Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

There are several safeguards in place to protect the brain from injury because of its vulnerability. Two major barriers prevent harmful substances from entering the brain: the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). Although there has been some success in devising ways for transporting medicines to the brain, the great majority of the nanoparticles (NPs) used in these procedures are destroyed in the process. An awareness of the whole scope of the delivery process and the numerous obstacles it may offer is necessary for the sensible design of brain-targeted pharmaceutical delivery systems. The blood-brain barrier (BBB) is the best-known physiological barrier affecting both brain access and the efficacy of various pharmacological therapies. Accordingly, the development of a promising therapy for the treatment of brain disorders requires drug targeting of the brain, specifically damaged cells. Researchers are looking into nano-carrier systems, also called surface-modified target-specific novel carrier systems, to determine if they can be used to boost the effectiveness of brain drugs while minimizing their side effects. These strategies have the potential to bypass BBB function, leading to increased drug levels in the brain. Numerous physiological parameters, such as active efflux transport, the brain's protein corona, nanocarrier stability and toxicity, physicochemical features, patient-related factors, and others, determine whether or not a novel carrier system is functional.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/2405461508666230804102333
2023-10-10
2025-01-14
Loading full text...

Full text loading...

References

  1. LiuR. LuoC. PangZ. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment.Chin. Chem. Lett.202334210751810.1016/j.cclet.2022.05.032
    [Google Scholar]
  2. AgrawalM. SarafS. SarafS. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting.J. Control. Release202032137241510.1016/j.jconrel.2020.02.02032061621
    [Google Scholar]
  3. MengY. NiuX. LiG. Liposome nanoparticles as a novel drug delivery system for therapeutic and diagnostic applications.Curr. Drug Deliv.2022201415635331112
    [Google Scholar]
  4. PoudelP. ParkS. Recent advances in the treatment of Alzheimer’s disease using nanoparticle: Based drug delivery systems.Pharmaceutics202214483510.3390/pharmaceutics1404083535456671
    [Google Scholar]
  5. AyubA. WettigS. An overview of nanotechnologies for drug delivery to the brain.Pharmaceutics202214222410.3390/pharmaceutics1402022435213957
    [Google Scholar]
  6. RuanS. ZhouY. JiangX. GaoH. Rethinking critid procedure of brain targeting drug delivery: Circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release.Adv. Sci.202189200402510.1002/advs.20200402533977060
    [Google Scholar]
  7. HanL. JiangC. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies.Acta Pharm. Sin. B20211182306232510.1016/j.apsb.2020.11.02334522589
    [Google Scholar]
  8. BrownL.S. FosterC.G. CourtneyJ.M. KingN.E. HowellsD.W. SutherlandB.A. Pericytes and neurovascular function in the healthy and diseased brain.Front. Cell. Neurosci.20191328210.3389/fncel.2019.0028231316352
    [Google Scholar]
  9. GauroR. NandaveM. JainV.K. JainK. Advances in dendrimer-mediated targeted drug delivery to the brain.J. Nanopart. Res.20212337610.1007/s11051‑021‑05175‑8
    [Google Scholar]
  10. AzharA. AshrafG.M. ZiaQ. Frontier view on nanotechnological strategies for neuro-therapy.Curr. Drug Metab.201819759660410.2174/138920021966618030514414329512448
    [Google Scholar]
  11. a PulgarVM Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci.201812 1019 2018; 12 1019
    [Google Scholar]
  12. b VillasenorR. LampeJ. SchwaningerM. CollinL. Intracellular transport and regulation of transcytosis across the blood-brain barrier.Cell. Mol. Life Sci.2019761081
    [Google Scholar]
  13. MaY.H. DouX.X. TianX.H. Natural disesquiterpenoids: An overview of their chemical structures, pharmacological activities, and biosynthetic pathways.Phytochem. Rev.2020194983104310.1007/s11101‑020‑09698‑1
    [Google Scholar]
  14. RuttalaH.B. RamasamyT. MadeshwaranT. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications.Arch. Pharm. Res.201841211112910.1007/s12272‑017‑0995‑x29214601
    [Google Scholar]
  15. LiuY. ZouY. FengC. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma rnai therapy.Nano Lett.20202031637164610.1021/acs.nanolett.9b0468332013452
    [Google Scholar]
  16. Abdul RazzakR. FlorenceG.J. Gunn-MooreF.J. Approaches to CNS drug delivery with a focus on transporter-mediated transcytosis.Int. J. Mol. Sci.20192012310810.3390/ijms2012310831242683
    [Google Scholar]
  17. PantshwaJ.M. KondiahP.P.D. ChoonaraY.E. MarimuthuT. PillayV. Nanodrug delivery systems for the treatment of ovarian cancer.Cancers 202012121310.3390/cancers1201021331952210
    [Google Scholar]
  18. YinY. WangJ. YangM. Penetration of the blood–brain barrier and the anti-tumour effect of a novel plga-lysogm1/dox micelle drug delivery system.Nanoscale20201252946296010.1039/C9NR08741A31994576
    [Google Scholar]
  19. GiljohannD.A. SeferosD.S. DanielW.L. MassichM.D. PatelP.C. MirkinC.A. Gold nanoparticles for biology and medicine.. In: Spherical Nucleic Acids20205590
    [Google Scholar]
  20. MengY. HynynenK. LipsmanN. Applications of focused ultrasound in the brain: From thermoablation to drug delivery.Nat. Rev. Neurol.202117172210.1038/s41582‑020‑00418‑z33106619
    [Google Scholar]
  21. LiaoJ. FanL. LiY. Recent advances in biomimetic nanodelivery systems: New brain-targeting strategies.J. Control. Release202335843946410.1016/j.jconrel.2023.05.00937169179
    [Google Scholar]
  22. KumarV. GuptaU. Tailor-made nanocargoes as promising tool for brain targeting: Modulated approaches with better therapeutic outcomes.J. Drug Deliv. Sci. Technol.20238410446610.1016/j.jddst.2023.104466
    [Google Scholar]
  23. DuanL. LiX. JiR. Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases.Polymers 2023159219610.3390/polym1509219637177342
    [Google Scholar]
  24. VosT. LimS.S. AbbafatiC. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet2020396102581204122210.1016/S0140‑6736(20)30925‑933069326
    [Google Scholar]
  25. Terreros-RoncalJ. Moreno-JiménezE.P. Flor-GarcíaM. Impact of neurodegenerative diseases on human adult hippocampal neurogenesis.Science202137465711106111310.1126/science.abl516334672693
    [Google Scholar]
  26. KimD. KwonH.J. HyeonT. Magnetite/ceria nanoparticle assemblies for extracorporeal cleansing of amyloid-beta in Alzheimer’s disease.Adv. Mater.20193119180796510.1002/adma.20180796530920695
    [Google Scholar]
  27. AbbasH. RefaiH. El SayedN. RashedL.A. MousaM.R. ZewailM. Superparamagnetic iron oxide loaded chitosan coated bilosomes for magnetic nose to brain targeting of resveratrol.Int. J. Pharm.202161012124410.1016/j.ijpharm.2021.12124434737114
