. Sedik A.A. Khalil H.M.A. Dose-dependent toxic effects of di-(2-ethylhexyl) phthalate in male rats: Focus on behavioral alterations and inducing TLR4/NF-κB signaling pathway. Toxicol. Appl. Pharmacol. 2023 468 116515 10.1016/j.taap.2023.116515 37061009
    [Google Scholar]
  75. Ducroq S. Duplus E. Penalva-Mousset L. Trivelloni F. L’honoré A. Chabat-Courrède C. Nemazanyy I. Grange-Messent V. Petropoulos I. Mhaouty-Kodja S. Behavior, Neural Structure, and Metabolism in Adult Male Mice Exposed to Environmentally Relevant Doses of Di(2-ethylhexyl) Phthalate Alone or in a Phthalate Mixture. Environ. Health Perspect. 2023 131 7 077008 10.1289/EHP11514 37458746
    [Google Scholar]
  76. Huang W. Xiao J. Shi X. Zheng S. Li H. Liu C. Wu K. Effects of di-(2-ethylhexyl) phthalate (DEHP) on behavior and dopamine signaling in zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 2022 93 103885 10.1016/j.etap.2022.103885 35595013
    [Google Scholar]
  77. Dai Y. Yang Y. Xu X. Hu Y. Effects of uterine and lactational exposure to di-(2-ethylhexyl) phthalate on spatial memory and NMDA receptor of hippocampus in mice. Horm. Behav. 2015 71 41 48 10.1016/j.yhbeh.2015.03.008 25870019
    [Google Scholar]
  78. Carbone S. Ponzo O.J. Gobetto N. Samaniego Y.A. Reynoso R. Scacchi P. Moguilevsky J.A. Cutrera R. Antiandrogenic effect of perinatal exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate increases anxiety-like behavior in male rats during sexual maturation. Horm. Behav. 2013 63 5 692 699 10.1016/j.yhbeh.2013.01.006 23399322
    [Google Scholar]
  79. Giorgi C. Marchi S. Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 2018 19 11 713 730 10.1038/s41580‑018‑0052‑8 30143745
    [Google Scholar]
  80. Choi D.W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988 11 10 465 469 10.1016/0166‑2236(88)90200‑7 2469166
    [Google Scholar]
  81. Tully K. Kupfer D. Dopico A.M. Treistman S.N. A plasticizer released from IV drip chambers elevates calcium levels in neurosecretory terminals. Toxicol. Appl. Pharmacol. 2000 168 3 183 188 10.1006/taap.2000.9036 11042090
    [Google Scholar]
  82. Liu P.S. Tseng F.W. Liu J.H. Comparative suppression of phthalate monoesters and phthalate diesters on calcium signalling coupled to nicotinic acetylcholine receptors. J. Toxicol. Sci. 2009 34 3 255 263 10.2131/jts.34.255 19483380
    [Google Scholar]
  83. Kaun-Yu L. Fu-Wei T. Chia-Jung W. Pei-Shan L. Suppression by phthalates of the calcium signaling of human nicotinic acetylcholine receptors in human neuroblastoma SH-SY5Y cells. Toxicology 2004 200 2-3 113 121 10.1016/j.tox.2004.03.018 15212808
    [Google Scholar]
  84. Helland I.B. Smith L. Saarem K. Saugstad O.D. Drevon C.A. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics 2003 111 1 e39 e44 10.1542/peds.111.1.e39 12509593
    [Google Scholar]
  85. Xu Y. Agrawal S. Cook T.J. Knipp G.T. Di-(2-ethylhexyl)-phthalate affects lipid profiling in fetal rat brain upon maternal exposure. Arch. Toxicol. 2007 81 1 57 62 10.1007/s00204‑006‑0143‑8 16951938
    [Google Scholar]
  86. You M. Dong J. Fu Y. Cong Z. Fu H. Wei L. Wang Y. Wang Y. Chen J. Exposure to di-(2-ethylhexyl) phthalate during perinatal period gender-specifically impairs the dendritic growth of pyramidal neurons in rat offspring. Front. Neurosci. 2018 12 444 10.3389/fnins.2018.00444 30087586