    [Google Scholar]
  28. RenX. ChenD. WangY. Nanozymes-recent development and biomedical applications.J. Nanobiotechnology20222019210.1186/s12951‑022‑01295‑y35193573
    [Google Scholar]
  29. Martínez-CamarenaÁ. MerinoM. Sánchez-SánchezA.V. An antioxidant boehmite amino-nanozyme able to disaggregate Huntington’s inclusion bodies.Chem. Commun. 202258325021502410.1039/D2CC01257J35373809
    [Google Scholar]
  30. BukhariS.N.A. Nanotherapeutics for Alzheimer’s disease with preclinical evaluation and clinical trials: Challenges, promises and limitations.Curr. Drug Deliv.2022191173110.2174/156720181866621091016275034514990
    [Google Scholar]
  31. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood–brain barrier: Structure, regulation, and drug delivery.Signal Transduct. Target. Ther.20238121710.1038/s41392‑023‑01481‑w37231000
    [Google Scholar]
  32. PadmawarSS SawaleAV DhageDN FadnisJA Modern method of drug delivery across blood brain barrier. World J Biol Pharm Health Sci 2023142015027
    [Google Scholar]
  33. BaoY. LuW. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier.Expert Opin. Drug Deliv.202311810.1080/17425247.2023.219339036945117
    [Google Scholar]
  34. SommonteF. ArduinoI. RacanielloG.F. LopalcoA. LopedotaA.A. DenoraN. The complexity of the blood-brain barrier and the concept of age-related brain targeting: Challenges and potential of novel solid lipid-based formulations.J. Pharm. Sci.2022111357759210.1016/j.xphs.2021.08.02934469749
    [Google Scholar]
  35. CorreiaA.C. MonteiroA.R. SilvaR. MoreiraJ.N. Sousa LoboJ.M. SilvaA.C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders.Adv. Drug Deliv. Rev.202218911448510.1016/j.addr.2022.11448535970274
    [Google Scholar]
  36. RawalS.U. PatelB.M. PatelM.M. New drug delivery systems developed for brain targeting.Drugs202282774979210.1007/s40265‑022‑01717‑z35596879
    [Google Scholar]
  37. HershA.M. AlomariS. TylerB.M. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology.Int. J. Mol. Sci.2022238415310.3390/ijms2308415335456971
    [Google Scholar]
  38. ChaulagainB. GothwalA. LampteyR.N.L. Experimental models of in vitro blood–brain barrier for cns drug delivery: An evolutionary perspective.Int. J. Mol. Sci.2023243271010.3390/ijms2403271036769032
    [Google Scholar]
  39. MoosT. GudbergssonJ.M. JohnsenK.B. Transport of transferrin receptor-targeted antibodies through the blood-brain barrier for drug Delivery to the brain.Drug Delivery to the Brain: Physiological Concepts, Methodologies and Approaches.ChamSpringer International Publishing202252754910.1007/978‑3‑030‑88773‑5_17
    [Google Scholar]
  40. LiuP. JiangC. Brain‐targeting drug delivery systems.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022145e181810.1002/wnan.181835596258
    [Google Scholar]
  41. MansorN.I. NordinN. MohamedF. LingK.H. RosliR. HassanZ. Crossing the blood-brain barrier: A review on drug delivery strategies for treatment of the central nervous system diseases.Curr. Drug Deliv.201916869871110.2174/156720181666619082815301731456519
    [Google Scholar]
  42. WuH. JiangX. LiY. Hybrid stem cell-derived bioresponsive vesicles for effective inflamed blood-brain barrier targeting delivery.Nano Today20234910180010.1016/j.nantod.2023.101800
    [Google Scholar]
  43. KhanS. SharifiM. GleghornJ.P. Artificial engineering of the protein corona at bio-nano interfaces for improved cancer-targeted nanotherapy.J. Control. Release202234812714710.1016/j.jconrel.2022.05.05535660636
    [Google Scholar]
  44. Al-ZubiM.M. MohanA.S. PlapperP. LingS.H. Intrabody molecular communication via blood-tissue barrier for internet of bio-nano things.IEEE Internet Things J.2022921218022181010.1109/JIOT.2022.3182150
    [Google Scholar]
  45. SuriyanarayananS. MandalS. RamanujamK. NichollsI.A. Smart bio-nano interface derived from zein protein as receptors for biotinyl moiety.Talanta202325612429810.1016/j.talanta.2023.12429836701858
    [Google Scholar]
  46. ShanmugamH. RengarajanC. NatarajS. SharmaA. Interactions of plant food bioactives‐loaded nano delivery systems at the nano‐bio interface and its pharmacokinetics: An overview.Food Front.20223225627510.1002/fft2.130
    [Google Scholar]
  47. MisraS. PalS. MukherjeeA. BioBlock: A blockchain analogous mechanism for integrity in iobnt-based drug delivery systems.IEEE Syst. J.202217110001007
    [Google Scholar]
  48. Deiss-YehielyE. Controlling the Bio-Nano Interface via Engineered Layer-by-Layer Nanoparticles for Treatment of Biofilm-Based Infections. Doctoral dissertation. Cambridge, MA: Massachusetts Institute of Technology
    [Google Scholar]
  49. FirewH. BarrosM.T. An adaptable lateral resolution acoustic beamforming for the internet of bio-nano things in the brain.IEEE Trans. Mol. Biol. Multiscale. Commun.20239221722110.1109/TMBMC.2023.3274430
    [Google Scholar]
  50. YuanH. ShenR. Achievements and bottlenecks of pegylation in nano-delivery systems.Curr. Med. Chem.202330121386140510.2174/092986732966622092915264436177626
    [Google Scholar]
  51. HanssonO. Biomarkers for neurodegenerative diseases.Nat. Med.202127695496310.1038/s41591‑021‑01382‑x34083813
    [Google Scholar]
  52. ScheltensP. BlennowK. BretelerM.M.B. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑126921134
    [Google Scholar]
  53. SenguptaU. KayedR. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases.Prog. Neurobiol.202221410227010.1016/j.pneurobio.2022.10227035447272
    [Google Scholar]
  54. StephensonJ. NutmaE. van der ValkP. AmorS. Inflammation in CNS neurodegenerative diseases.Immunology2018154220421910.1111/imm.1292229513402
    [Google Scholar]
  55. CeniniG. LloretA. CascellaR. Oxidative stress and mitochondrial damage in neurodegenerative diseases: From molecular mechanisms to targeted therapies.Oxid. Med. Cell. Longev.202020201210.1155/2020/127025632454930
    [Google Scholar]
  56. Janicki HsiehS. AlexopoulouZ. MehrotraN. StruykA. StochS.A. Neurodegenerative diseases: The value of early predictive end points.Clin. Pharmacol. Ther.2022111483583910.1002/cpt.254435234294
    [Google Scholar]
  57. SegarraM. AburtoM.R. Acker-PalmerA. Blood-brain barrier dynamics to maintain brain homeostasis.Trends Neurosci.202144539340510.1016/j.tins.2020.12.00233423792
    [Google Scholar]
  58. TerstappenG.C. MeyerA.H. BellR.D. ZhangW. Strategies for delivering therapeutics across the blood–brain barrier.Nat. Rev. Drug Discov.202120536238310.1038/s41573‑021‑00139‑y33649582
    [Google Scholar]
  59. MasoudiA.S. AhlawatJ. GuillamaB.G. NarayanM. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases.Biomater. Sci.20208154109412810.1039/D0BM00809E32638706
    [Google Scholar]
  60. SaeediM. EslamifarM. KhezriK. DizajS.M. Applications of nanotechnology in drug delivery to the central nervous system.Biomed. Pharmacother.201911166667510.1016/j.biopha.2018.12.13330611991
    [Google Scholar]
  61. NehraG. BauerB. HartzA.M.S. Blood-brain barrier leakage in Alzheimer’s disease: From discovery to clinical relevance.Pharmacol. Ther.202223410811910.1016/j.pharmthera.2022.10811935108575
    [Google Scholar]
  62. DingS. KhanA.I. CaiX. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies.Mater. Today20203711212510.1016/j.mattod.2020.02.00133093794
    [Google Scholar]
  63. TangW. FanW. LauJ. DengL. ShenZ. ChenX. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics.Chem. Soc. Rev.201948112967301410.1039/C8CS00805A31089607
    [Google Scholar]
  64. PavioloC. CognetL. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space.Neurobiol. Dis.202115310532810.1016/j.nbd.2021.10532833713842
    [Google Scholar]
  65. AshrafizadehM. MohammadinejadR. KailasaS.K. AhmadiZ. AfsharE.G. PardakhtyA. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: A review.Adv. Colloid Interface Sci.202027810212310.1016/j.cis.2020.10212332087367
    [Google Scholar]
  66. ZhangW. SigdelG. MintzK.J. Carbon dots: A future blood-brain barrier penetrating nanomedicine and drug nanocarrier.Int. J. Nanomed2021165003501610.2147/IJN.S31873234326638
    [Google Scholar]
  67. MintzK.J. MercadoG. ZhouY. Tryptophan carbon dots and their ability to cross the blood-brain barrier.Colloids Surf. B Biointerfaces201917648849310.1016/j.colsurfb.2019.01.03130690384
    [Google Scholar]
  68. ZhouY. LiyanageP.Y. DevadossD. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid.Nanoscale20191146223872239710.1039/C9NR08194A31730144
    [Google Scholar]
  69. KuscuM. UnluturkB.D. Internet of bio-nano things: A review of applications, enabling technologies and key challenges.ITU 202123124
    [Google Scholar]
  70. MahonE. SalvatiA. BaldelliB.F. LynchI. DawsonK.A. Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”.J. Control. Release2012161216417410.1016/j.jconrel.2012.04.00922516097
    [Google Scholar]
  71. LinH. XieL. LvL. Intranasally administered thermosensitive gel for brain-targeted delivery of rhynchophylline to treat Parkinson’s disease.Colloids Surf. B Biointerfaces202322211306510.1016/j.colsurfb.2022.11306536473372
    [Google Scholar]
  72. KuhadA. BhandariR. PaliwalJ.K. Enhanced bioavailability and higher uptake of brain-targeted surface engineered delivery system of naringenin developed as a therapeutic for autism spectrum disorder.Curr. Drug Deliv.202320215818210.2174/156720181966622030310150635240971
    [Google Scholar]
  73. ShirsathK. AgrawalY.O. Intranasal nanoemulsions: A potential strategy for targeting the neurodegenerative disorder: parkinson’s. cns & neurological disorders-drug targets.CNS Neurol. Disord. Drug Targets202322811371145
    [Google Scholar]
  74. HingeN.S. KathuriaH. PandeyM.M. Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer’s.Appl. Mater. Today20222610130310.1016/j.apmt.2021.101303
    [Google Scholar]
  75. BashyalS. ThapaC. LeeS. Recent progresses in exosome-based systems for targeted drug delivery to the brain.J. Control. Release202234872374410.1016/j.jconrel.2022.06.01135718214
    [Google Scholar]
  76. MaZ. HeJ. QiuJ. BaGuaLu: Targeting brain scale pretrained models with over 37 million cores.Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel ProgrammingSeoul, Republic of Korea202219220410.1145/3503221.3508417
    [Google Scholar]
  77. ZouY. SunX. YangQ. Blood-brain barrier–penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy.Sci. Adv.2022816eabm801110.1126/sciadv.abm801135442747
    [Google Scholar]
  78. Sánchez-DengraB. González-ÁlvarezI. BermejoM. González-ÁlvarezM. Access to the CNS: Strategies to overcome the BBB.Int. J. Pharm.202363612275910.1016/j.ijpharm.2023.12275936801479
    [Google Scholar]
  79. AslF.D. MousazadehM. TajiS. Nano drug-delivery systems for management of AIDS: Liposomes, dendrimers, gold and silver nanoparticles.Nanomedicine 202318327930210.2217/nnm‑2022‑024837125616
    [Google Scholar]
  80. KauravM. RuhiS. Al-GoshaeH.A. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment.Front. Pharmacol.202314115913110.3389/fphar.2023.115913137006997
    [Google Scholar]
  81. Pérez-CarriónM.D. PosadasI. Dendrimers in neurodegenerative Diseases.Processes 202311231910.3390/pr11020319
    [Google Scholar]
  82. NoriZ.Z. BahadoriM. MoghadamM. Synthesis and characterization of a new gold-coated magnetic nanoparticle decorated with a thiol-containing dendrimer for targeted drug delivery, hyperthermia treatment and enhancement of mri contrast agent.J. Drug Deliv. Sci. Technol.20238110421610.1016/j.jddst.2023.104216
    [Google Scholar]
  83. DhullA. YuC. WilmothA.H. ChenM. SharmaA. YiuS. Dendrimers in corneal drug delivery: Recent developments and translational opportunities.Pharmaceutics2023156159110.3390/pharmaceutics15061591
    [Google Scholar]
  84. GorainB. ChoudhuryH. NairA.B. Al-DhubiabB.E. Dendrimers: An effective drug delivery and therapeutic approach. In: Design and Applications of Theranostic Nanomedicines. Series in Biomaterials. Sawston.CambridgeWoodhead Publishing2023125142
    [Google Scholar]
  85. SahooR.K. KumarV. BathejaS. GuptaU. Dendrimers in the effective management of Alzheimer’s and dementia. Nanomedicine-Based Approaches for the Treatment of Dementia.AmsterdamElsevier202210.1016/B978‑0‑12‑824331‑2.00003‑0
    [Google Scholar]
  86. ZenzeM. DanielsA. SinghM. Dendrimers as modifiers of inorganic nanoparticles for therapeutic delivery in cancer.Pharmaceutics202315239810.3390/pharmaceutics1502039836839720
    [Google Scholar]
  87. KurawattimathV. WilsonB. GeethaK.M. Nanoparticle-based drug delivery across the blood-brain barrier for treating malignant brain glioma.OpenNano202310012810.1016/j.onano.2023.100128
    [Google Scholar]
  88. MahfuzA.M. HossainM.K. KhanM.I. HossainI. AnikM.I. Smart drug delivery nanostructured systems for cancer therapy. In: New trends in smart nanostructured biomaterials in health sciences.AmsterdamElsevier202333910.1016/B978‑0‑323‑85671‑3.00001‑4
    [Google Scholar]
  89. HirschbiegelC.M. ZhangX. HuangR. CicekY.A. FedeliS. RotelloV.M. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts.Adv. Drug Deliv. Rev.202319511473010.1016/j.addr.2023.11473036791809
    [Google Scholar]
  90. HaggagY. Abd ElrahmanA. UlberR. ZayedA. Fucoidan in pharmaceutical formulations: A comprehensive review for smart drug delivery systems.Mar. Drugs202321211210.3390/md2102011236827153
    [Google Scholar]
  91. de JesusR.A. OliveiraÍ.M. NascimentoV.R. FerreiraL.F. FigueiredoR.T. Porous nanostructured metal oxides as potential scaffolds for drug delivery. In: Novel Platforms for Drug Delivery Applications. Sawston.CambridgeWoodhead Publishing202343745710.1016/B978‑0‑323‑91376‑8.00018‑5