    [Google Scholar]
  87. Factor-Litvak P. Insel B. Calafat A.M. Liu X. Perera F. Rauh V.A. Whyatt R.M. Persistent associations between maternal prenatal exposure to phthalates on child IQ at age 7 years. PLoS One 2014 9 12 e114003 10.1371/journal.pone.0114003 25493564
    [Google Scholar]
  88. Tseng I.L. Yang Y.F. Yu C.W. Li W.H. Liao V.H.C. Phthalates induce neurotoxicity affecting locomotor and thermotactic behaviors and AFD neurons through oxidative stress in Caenorhabditis elegans. PLoS One 2013 8 12 e82657 10.1371/journal.pone.0082657 24349328
    [Google Scholar]
  89. Jiang N. Song P. Li X. Zhu L. Wang J. Yin X. Wang J. Dibutyl phthalate induced oxidative stress and genotoxicity on adult zebrafish (Danio rerio) brain. J. Hazard. Mater. 2022 424 Pt D 127749 10.1016/j.jhazmat.2021.127749 34844800
    [Google Scholar]
  90. Hong Y. Yan W. Chen S. Sun C. Zhang J. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol. Sin. 2010 31 11 1421 1430 10.1038/aps.2010.101 20953205
    [Google Scholar]
  91. Luo Y. Li X.N. Zhao Y. Du Z.H. Li J.L. DEHP triggers cerebral mitochondrial dysfunction and oxidative stress in quail (Coturnix japonica) via modulating mitochondrial dynamics and biogenesis and activating Nrf2-mediated defense response. Chemosphere 2019 224 626 633 10.1016/j.chemosphere.2019.02.142 30844593
    [Google Scholar]
  92. Ma Q.L. Zuo X. Yang F. Ubeda O.J. Gant D.J. Alaverdyan M. Kiosea N.C. Nazari S. Chen P.P. Nothias F. Chan P. Teng E. Frautschy S.A. Cole G.M. Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. J. Neurosci. 2014 34 21 7124 7136 10.1523/JNEUROSCI.3439‑13.2014 24849348
    [Google Scholar]
  93. Harada A. Teng J. Takei Y. Oguchi K. Hirokawa N. MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J. Cell Biol. 2002 158 3 541 549 10.1083/jcb.200110134 12163474
    [Google Scholar]
  94. Lovell M.A. Markesbery W.R. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res. 2007 35 22 7497 7504 10.1093/nar/gkm821 17947327
    [Google Scholar]
  95. ECHA. Phthalates. Available from:https://echa.europa.eu/hot-topics/phthalates(accessed on 23-10-2024)
  96. DEHP in Children’s Plastic Items. Available from:https://www.productsafety.gov.au/bans/dehp-in-childrens-plastic-items(accessed on 23-10-2024)
  97. Center of Health. Available from:http://www.chej.org/pvcfactsheets/PVC_Policies_Around_The_World.html(accessed on 23-10-2024)
  98. Li X. Jiang L. Cheng L. Chen H. Dibutyl phthalate-induced neurotoxicity in the brain of immature and mature rat offspring. Brain Dev. 2014 36 8 653 660 10.1016/j.braindev.2013.09.002 24075507
    [Google Scholar]
  99. Liu Y. Huo W.B. Deng J.Y. Tang Q.P. Wang J.X. Liao Y.L. Gou D. Pei D.S. Neurotoxicity and the potential molecular mechanisms of mono-2-ethylhexyl phthalic acid (MEHP) in zebrafish. Ecotoxicol. Environ. Saf. 2023 265 115516 10.1016/j.ecoenv.2023.115516 37757626
    [Google Scholar]
  100. Engel S.M. Patisaul H.B. Brody C. Hauser R. Zota A.R. Bennet D.H. Swanson M. Whyatt R.M. Neurotoxicity of ortho-phthalates: recommendations for critical policy reforms to protect brain development in children. Am. J. Public Health 2021 111 4 687 695 10.2105/AJPH.2020.306014 33600256