    [Google Scholar]
  92. GuZ. WangJ. FuY. Smart biomaterials for articular cartilage repair and regeneration.Adv. Funct. Mater.20233310221256110.1002/adfm.202212561
    [Google Scholar]
  93. CheL. WangY. ShaD. A biomimetic and bioactive scaffold with intelligently pulsatile teriparatide delivery for local and systemic osteoporosis regeneration.Bioact. Mater.202319758710.1016/j.bioactmat.2022.03.02335441117
    [Google Scholar]
  94. HeQ. TongT. YuC. WangQ. Advances in algin and alginate-hybrid materials for drug delivery and tissue engineering.Mar. Drugs20222111410.3390/md2101001436662187
    [Google Scholar]
  95. HuY. ShinY. ParkS. JeongJ. KimY. JungS. Multifunctional oxidized succinoglycan/poly(n-isopropylacrylamide-co-acrylamide) hydrogels for drug delivery.Polymers 202215112210.3390/polym1501012236616471
    [Google Scholar]
  96. RanakotiL. GangilB. BhandariP. Promising role of polylactic acid as an ingenious biomaterial in scaffolds, drug delivery, tissue engineering, and medical implants: research developments, and prospective applications.Molecules202328248510.3390/molecules2802048536677545
    [Google Scholar]
  97. SuzukiH. ImajoY. FunabaM. IkedaH. NishidaN. SakaiT. Current concepts of biomaterial scaffolds and regenerative therapy for spinal cord injury.Int. J. Mol. Sci.2023243252810.3390/ijms2403252836768846
    [Google Scholar]
  98. MumtazS. KhattakS. RehmanF.U. MuhammadP. HanifS. Bionanocomposites as a new platform for drug delivery systems. In: Novel Platforms for Drug Delivery Applications. Sawston.CambridgeWoodhead Publishing202328931510.1016/B978‑0‑323‑91376‑8.00007‑0
    [Google Scholar]
  99. HariS.K. GaubaA. ShrivastavaN. TripathiR.M. JainS.K. PandeyA.K. Polymeric micelles and cancer therapy: An ingenious multimodal tumor-targeted drug delivery system.Drug Deliv. Transl. Res.202313113516310.1007/s13346‑022‑01197‑435727533
    [Google Scholar]
  100. NegutI. BitaB. Polymeric micellar systems—a special emphasis on “smart” drug delivery.Pharmaceutics202315397610.3390/pharmaceutics1503097636986837
    [Google Scholar]
  101. YuJ. XieX. WangL. Smart chondroitin sulfate micelles for effective targeted delivery of doxorubicin against breast cancer metastasis.Int. J. Nanomedicine20231866367710.2147/IJN.S39880236798532
    [Google Scholar]
  102. MustafaiA. ZubairM. HussainA. UllahA. Recent progress in proteins-based micelles as drug delivery carriers.Polymers 202315483610.3390/polym1504083636850121
    [Google Scholar]
  103. VakilzadehH. VarshosazJ. DinariM. Smart redox-sensitive micelles based on chitosan for dasatinib delivery in suppressing inflammatory diseases.Int. J. Biol. Macromol.202322969671210.1016/j.ijbiomac.2022.12.11136529222
    [Google Scholar]
  104. LeeY HaJ KimM KangS KangM LeeM Antisenseoligonucleotide co-micelles with tumor targeting peptides elicit therapeutic effects by inhibiting microRNA-21 in the glioblastoma animal models. J Adv Res2023S2090-12322300005X10.1016/j.jare.2023.01.005366328872
    [Google Scholar]
  105. KatariO. YadavS. AkhtarJ. JainS. Micelles-based drug delivery for dementia. In: Nanomedicine-Based Approaches for the Treatment of Dementia.Hoboken, New JerseyAcademic Press2023169210.1016/B978‑0‑12‑824331‑2.00002‑9
    [Google Scholar]
  106. ZhaoY. YueP. PengY. Recent advances in drug delivery systems for targeting brain tumors.Drug Deliv.202330111810.1080/10717544.2022.215440936597214
    [Google Scholar]
  107. Vargas-MolineroH.Y. Serrano-MedinaA. Palomino-VizcainoK. Hybrid systems of nanofibers and polymeric nanoparticles for biological application and delivery systems.Micromachines 202314120810.3390/mi1401020836677269
    [Google Scholar]
  108. JinL. ZhuZ. HongL. QianZ. WangF. MaoZ. ROS-responsive 18β-glycyrrhetic acid-conjugated polymeric nanoparticles mediate neuroprotection in ischemic stroke through hmgb1 inhibition and microglia polarization regulation.Bioact. Mater.202319384910.1016/j.bioactmat.2022.03.04035415314
    [Google Scholar]
  109. EsteruelasG. SoutoE.B. CanoA. Polymeric nanoparticles as drug delivery systems for dementia. In: Nanomedicine-Based Approaches for the Treatment of Dementia.Hoboken, New JerseyAcademic Press20238911410.1016/B978‑0‑12‑824331‑2.00006‑6
    [Google Scholar]
  110. GajbhiyeK.R. SoniV. An In vivo investigation of ascorbic acid tethered polymeric nanoparticles for effectual brain transport of rivastigmine.Curr. Drug Deliv.202320796197710.2174/156720181966622051609342535578875
    [Google Scholar]
  111. FrancoP.I.R. MiguelM.P. do Carmo NetoJ.R. RochaV.L. MachadoJ.R. AmaralA.C. A revision of polymeric nanoparticles as a strategy to improve the biological activity of melatonin.Curr. Med. Chem.202330293315333410.2174/092986732966622100611353636201271
    [Google Scholar]
  112. MukherjeeB. PaulB. Al HoqueA. SenR. ChakrabortyS. ChakrabortyA. Polymeric nanoparticles as tumor-targeting theranostic platform. In: Design and Applications of Theranostic Nanomedicines. Series in Biomaterials. Sawston.CmabridgeWoodhead Publishing2023217
    [Google Scholar]
  113. WangT. FlemingE. LuoY. An overview of the biochemistry, synthesis, modification, and evaluation of mucoadhesive polymeric nanoparticles for oral delivery of bioactive compounds.Adv. Compos. Hybrid Mater.202361610.1007/s42114‑022‑00586‑0
    [Google Scholar]
  114. HoneyboneD. PeaceH. GreenM. Infrared emitting and absorbing conjugated polymer nanoparticles as biological imaging probes.J. Mater. Chem. C Mater. Opt. Electron. Devices202311247860787110.1039/D2TC02042D
    [Google Scholar]
  115. DilliardS.A. SiegwartD.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs.Nat. Rev. Mater.20238428230010.1038/s41578‑022‑00529‑736691401
    [Google Scholar]
  116. ZhangY. ChenJ. ShiL. MaF. Polymeric nanoparticle-based nanovaccines for cancer immunotherapy.Mater. Horiz.202310236139210.1039/D2MH01358D36541078
    [Google Scholar]
  117. LagarrigueP. MoncalvoF. CellesiF. Non-spherical polymeric nanocarriers for therapeutics: The effect of shape on biological systems and drug delivery properties.Pharmaceutics20221513210.3390/pharmaceutics1501003236678661
    [Google Scholar]
  118. FarhangiS. KarimiE. KhajehK. HosseinkhaniS. JavanM. Peptide mediated targeted delivery of gold nanoparticles into the demyelination site ameliorates myelin impairment and gliosis.Nanomedicine 20234710260910.1016/j.nano.2022.10260936228994
    [Google Scholar]
  119. SilveiraP.C.L. RodriguesM.S. GelainD.P. de OliveiraJ. Gold nanoparticles application to the treatment of brain dysfunctions related to metabolic diseases: Evidence from experimental studies.Metab. Brain Dis.202338112313510.1007/s11011‑022‑00929‑235922735
    [Google Scholar]
  120. Fotooh AbadiL. KumarP. PaknikarK. GajbhiyeV. KulkarniS. Tenofovir-tethered gold nanoparticles as a novel multifunctional long-acting anti-HIV therapy to overcome deficient drug delivery-: An in vivo proof of concept.J. Nanobiotechnology20232111910.1186/s12951‑022‑01750‑w36658575
    [Google Scholar]
  121. FengY. LiX. JiD. Functionalised penetrating peptide-chondroitin sulphate gold nanoparticles: Synthesis, characterization, and applications as an anti-Alzheimer’s disease drug.Int. J. Biol. Macromol.202323012312510.1016/j.ijbiomac.2022.12312536603725
    [Google Scholar]
  122. ZhangR. KiesslingF. LammersT. PallaresR.M. Clinical translation of gold nanoparticles.Drug Deliv. Transl. Res.202313237838510.1007/s13346‑022‑01232‑436045273
    [Google Scholar]
  123. BemidinezhadA. MirzaviF. GholamhosseinianH. GheybiF. SoukhtanlooM. Gold-containing liposomes and glucose-coated gold nanoparticles enhances the radiosensitivity of B16F0 melanoma cells via increasing apoptosis and ROS production.Life Sci.202331812149510.1016/j.lfs.2023.12149536780937
    [Google Scholar]
  124. KhanM.A. AkterZ. KhanF.Z. Gold nanoparticles in triple-negative breast cancer therapeutics.Curr. Med. Chem.202330331633410.2174/092986732866621090214125734477507
    [Google Scholar]
  125. LondheS. HaqueS. PatraC.R. Silver and gold nanoparticles: Potential cancer theranostic applications, recent development, challenges, and future perspectivesInGold and Silver Nanoparticles.AmsterdamElsevier2023247290
    [Google Scholar]
  126. DheyabM.A. AzizA.A. KhaniabadiP.M. Gold nanoparticles-based photothermal therapy for breast cancer.Photodiagn. Photodyn. Ther.20234210331210.1016/j.pdpdt.2023.10331236731732
    [Google Scholar]
  127. NejabatM. SamieA. RamezaniM. AlibolandiM. AbnousK. TaghdisiS.M. An overview on gold nanorods as versatile nanoparticles in cancer therapy.J. Control. Release202335422124210.1016/j.jconrel.2023.01.00936621644
    [Google Scholar]
  128. Seyyedi ZadehE. GhanbariN. SalehiZ. Smart pH-responsive magnetic graphene quantum dots nanocarriers for anticancer drug delivery of curcumin.Mater. Chem. Phys.202329712733610.1016/j.matchemphys.2023.127336
    [Google Scholar]
  129. WuT. WangX. ChenM. YAP/TFRC/ALOXE3 signaling is involved in ferroptosis and neuroinflammation triggered by amino-functionalized graphene quantum dots.Nano Today20234810170310.1016/j.nantod.2022.101703
    [Google Scholar]
  130. Al-HettyH.R.A.K. JalilA.T. Al-TamimiJ.H.Z. Engineering and surface modification of carbon quantum dots for cancer bioimaging.Inorg. Chem. Commun.202314911043310.1016/j.inoche.2023.110433
    [Google Scholar]
  131. ArmăşeluA. JhaloraP. Application of quantum dots in biomedical and biotechnological fields. In: Quantum Dots.AmsterdamElsevier2023247276
    [Google Scholar]
  132. MananF.A.A. YusofN.A. AbdullahJ. NurdinA. Central composite design for optimization of mitomycin c-loaded quantum dots/chitosan nanoparticles as drug nanocarrier vectors.Pharmaceutics202315120910.3390/pharmaceutics1501020936678837
    [Google Scholar]
  133. RibeiroE.R.F.R. CorreaL.B. Ricci-JuniorE. Chitosan-graphene quantum dot based active film as smart wound dressing.J. Drug Deliv. Sci. Technol.20238010409310.1016/j.jddst.2022.104093
    [Google Scholar]
  134. PourmadadiM. RahmaniE. Rajabzadeh-KhosroshahiM. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review.J. Drug Deliv. Sci. Technol.20238010415610.1016/j.jddst.2023.104156
    [Google Scholar]
  135. KhaledianS. AbdoliM. FatahianR. ZahabiS.S. Quantum Dots in Cancer Cell Imaging. In: Quantum Dots-Recent Advances, New Perspectives and Contemporary Applications.London, UKIntechOpen202310.5772/intechopen.107671
    [Google Scholar]
  136. GulerE. PolatE.B. CamM.E. Drug delivery systems for neural tissue engineering. In: Biomaterials for Neural Tissue Engineering. Sawston.CambridgeWoodhead Publishing202322126810.1016/B978‑0‑323‑90554‑1.00012‑4
    [Google Scholar]
  137. GuptaR. SalaveS. RanaD. Versatility of liposomes for antisense oligonucleotide delivery: A special focus on various therapeutic areas.Pharmaceutics2023155143510.3390/pharmaceutics1505143537242677
    [Google Scholar]
  138. GuptaT. SahooR.K. SinghH. KatkeS. ChaurasiyaA. GuptaU. Lipid-based nanocarriers in the treatment of glioblastoma multiforme (GBM): Challenges and opportunities.AAPS PharmSciTech202324410210.1208/s12249‑023‑02555‑237041350
    [Google Scholar]
  139. SpleisH. SandmeierM. ClausV. Bernkop-SchnürchA. Surface design of nanocarriers: Key to more efficient oral drug delivery systems.Adv. Colloid Interface Sci.202331310284810.1016/j.cis.2023.10284836780780
    [Google Scholar]
  140. ZhangY.Q. GuoR.R. ChenY.H. Ionizable drug delivery systems for efficient and selective gene therapy.Mil. Med. Res.2023101910.1186/s40779‑023‑00445‑z36843103
    [Google Scholar]
  141. SteffensR.C. WagnerE. Directing the way—receptor and chemical targeting strategies for nucleic acid delivery.Pharm. Res.2023401477610.1007/s11095‑022‑03385‑w36109461
    [Google Scholar]
  142. LinM. QiX. Advances and challenges of stimuli-responsive nucleic acids delivery system in gene therapy.Pharmaceutics2023155145010.3390/pharmaceutics1505145037242692
    [Google Scholar]
  143. LiM. ZhangW. LiJ. Zwitterionic polymers: Addressing the barriers for drug delivery.Chin. Chem. Lett.202310817710.1016/j.cclet.2023.108177
    [Google Scholar]
  144. ShaikhMAJ AfzalO almalki WH, et al. Harnessing chitosan-adorned liposomes for enhanced drug delivery in cancer.J. Drug Deliv. Sci. Technol.20238510461910.1016/j.jddst.2023.104619
    [Google Scholar]
  145. BiD. UnthanD.M. HuL. Polysarcosine-based lipid formulations for intracranial delivery of mRNA.J. Control. Release202335611310.1016/j.jconrel.2023.02.02136803765
    [Google Scholar]
  146. SpoialăA. IlieC.I. MotelicaL. Smart magnetic drug delivery systems for the treatment of cancer.Nanomaterials 202313587610.3390/nano1305087636903753
    [Google Scholar]
  147. NordinA.H. AhmadZ. HusnaS.M.N. The state of the art of natural polymer functionalized fe3o4 magnetic nanoparticle composites for drug delivery applications: A review.Gels20239212110.3390/gels902012136826291
    [Google Scholar]
  148. FlemingC.L. GolzanM. GunawanC. McGrathK.C. Systematic and bibliometric analysis of magnetite nanoparticles and their applications in (biomedical) research.Glob. Chall.202371220000910.1002/gch2.20220000936618105
    [Google Scholar]
  149. ManjushaV. RajeevM.R. AnirudhanT.S. Magnetic nanoparticle embedded chitosan-based polymeric network for the hydrophobic drug delivery of paclitaxel.Int. J. Biol. Macromol.202323512390010.1016/j.ijbiomac.2023.12390036870643
    [Google Scholar]
  150. HewlinR.L.Jr TindallJ.M. Computational assessment of magnetic nanoparticle targeting efficiency in a simplified circle of willis arterial model.Int. J. Mol. Sci.2023243254510.3390/ijms2403254536768867
    [Google Scholar]