    [Google Scholar]
  101. Oya-Silva L.F. Guiloski I.C. Vicari T. Deda B. Marcondes F.R. Simeoni R.D. Perussolo M.C. Martino-Andrade A.J. Leme D.M. de Assis H.C.S. Cestari M.M. Evidence of genotoxicity, neurotoxicity, and antioxidant imbalance in silver catfish Rhamdia quelen after subchronic exposure to diisopentyl phthalate. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2023 892 503702 10.1016/j.mrgentox.2023.503702 37973294
    [Google Scholar]
  102. Mao G. Liu H. Ding Y. Zhang W. Chen H. Zhao T. Feng W. Wu X. Yang L. Evaluation of combined developmental neurological toxicity of di (n-butyl) phthalates and lead using immature mice. Environ. Sci. Pollut. Res. Int. 2020 27 9 9318 9326 10.1007/s11356‑019‑06692‑9 31916169
    [Google Scholar]
  103. Nahla E. Arya P. Maneesha P. Chitra K.C. Exposure to the plasticizer dibutyl phthalate causes oxidative stress and neurotoxicity in brain tissue. Environ. Sci. Pollut. Res. Int. 2024 31 14 21399 21414 10.1007/s11356‑024‑32604‑7 38393557
    [Google Scholar]
  104. Wu Y. Li K. Zuo H. Yuan Y. Sun Y. Yang X. Primary neuronal-astrocytic co-culture platform for neurotoxicity assessment of di-(2-ethylhexyl) phthalate. J. Environ. Sci. (China) 2014 26 5 1145 1153 10.1016/S1001‑0742(13)60504‑5 25079645
    [Google Scholar]
  105. Yirun A. Ozkemahli G. Balci A. Erkekoglu P. Zeybek N.D. Yersal N. Kocer-Gumusel B. Neuroendocrine disruption by bisphenol A and/or di(2-ethylhexyl) phthalate after prenatal, early postnatal and lactational exposure. Environ. Sci. Pollut. Res. Int. 2021 28 21 26961 26974 10.1007/s11356‑021‑12408‑9 33496947
    [Google Scholar]
  106. Zhao Y. Chang Y.H. Ren H.R. Lou M. Jiang F.W. Wang J.X. Chen M.S. Liu S. Shi Y.S. Zhu H.M. Li J.L. Phthalates Induce Neurotoxicity by Disrupting the Mfn2-PERK Axis-Mediated Endoplasmic Reticulum–Mitochondria Interaction. J. Agric. Food Chem. 2024 72 13 7411 7422 10.1021/acs.jafc.3c07752 38390847
    [Google Scholar]
  107. Mao G. Zhou Z. Chen Y. Wang W. Wu X. Feng W. Cobbina S.J. Huang J. Zhang Z. Xu H. Yang L. Wu X. Neurological toxicity of individual and mixtures of low dose arsenic, mono and di (n-butyl) phthalates on sub-chronic exposure to mice. Biol. Trace Elem. Res. 2016 170 1 183 193 10.1007/s12011‑015‑0457‑6 26257159
    [Google Scholar]
  108. Feng W. Liu Y. Ding Y. Mao G. Zhao T. Chen K. Qiu X. Xu T. Zhao X. Wu X. Yang L. Typical neurobehavioral methods and transcriptome analysis reveal the neurotoxicity and mechanisms of di(2-ethylhexyl) phthalate on pubertal male ICR mice with type 2 diabetes mellitus. Arch. Toxicol. 2020 94 4 1279 1302 10.1007/s00204‑020‑02683‑9 32303808
    [Google Scholar]
  109. Ding Y. Lu L. Xuan C. Han J. Ye S. Cao T. Chen W. Li A. Zhang X. Di- n -butyl phthalate exposure negatively influences structural and functional neuroplasticity via Rho-GTPase signaling pathways. Food Chem. Toxicol. 2017 105 34 43 10.1016/j.fct.2017.03.057 28363850
    [Google Scholar]
  110. Qiu F. Zhou Y. Deng Y. Yi J. Gong M. Liu N. Wei C. Xiang S. Knockdown of TNFAIP1 prevents di-(2-ethylhexyl) phthalate-induced neurotoxicity by activating CREB pathway. Chemosphere 2020 241 125114 10.1016/j.chemosphere.2019.125114 31683445
    [Google Scholar]