  151. ParsianM. MutluP. TaghaviP.N. YalcinA.S. GunduzU. Investigation of the therapeutic effects of palbociclib conjugated magnetic nanoparticles on different types of breast cancer cell lines.Cell. Mol. Bioeng.202316214315710.1007/s12195‑022‑00758‑437096074
    [Google Scholar]
  152. ZhuJ. WangJ. LiY. Recent advances in magnetic nanocarriers for tumor treatment.Biomed. Pharmacother.202315911422710.1016/j.biopha.2023.11422736638597
    [Google Scholar]
  153. Carrera EspinozaM.J. LinK.S. WengM.T. KuneneS.C. LinY.S. LiuS.Y. Magnetic boron nitride nanosheets-based on ph-responsive smart nanocarriers for the delivery of doxorubicin for liver cancer treatment.Colloids Surf. B Biointerfaces202322211312910.1016/j.colsurfb.2023.113129
    [Google Scholar]
  154. WangL. DuanY. LuS. SunJ. Magnetic nanomaterials mediate electromagnetic stimulations of nerves for applications in stem cell and cancer treatments.J. Funct. Biomater.20231425810.3390/jfb1402005836826857
    [Google Scholar]
  155. JiangY. XuX. LuJ. Development of ε-poly(L-lysine) carbon dots-modified magnetic nanoparticles and their applications as novel antibacterial agents.Front Chem.202311118459210.3389/fchem.2023.118459237090244
    [Google Scholar]
  156. AbdulwahidF.S. HaiderA.J. Al-MusawiS. Folate decorated dextran-coated magnetic nanoparticles for targeted delivery of ellipticine in cervical cancer cells.Adv Nat Sci: Nanosci Nanotechnol202314101500110.1088/2043‑6262/aca606
    [Google Scholar]
  157. DongsarT.T. DongsarT.S. AbourehabM.A.S. GuptaN. KesharwaniP. Emerging application of magnetic nanoparticles for breast cancer therapy.Eur. Polym. J.202318711189810.1016/j.eurpolymj.2023.111898
    [Google Scholar]
  158. ChenH.A. LuY.J. DashB.S. ChaoY.K. ChenJ.P. Hyaluronic acid-modified cisplatin-encapsulated poly(lactic-co-glycolic acid) magnetic nanoparticles for dual-targeted nir-responsive chemo-photothermal combination cancer therapy.Pharmaceutics202315129010.3390/pharmaceutics1501029036678917
    [Google Scholar]
  159. PatelP. AlghamdiA. ShawG. Development of a personalised device for systemic magnetic drug targeting to brain tumours.Nanotheranostics20237110211610.7150/ntno.7655936593801
    [Google Scholar]
  160. SamR. DivanbeigiK.M. OhadiM. SalarpourS. Dehghan noudeh g. different applications of temperature responsive nanogels as a new drug delivery system mini review.Pharm. Dev. Technol.2023122
    [Google Scholar]
  161. RehmanM.U. TariqL. ArafahA. Nanogel-Based transdermal drug delivery system: A therapeutic strategy with under discussed potential.Curr. Top. Med. Chem.2023231446110.2174/156802662266622081811272835984019
    [Google Scholar]
  162. WuY. TaoQ. XieJ. Advances in nanogels for topical drug delivery in ocular diseases.Gels20239429210.3390/gels904029237102904
    [Google Scholar]
  163. MozafariF. RashidzadehH. BijaniS. Enhancing the neuroprotection potential of edaravone in transient global ischemia treatment with glutathione- (gsh-) conjugated poly(methacrylic acid) nanogel as a promising carrier for targeted brain drug delivery.Oxid. Med. Cell. Longev.2023202311710.1155/2023/764328036865347
    [Google Scholar]
  164. Mohammad GholihaH. EhsaniM. SaeidiA. GhadamiA. Albumin-loaded thermo/pH dual-responsive nanogels based on sodium alginate and poly (N-vinyl caprolactam).Prog. Biomater.2023121414910.1007/s40204‑022‑00211‑936445685
    [Google Scholar]
  165. VermaC. PathaniaD. NegiP. GuptaP.K. VermaR.S. GuptaB. Designing of smart nanogels based on tragacanth gum for cisplatin delivery.Polym. Int.202372215816510.1002/pi.6477
    [Google Scholar]
  166. PinelliF. SaadatiM. ZareE.N. A perspective on the applications of functionalized nanogels: Promises and challenges.Int. Mater. Rev.202368112510.1080/09506608.2022.2026864
    [Google Scholar]
  167. MorgenrothA. BaazaouiF. HosseinnejadA. Neural stem cells as carriers of nucleoside-conjugated nanogels: A new approach toward cell-mediated delivery.ACS Appl. Mater. Interfaces20231518217922180310.1021/acsami.2c2328337127284
    [Google Scholar]
  168. GadhaveD. GuptaA. KhotS. TagalpallewarA. KokareC. Noseto- brain delivery of paliperidone palmitate poloxamer-guar gum nanogel: Formulation, optimization and pharmacological studies in rats. In: Annales Pharmaceutiques Françaises. France: Elsevier Masson 2023 81231533
    [Google Scholar]
  169. AslzadS. HeydariP. AbdolahiniaE.D. Chitosan/gelatin hybrid nanogel containing doxorubicin as enzyme-responsive drug delivery system for breast cancer treatment.Colloid Polym. Sci.2023301327328110.1007/s00396‑023‑05066‑5
    [Google Scholar]
  170. FroelichA. JakubowskaE. JadachB. GadzińskiP. OsmałekT. Natural gums in drug-loaded micro- and nanogels.Pharmaceutics202315375910.3390/pharmaceutics1503075936986620
    [Google Scholar]
  171. AlotaibiG. AlharthiS. BasuB. Nano-Gels: Recent advancement in fabrication methods for mitigation of skin cancer.Gels20239433110.3390/gels904033137102943
    [Google Scholar]
  172. MehandoleA. WalkeN. MahajanS. Core–shell type lipidic and polymeric nanocapsules: The transformative multifaceted delivery systems.AAPS PharmSciTech20232415010.1208/s12249‑023‑02504‑z36703085
    [Google Scholar]
  173. MwemaA. BottemanneP. PaquotA. Lipid nanocapsules for the nose-to-brain delivery of the anti-inflammatory bioactive lipid PGD2-G.Nanomedicine 20234810263310.1016/j.nano.2022.10263336435364
    [Google Scholar]
  174. MetzgerJ.M. WangY. NeumanS.S. Efficient in vivo neuronal genome editing in the mouse brain using nanocapsules containing CRISPR-Cas9 ribonucleoproteins.Biomaterials202329312195910.1016/j.biomaterials.2022.12195936527789
    [Google Scholar]
  175. WuL. HuangW. PengK. WangY. ChenQ. LuB. Enhancing the stability, BBB permeability and neuroprotective activity of verbascoside in vitro using lipid nanocapsules in combination with menthol.Food Chem.202341413568210.1016/j.foodchem.2023.13568236827775
    [Google Scholar]
  176. PandeyP. PurohitD. JalwalP. Nanocapsules: An emerging drug delivery system.Recent Pat. Nanotechnol.202317319020710.2174/187221051666622021011325635142273
    [Google Scholar]
  177. WangY. WangX. XieR. BurgerJ.C. TongY. GongS. Overcoming the blood–brain barrier for gene therapy via systemic administration of gsh‐responsive silica nanocapsules.Adv. Mater.2023356220801810.1002/adma.20220801836445243
    [Google Scholar]
  178. BăcăițăE.S. RațăD.M. CadinoiuA.N. GhizdovățV. AgopM. LucaA.C. Drug release from nanoparticles (polymeric nanocapsules and liposomes) mimed through a multifractal tunnelling-type effect.Polymers 2023154101810.3390/polym1504101836850302
    [Google Scholar]
  179. ZangM. JiY. DingX. Torjan nanobacteria hybridized with prodrug nanocapsules for efficient combined tumor therapy.Nano Res.2023
    [Google Scholar]
  180. ElkallaE. KhizarS. TarhiniM. Core-shell micro/nanocapsules: From encapsulation to applications.J. Microencapsul.202340312515610.1080/02652048.2023.217853836749629
    [Google Scholar]
  181. OrtegaA. da SilvaA.B. da CostaL.M. Thermosensitive and mucoadhesive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan for the treatment of oral squamous cell carcinoma.Drug Deliv. Transl. Res.202313264265710.1007/s13346‑022‑01227‑136008703
    [Google Scholar]
  182. KimJ. UmH. KimN.H. KimD. Potential Alzheimer’s disease therapeutic nano-platform: Discovery of amyloid-beta plaque disaggregating agent and brain-targeted delivery system using porous silicon nanoparticles.Bioact. Mater.20232449750610.1016/j.bioactmat.2023.01.00636685808
    [Google Scholar]
  183. EspinozaM.J.C. LinK.S. WengM.T. KuneneS.C. LinY.S. LinY.T. Synthesis and characterization of silica nanoparticles from rice ashes coated with chitosan/cancer cell membrane for hepatocellular cancer treatment.Int. J. Biol. Macromol.202322848749710.1016/j.ijbiomac.2022.12.23536581030
    [Google Scholar]
  184. ShahI.U. JadhavS.A. BelekarV.M. PatilP.S. Smart polymer grafted silica based drug delivery systems.Polym. Adv. Technol.2023341244310.1002/pat.5890
    [Google Scholar]
  185. RuiQ. GaoJ. YinZ.Z. A biodegradable pH and glutathione dual-triggered drug delivery system based on mesoporous silica, carboxymethyl chitosan and oxidized pullulan.Int. J. Biol. Macromol.20232241294130210.1016/j.ijbiomac.2022.10.21536306897
    [Google Scholar]
  186. KanniyappanH JoseJ ChakrabortyS RamasamyM MuthuvijayanV. pH-responsive drug release from positively charged mesoporous silica nanoparticles and their potential for anticancer drug delivery. J Aust Ceram 202314
    [Google Scholar]
  187. KerryR.G. SinghK.R.B. MahariS. Bioactive potential of morin loaded mesoporous silica nanoparticles: A nobel and efficient antioxidant, antidiabetic and biocompatible abilities in in-silico, in-vitro, and in-vivo models.OpenNano20231010012610.1016/j.onano.2023.100126
    [Google Scholar]
  188. BoR. WangJ. RuiL. Immunoregulatory effects on raw264.7 cells and subacute oral toxicity of ultra-large pore mesoporous silica nanoparticles loading lycium barbarum polysaccharides.J. Drug Deliv. Sci. Technol.20238210419210.1016/j.jddst.2023.104192
    [Google Scholar]
  189. HuangW. PanH. HuZ. WangM. WuL. ZhangF. A functional bimodal mesoporous silica nanoparticle with redox/cellulase dual-responsive gatekeepers for controlled release of fungicide.Sci. Rep.202313180210.1038/s41598‑023‑27396‑836646732
    [Google Scholar]
  190. LiJ. WeiY. ZhangC. Cell-membrane-coated nanoparticles for targeted drug delivery to the brain for the Treatment of neurological diseases.Pharmaceutics202315262110.3390/pharmaceutics1502062136839943
    [Google Scholar]
  191. RaniR. MalikP. DhaniaS. MukherjeeT.K. Recent advances in mesoporous silica nanoparticle-mediated drug delivery for breast cancer treatment.Pharmaceutics202315122710.3390/pharmaceutics1501022736678856
    [Google Scholar]
  192. TranV.A. VoT.T. DangV.Q. VoG.N. Clay-based composites and nanocomposites for drug delivery. In: Carbon Nanostructures in Biomedical Applications.ChamSpringer International Publishing202334336110.1007/978‑3‑031‑28263‑8_13
    [Google Scholar]
  193. ChawlaP.A. ChawlaV. AshiqueS. UpadhyayA. GulatiM. SinghD. One-dimensional polymeric nanocomposites in drug delivery systems.Curr. Nanosci.202319682583910.2174/1573413719666230110110706
    [Google Scholar]
  194. CavallaroG. LazzaraG. MiliotoS. Nanocomposites based on halloysite nanotubes and sulphated galactan from red seaweed gloiopeltis: Properties and delivery capacity of sodium diclofenac.Int. J. Biol. Macromol.202323412364510.1016/j.ijbiomac.2023.12364536791935
    [Google Scholar]
  195. BuneaG. Alexa-StratulatS.M. MihaiP. TomaI.O. Use of clay and titanium dioxide nanoparticles in mortar and concrete—a state-of-the-art analysis.Coatings202313350610.3390/coatings13030506
    [Google Scholar]
  196. AbdelrahmanA. ErchiquiF. NedilM. AïssaB. SiajM. Electrically conductive PDMS/Clay nanocomposites assembled with graphene, copper and silver nanoparticles for flexible electronic applications.J. Electroceram.20231410.1007/s10832‑023‑00315‑z
    [Google Scholar]
  197. ThirumalaiA. HariniK. PallaviP. GowthamP. GirigoswamiK. GirigoswamiA. Nanotechnology driven improvement of smart food packaging.Mater. Res. Innov.202327422323210.1080/14328917.2022.2114667
    [Google Scholar]
  198. LópezD. ChamatN.M. Galeano-CaroD. Use of nanoparticles in completion fluids as dual effect treatments for well stimulation and clay swelling damage inhibition: An assessment of the effect of nanoparticle chemical nature.Nanomaterials 202313338810.3390/nano1303038836770349
    [Google Scholar]
  199. MouzahimM.E. EddaraiE.M. EladaouiS. Effect of kaolin clay and ficus carica mediated silver nanoparticles on chitosan food packaging film for fresh apple slice preservation.Food Chem.202341013547010.1016/j.foodchem.2023.13547036652798
    [Google Scholar]
  200. SonabendA.M. GouldA. AmideiC. Repeated blood–brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: A phase 1 trial.Lancet Oncol.202324550952210.1016/S1470‑2045(23)00112‑237142373
    [Google Scholar]
  201. BattsA.J. JiR. NoelR.L. Using a novel rapid alternating steering angles pulse sequence to evaluate the impact of theranostic ultrasound-mediated ultra-short pulse length on blood-brain barrier opening volume and closure, cavitation mapping, drug delivery feasibility, and safety.Theranostics20231331180119710.7150/thno.7619936793858
    [Google Scholar]
  202. WebbT.D. WilsonM.G. OdéenH. KubanekJ. Sustained modulation of primate deep brain circuits with focused ultrasonic waves.Brain Stimul.202316379880510.1016/j.brs.2023.04.01237080427
    [Google Scholar]
  203. MathewA.S. GorickC.M. PriceR.J. Single-cell mapping of focused ultrasound-transfected brain.Gene Ther.2023303-425526310.1038/s41434‑021‑00226‑033526842
    [Google Scholar]
  204. MengY. GoubranM. RabinJ.S. Blood–brain barrier opening of the default mode network in Alzheimer’s disease with magnetic resonance-guided focused ultrasound.Brain2023146386587210.1093/brain/awac45936694943
    [Google Scholar]
  205. KhatriD.K. SinghS.B. PreetiK. Nanotechnological advances for nose to brain delivery of therapeutics to improve the Parkinson therapy.Curr. Neuropharmacol.202321349351610.2174/1570159X2066622050702270135524671
    [Google Scholar]
  206. BrancaJ.J.V. BoninsegnaM. MorucciG. Morphological and functional effects of ultrasound on blood–brain barrier transitory opening: An in vitro study on rat brain endothelial cells.Cells202312119210.3390/cells1201019236611987
    [Google Scholar]
  207. PorretE. KereselidzeD. DaubaA. Refining the delivery and therapeutic efficacy of cetuximab using focused ultrasound in a mouse model of glioblastoma: An 89zr-cetuximab immunopet study.Eur. J. Pharm. Biopharm.202318214115110.1016/j.ejpb.2022.12.00636529256