  111. Khalifa M. Fayed R.H. Ahmed Y.H. Sedik A.A. El-Dydamony N.M. Khalil H.M. Mitigating effect of ferulic acid on di-(2-ethylhexyl) phthalate-induced neurocognitive dysfunction in male rats with a comprehensive in silico survey. Naunyn Schmiedebergs Arch. Pharmacol. 2023 2023 1 20 37966574
    [Google Scholar]
  112. Zhang Q. Chen X.Z. Huang X. Wang M. Wu J. The association between prenatal exposure to phthalates and cognition and neurobehavior of children-evidence from birth cohorts. Neurotoxicology 2019 73 199 212 10.1016/j.neuro.2019.04.007 31004626
    [Google Scholar]
  113. Ponsonby A.L. Symeonides C. Saffery R. Mueller J.F. O’Hely M. Sly P.D. Wardrop N. Pezic A. Mansell T. Collier F. Burgner D. Thompson K. Vijayasarathy S. Sugeng E.J. Dwyer T. Ranganathan S. Anderson P.J. Anderson V. Vuillermin P. BIS Investigator Group Prenatal phthalate exposure, oxidative stress-related genetic vulnerability and early life neurodevelopment: A birth cohort study. Neurotoxicology 2020 80 20 28 10.1016/j.neuro.2020.05.006 32479765
    [Google Scholar]
  114. Ren W. Liu N. Shen Y. Wang X. Zhou Q. Rui C. Yang X. Cao S. Li L. Wāng Y. Wang Q. Subchronic exposure to di-(2-ethylhexyl) phthalate (DEHP) elicits blood–brain barrier dysfunction and neuroinflammation in male C57BL/6J mice. Toxicology 2023 499 153650 10.1016/j.tox.2023.153650 37858774
    [Google Scholar]
  115. Bennett D.H. Busgang S.A. Kannan K. Parsons P.J. Takazawa M. Palmer C.D. Schmidt R.J. Doucette J.T. Schweitzer J.B. Gennings C. Hertz-Picciotto I. Environmental exposures to pesticides, phthalates, phenols and trace elements are associated with neurodevelopment in the CHARGE study. Environ. Int. 2022 161 107075 10.1016/j.envint.2021.107075 35085933
    [Google Scholar]
  116. Eleiwa N.Z.H. Elsayed A.S.F. Said E.N. Metwally M.M.M. Abd-Elhakim Y.M. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat’s brain: Protective role of Coenzyme10. Food Chem. Toxicol. 2024 184 114372 10.1016/j.fct.2023.114372 38113957
    [Google Scholar]
  117. Lee W. Cho J.H. Lee Y. Lee S. Kim D.H. Ha S. Kondo Y. Ishigami A. Chung H.Y. Lee J. Dibutyl phthalate impairs neural progenitor cell proliferation and hippocampal neurogenesis. Food Chem. Toxicol. 2019 129 239 248 10.1016/j.fct.2019.04.040 31029726
    [Google Scholar]
  118. Safarpour S. Zabihi E. Ghasemi-Kasman M. Nosratiyan N. Feizi F. Prenatal and breastfeeding exposure to low dose of diethylhexyl phthalate induces behavioral deficits and exacerbates oxidative stress in rat hippocampus. Food Chem. Toxicol. 2021 154 112322 10.1016/j.fct.2021.112322 34111487
    [Google Scholar]
  119. Chen T. Yang W. Li Y. Chen X. Xu S. Mono-(2-ethylhexyl) phthalate impairs neurodevelopment: Inhibition of proliferation and promotion of differentiation in PC12 cells. Toxicol. Lett. 2011 201 1 34 41 10.1016/j.toxlet.2010.12.002 21145954
    [Google Scholar]
  120. Sarigiannis D.A. Papaioannou N. Handakas E. Anesti O. Polanska K. Hanke W. Salifoglou A. Gabriel C. Karakitsios S. Neurodevelopmental exposome: The effect of in utero co-exposure to heavy metals and phthalates on child neurodevelopment. Environ. Res. 2021 197 110949 10.1016/j.envres.2021.110949 33716031
    [Google Scholar]
  121. Kassab R.B. Lokman M.S. Essawy E.A. Neurochemical alterations following the exposure to di-n-butyl phthalate in rats. Metab. Brain Dis. 2019 34 1 235 244 10.1007/s11011‑018‑0341‑0 30446882
    [Google Scholar]
  122. Esther O.A. Seun E.K. Shawai A. Esther C.D. Hepatotoxic and neurotoxic effects of combined lead and di-(2-ethylhexyl) phthalate exposure: Activation of total -, Ca2+- and Na+K+- ATPases in the liver of male rats. Journal of Toxicology and Environmental Health Sciences 2021 13 1 18 27 10.5897/JTEHS2021.0466
    [Google Scholar]
  123. P M.B. M J R. Gestational and lactational exposition to di-n-butyl phthalate increases neurobehavioral perturbations in rats: A three generational comparative study. Toxicol. Rep. 2020 7 480 491 10.1016/j.toxrep.2020.03.006 32292708
    [Google Scholar]
  124. Hyland C. Mora A.M. Kogut K. Calafat A.M. Harley K. Deardorff J. Holland N. Eskenazi B. Sagiv S.K. Prenatal exposure to phthalates and neurodevelopment in the CHAMACOS cohort. Environ. Health Perspect. 2019 127 10 107010 10.1289/EHP5165 31652105
    [Google Scholar]
  125. Zheng Y. Li L. Cheng H. Huang S. Feng X. Huang L. Wei L. Cao D. Wang S. Tian L. Tang W. He C. Shen C. Luo B. Zhu M. Liang T. Pang B. Li M. Liu C. Chen X. Wang F. Mo Z. Yang X. Gender-specific effects of prenatal mixed exposure to serum phthalates on neurodevelopment of children aged 2–3 years:the Guangxi Birth Cohort Study. Environ. Sci. Pollut. Res. Int. 2022 29 56 85547 85558 10.1007/s11356‑022‑21769‑8 35794332
    [Google Scholar]
  126. Chen H.K. Wang S.L. Chang Y.H. Sun C.W. Wu M.T. Chen M.L. Lin Y.J. Hsieh C.J. TMICS study group Associations between maternal phthalate exposure and neonatal neurobehaviors: The Taiwan maternal and infant cohort study (TMICS). Environ. Pollut. 2023 319 120956 10.1016/j.envpol.2022.120956 36581241
    [Google Scholar]
  127. Sarangi P. Pradhan L.K. Sahoo P.K. Chauhan N.R. Das S.K. Di-2-ethylhexyl phthalate-induced neurobehavioural transformation is associated with altered glutathione biosynthesis and neurodegeneration in zebrafish brain. Fish Physiol. Biochem. 2023 49 3 501 514 10.1007/s10695‑023‑01197‑2 37131059
    [Google Scholar]
  128. Nassan F.L. Gunn J.A. Hill M.M. Williams P.L. Hauser R. Association of urinary concentrations of phthalate metabolites with quinolinic acid among women: A potential link to neurological disorders. Environ. Int. 2020 138 105643 10.1016/j.envint.2020.105643 32179323
    [Google Scholar]
  129. Li Y. Li X. Xie M. Cheng L. Chen H. Sun H. Jiang L. [Toxicity of dibutyl phthalate in primary cultured rat hippocampal neurons and the toxicological mechanism]. Nan Fang Yi Ke Da Xue Xue Bao 2020 40 2 225 232 32376539
    [Google Scholar]
  130. Lee S. Lee W. Yang S. Suh Y.J. Hong D.G. Chang S.C. Kim H.S. Lee J. Di- n -butyl phthalate disrupts neuron maturation in primary rat embryo neurons and male C57BL/6 mice. J. Toxicol. Environ. Health A 2022 85 2 56 70 10.1080/15287394.2021.1973631 34488563
    [Google Scholar]
  131. Nassan F.L. Gunn J.A. Hill M.M. Coull B.A. Hauser R. High phthalate exposure increased urinary concentrations of quinolinic acid, implicated in the pathogenesis of neurological disorders: Is this a potential missing link? Environ. Res. 2019 172 430 436 10.1016/j.envres.2019.02.034 30826665