    [Google Scholar]
  208. CadoniS. DemenéC. AlcalaI. Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration.Nat. Nanotechnol.202318666767610.1038/s41565‑023‑01359‑637012508
    [Google Scholar]
  209. ChangK.W. HongS.W. ChangW.S. JungH.H. ChangJ.W. Characteristics of focused ultrasound mediated blood-brain barrier opening in magnetic resonance images.J. Korean Neurosurg. Soc.202366217218210.3340/jkns.2022.023636537034
    [Google Scholar]
  210. LiuS. ZhangY. LiuY. Ultrasound-targeted microbubble destruction remodels tumour microenvironment to improve immunotherapeutic effect.Br. J. Cancer2023128571572510.1038/s41416‑022‑02076‑y36463323
    [Google Scholar]
  211. McCallJ.R. SantibanezF. BelgharbiH. PintonG.F. DaytonP.A. Non-invasive transcranial volumetric ultrasound localization microscopy of the rat brain with continuous, high volume-rate acquisition.Theranostics20231341235124610.7150/thno.7918936923540
    [Google Scholar]
  212. MoosaS. BondA.E. WangT.R. FarzadF. AsthagiriA.R. EliasW.J. Stereotactic and functional neurosurgery convection-enhanced delivery of autologous cerebrospinal fluid enhances basal ganglia visualization during mri-guided deep brain stimulation surgery.Stereotact. Funct. Neurosurg.202310129310010.1159/00052873836724759
    [Google Scholar]
  213. SperringC.P. ArgenzianoM.G. SavageW.M. Convection-enhanced delivery of immunomodulatory therapy for high-grade glioma.Neurooncol. Adv.202351vdad04410.1093/noajnl/vdad04437215957
    [Google Scholar]
  214. ZhouY. XueY. YeF. HuangJ. WangL. WangW. Application of chemotherapeutic drugs and convection-enhanced delivery technology in glioma.Anticancer. Agents Med. Chem.202337198987
    [Google Scholar]
  215. GaoL. ShiC. YangZ. Convection-enhanced delivery of nanoencapsulated gene locoregionally yielding ErbB2/Her2-specific CAR-macrophages for brainstem glioma immunotherapy.J. Nanobiotechnology20232115610.1186/s12951‑023‑01810‑936805678
    [Google Scholar]
  216. ZhaoX. DengM. WangJ. LiuB. DongY. LiZ. Miniaturized neural implants for localized and controllable drug delivery in the brain.J. Mater. Chem. B Mater. Biol. Med.20232710.1039/D3TB00728F37310392
    [Google Scholar]
  217. BoroumandA. MehraryaM. Ghanbarzadeh-DagheyanA. AhmadianM.T. Numerical and experimental evaluation of ultrasound-assisted convection enhanced delivery to transfer drugs into brain tumors.Sci. Rep.20221211929910.1038/s41598‑022‑23429‑w36369259
    [Google Scholar]
  218. YangY. ZhanW. Role of Tissue Hydraulic permeability in convection-enhanced delivery of nanoparticle-encapsulated chemotherapy drugs to brain tumour.Pharm. Res.202239587789210.1007/s11095‑022‑03261‑735474156
    [Google Scholar]
  219. MitrachF. SchmidM. ToussaintM. Amphiphilic anionic oligomer-stabilized calcium phosphate nanoparticles with prospects in sirna delivery via convection-enhanced delivery.Pharmaceutics202214232610.3390/pharmaceutics1402032635214058
    [Google Scholar]
  220. AquilinaK. ChakrapaniA. CarrL. KurianM.A. HargraveD. Convection-enhanced delivery in children: Techniques and applications.Adv. Tech. Stand. Neurosurg.20224519922810.1007/978‑3‑030‑99166‑1_635976451
    [Google Scholar]
  221. SpinazziE.F. ArgenzianoM.G. UpadhyayulaP.S. Chronic convection-enhanced delivery of topotecan for patients with recurrent glioblastoma: A first-in-patient, single-centre, single-arm, phase 1b trial.Lancet Oncol.202223111409141810.1016/S1470‑2045(22)00599‑X36243020
    [Google Scholar]
  222. VohraM. AmirM. SharmaA. WadhwaS. Formulation strategies for nose-to-brain drug delivery in Alzheimer’s disease.Health Sciences Rev20236100075
    [Google Scholar]
  223. TangL. ZhangR. WangY. A simple self-assembly nanomicelle based on brain tumor-targeting peptide-mediated sirna delivery for glioma immunotherapy via intranasal administration.Acta Biomater.202315552153710.1016/j.actbio.2022.11.01336384220
    [Google Scholar]
  224. ShenX. CuiZ. WeiY. Exploring the potential to enhance drug distribution in the brain subregion via intranasal delivery of nanoemulsion in combination with borneol as a guider.Asian J. Pharm.202310.1016/j.ajps.2023.100778
    [Google Scholar]
  225. ShenX. CuiZ. WeiY. Exploring the potential to enhance drug distribution in the brain subregion via intranasal delivery of nanoemulsion in combination with borneol as a guider.Asian J. Pharm.202310077810.1016/j.ajps.2023.100778
    [Google Scholar]
  226. HouH. LiY. XuZ. Applications and research progress of traditional chinese medicine delivered via nasal administration.Biomed. Pharmacother.202315711393310.1016/j.biopha.2022.11393336399826
    [Google Scholar]
  227. AbdelmonemR. El-EninH.A.A. AbdelkaderG. Abdel-HakeemM. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment.Drug Deliv.2023301216332110.1080/10717544.2022.216332136579655
    [Google Scholar]
  228. RodriguesM. AliJ. AlvesG. Editorial: Intranasal delivery of central nervous system active drugs: opportunities and challenges.Front. Pharmacol.202213927812
    [Google Scholar]
  229. KumarA. ZhouL. GodseS. Intranasal delivery of darunavir improves brain drug concentrations in mice for effective HIV treatment.Biochem. Biophys. Rep.20233310140810.1016/j.bbrep.2022.10140836532875
    [Google Scholar]
  230. FerreiraM.D. DuarteJ. VeigaF. Paiva-SantosA.C. PiresP.C. Nanosystems for brain targeting of antipsychotic drugs: An update on the most promising nanocarriers for increased bioavailability and therapeutic efficacy.Pharmaceutics202315267810.3390/pharmaceutics1502067836840000
    [Google Scholar]
  231. FeldmanL BadieB Novel cell delivery systems: Intracranial and intrathecal NK Cells in Cancer Immunotherapy: Successes and Challenges202326380
    [Google Scholar]
  232. NguyenT.T. Dung NguyenT.T. VoT.K. Nanotechnology-based drug delivery for central nervous system disorders.Biomed. Pharmacother.202114311211710.1016/j.biopha.2021.11211734479020
    [Google Scholar]
  233. AhmadJ. HaiderN. KhanM.A. Novel therapeutic interventions for combating Parkinson’s disease and prospects of Nose-to-Brain drug delivery.Biochem. Pharmacol.202219511484910.1016/j.bcp.2021.11484934808125
    [Google Scholar]
  234. HanifS. MuhammadP. NiuZ. Nanotechnology‐based strategies for early diagnosis of central nervous system disorders.Adv. NanoBiomed Res.2021110210000810.1002/anbr.202100008
    [Google Scholar]
  235. La BarberaL. MauriE. D’AmelioM. GoriM. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer’s disease: Current trends and future perspectives.Front. Neurosci.20221693985510.3389/fnins.2022.93985535992936
    [Google Scholar]
/content/journals/cnm/10.2174/2405461508666230804102333
Loading
/content/journals/cnm/10.2174/2405461508666230804102333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test