    [Google Scholar]
  132. Dong R. Wu Y. Chen J. Wu M. Li S. Chen B. Lactational exposure to phthalates impaired the neurodevelopmental function of infants at 9 months in a pilot prospective study. Chemosphere 2019 226 351 359 10.1016/j.chemosphere.2019.03.159 30947045
    [Google Scholar]
  133. Wójtowicz A.K. Sitarz-Głownia A.M. Szczęsna M. Szychowski K.A. The action of di-(2-ethylhexyl) phthalate (DEHP) in mouse cerebral cells involves an impairment in aryl hydrocarbon receptor (AhR) signaling. Neurotox. Res. 2019 35 1 183 195 10.1007/s12640‑018‑9946‑7 30120713
    [Google Scholar]
  134. Dong J. Fu H. Fu Y. You M. Li X. Wang C. Leng K. Wang Y. Chen J. Maternal exposure to di-(2-ethylhexyl) phthalate impairs hippocampal synaptic plasticity in male offspring: involvement of damage to dendritic spine development. ACS Chem. Neurosci. 2021 12 2 311 322 10.1021/acschemneuro.0c00612 33411500
    [Google Scholar]
  135. Li S.W. How C.M. Liao V.H.C. Prolonged exposure of di(2-ethylhexyl) phthalate induces multigenerational toxic effects in Caenorhabditis elegans. Sci. Total Environ. 2018 634 260 266 10.1016/j.scitotenv.2018.03.355 29627549
    [Google Scholar]
  136. Radha M.J. Di Basha P.M. (n)-Butyl phthalate induced neuronal perturbations in rat brain tissues: a multigenerational assessment. Int. J. Biosci. Psychiatr. Technol. IJBSPT 2017 8 794 800
    [Google Scholar]
  137. Lee S.M. Jeon S. Jeong H.J. Kim B.N. Kim Y. Dibutyl phthalate exposure during gestation and lactation in C57BL/6 mice: Maternal behavior and neurodevelopment in pups. Environ. Res. 2020 182 109025 10.1016/j.envres.2019.109025 31841868
    [Google Scholar]
  138. Ma P. Liu X. Wu J. Yan B. Zhang Y. Lu Y. Wu Y. Liu C. Guo J. Nanberg E. Bornehag C.G. Yang X. Cognitive deficits and anxiety induced by diisononyl phthalate in mice and the neuroprotective effects of melatonin. Sci. Rep. 2015 5 1 14676 10.1038/srep14676 26424168
    [Google Scholar]
  139. Jankowska A. Polańska K. Koch H.M. Pälmke C. Waszkowska M. Stańczak A. Wesołowska E. Hanke W. Bose-O’Reilly S. Calamandrei G. Garí M. Phthalate exposure and neurodevelopmental outcomes in early school age children from Poland. Environ. Res. 2019 179 Pt B 108829 10.1016/j.envres.2019.108829 31677502
    [Google Scholar]
  140. Kim S. Eom S. Kim H.J. Lee J.J. Choi G. Choi S. Kim S. Kim S.Y. Cho G. Kim Y.D. Suh E. Kim S.K. Kim S. Kim G.H. Moon H.B. Park J. Kim S. Choi K. Eun S.H. Association between maternal exposure to major phthalates, heavy metals, and persistent organic pollutants, and the neurodevelopmental performances of their children at 1 to 2 years of age- CHECK cohort study. Sci. Total Environ. 2018 624 377 384 10.1016/j.scitotenv.2017.12.058 29258038
    [Google Scholar]
  141. Lv J. Li Y. Chen J. Li R. Bao C. Ding Z. Ren W. Du Z. Wang S. Huang Y. Wang Q. Maternal exposure to bis(2-ethylhexyl) phthalate during the thyroid hormone-dependent stage induces persistent emotional and cognitive impairment in middle-aged offspring mice. Food Chem. Toxicol. 2022 163 112967 10.1016/j.fct.2022.112967 35354077
    [Google Scholar]
  142. Ko M.Y. Park H. Chon S.H. Lee B.S. Cha S.W. Hyun S.A. Ka M. Prenatal Di‐methoxyethyl phthalate exposure impairs cortical neurogenesis and synaptic activity in the mice. Brain Pathol. 2024 34 2 e13221 10.1111/bpa.13221 37903655
    [Google Scholar]
  143. Solaimuthu B. Bhat F.A. Sekaran S. Manikandan M. Balaganapathy P. Gunasekharan J. Jagadeesan A. Lactational exposure to di-2-ethyl hexyl phthalate (DEHP) induces oxidative stress and causes neurodegeneration in hippocampus of offspring female albino rats. Int J Pharm Drug Analy 2014 541 552
    [Google Scholar]
  144. Tang S. Zhang H. Xia Y. Luo S. Liu Y. Duan X. Zou Z. Chen C. Zhou L. Qiu J. Exposure to di (2-ethylhexyl) phthalate causes locomotor increase and anxiety-like behavior via induction of oxidative stress in brain. Toxicol. Mech. Methods 2023 33 2 113 122 10.1080/15376516.2022.2100303 35818324
    [Google Scholar]
  145. Rolland M. Lyon-Caen S. Thomsen C. Sakhi A.K. Sabaredzovic A. Bayat S. Slama R. Méary D. Philippat C. Effects of early exposure to phthalates on cognitive development and visual behavior at 24 months. Environ. Res. 2023 219 115068 10.1016/j.envres.2022.115068 36528043
    [Google Scholar]
  146. Liu X. Adamo A.M. Oteiza P.I. Di-2-ethylhexyl phthalate affects zinc metabolism and neurogenesis in the developing rat brain. Arch. Biochem. Biophys. 2022 727 109351 10.1016/j.abb.2022.109351 35841924
    [Google Scholar]
  147. Yan B. Wang Z. Chen J. Zhang L. Cai Z. Wu Y. Ma P. Role of the necrosis factor-κB pathway in dibutyl phthalate mediated effects on human glioma cells. Toxicol. Environ. Chem. 2018 100 5-7 644 657 10.1080/02772248.2019.1567732
    [Google Scholar]
  148. Zhao Y.X. Tang Y.X. Sun X.H. Zhu S.Y. Dai X.Y. Li X.N. Li J.L. Gap junction protein connexin 43 as a target is internalized in astrocyte neurotoxicity caused by di-(2-ethylhexyl) phthalate. J. Agric. Food Chem. 2022 70 19 5921 5931 10.1021/acs.jafc.2c01635 35446567
    [Google Scholar]
  149. Radha M.J. Basha M.P. Genotoxic impact of di-n-butyl phthalate on DNA: A comparative study of three generations in the neuronal tissue of Wistar rats. Toxicol. Ind. Health 2022 38 3 162 175 10.1177/07482337221079428 35317679
    [Google Scholar]
  150. Kim J.I. Hong Y.C. Shin C.H. Lee Y.A. Lim Y.H. Kim B.N. The effects of maternal and children phthalate exposure on the neurocognitive function of 6-year-old children. Environ. Res. 2017 156 519 525 10.1016/j.envres.2017.04.003 28431379
    [Google Scholar]
  151. Min A. Liu F. Yang X. Chen M. Benzyl butyl phthalate exposure impairs learning and memory and attenuates neurotransmission and CREB phosphorylation in mice. Food Chem. Toxicol. 2014 71 81 89 10.1016/j.fct.2014.05.021 24937021
    [Google Scholar]
  152. Rosen E.M. Stevens D.R. McNell E.E. Wood M.E. Engel S.M. Keil A.P. Calafat A.M. Botelho J.C. Sinkovskaya E. Przybylska A. Saade G. Abuhamad A. Ferguson K.K. Longitudinal associations between urinary biomarkers of phthalates and replacements with novel in vivo measures of placental health. Hum. Reprod. 2024 39 9 2104 2114 10.1093/humrep/deae152 38970902
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249332874241113030902
Loading
/content/journals/cnsamc/10.2174/0118715249332874241113030902
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Phthalates ; mechanism ; restriction ; neurotoxicity ; cell death
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test