Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Background

Fabrication of nanoparticles (NPs) by the biological approach has gained extensive attention recently due to its low cost, simplicity, non-toxic and environmentally-friendly nature, as compared to the toxic as well as expensive chemical and physical methods. This study aimed to synthesize ZnO and Cu-doped ZnO NPs using leaf extract for their photocatalytic and antibacterial activities evaluation.

Methods

ZnO and Cu-doped ZnO NPs were synthesized using extract by optimizing the reaction parameters, including precursor salt concentration, plant extract volume, and solution pH. The as-synthesized nanoproducts were characterized using FT-IR, UV-Vis, SEM, and XRD spectroscopic techniques, and tested as antibacterial agents and photocatalysts.

Results

The XRD pattern data indicated all the synthesized NPs to have a crystallite nature with a particle size of 19.24 nm, 23.74 nm, and 24.91 nm for ZnO, 1% Cu-doped ZnO, and 4% Cu-doped ZnO NPs, respectively. SEM image revealed crushed-ice, irregular, and spherical shapes of the NPs. The synthesized nanoproducts displayed good antibacterial activity, and the best potential was observed against gram-positive bacteria () of 4% Cu-doped ZnO NPs, followed by 1% Cu-doped ZnO NPs, with the reference to the selected standards gentamicin and DMSO, while the least inhibition zone was seen against gram-negative bacteria (). 1% Cu-doped ZnO and 4% Cu-doped ZnO NPs displayed good photocatalytic potential at 78.48% and 88.07%, respectively, after 180 min of irradiation, while 4% Cu-doped ZnO NPs displayed better degrading potential with effective reusability.

Conclusion

The good antibacterial and photocatalytic activities of the synthesized Cu-doped ZnO NPs may lead to the application of the nanomaterials in antimicrobial and catalysis fields with the required modifications for enhancement of their potential.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/2405461508666230905115443
2024-04-19
2025-01-15
Loading full text...

Full text loading...

References

  1. GalatageS.T. HebalkarA.S. GoteR.V. MaliO.R. KilledarS.G. Silver nano particles by green synthesis: An overview.Res J Pharm Technol20201331503151010.5958/0974‑360X.2020.00274.7
    [Google Scholar]
  2. SarsarV. SelwalK.K. SelwalK. Green synthesis of silver nanoparticles using leaf extract of Mangifera indica and evaluation of their antimicrobial activity.J. Microbiol. Biotechnol. Res.201332732
    [Google Scholar]
  3. MurphyC.J. SauT.K. GoleA.M. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications.J. Phys. Chem. B200510929138571387010.1021/jp051684616852739
    [Google Scholar]
  4. YuvakkumarR. SureshJ. SaravanakumarB. Joseph NathanaelA. HongS.I. RajendranV. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513725025810.1016/j.saa.2014.08.02225228035
    [Google Scholar]
  5. RahmanA. HarunsaniM.H. TanA.L. KhanM.M. Zinc oxide and zinc oxide-based nanostructures: Biogenic and phytogenic synthesis, properties and applications.Bioprocess Biosyst. Eng.20214471333137210.1007/s00449‑021‑02530‑w33661388
    [Google Scholar]
  6. RahmanB.M.A. ViphavakitC. ChitareeR. Optical fiber, nanomaterial, and THz-metasurface-mediated nano-biosensors: A review.Biosensors 20221214210.3390/bios1201004235049670
    [Google Scholar]
  7. MusaI. QamhiehN. Study of optical energy gap and quantum confinement effects in zinc oxide nanoparticles and nanorods.Dig. J. Nanomater. Biostruct.201914119125
    [Google Scholar]
  8. SaravananR. KarthikeyanS. GuptaV.K. SekaranG. NarayananV. StephenA. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination.Mater. Sci. Eng. C2013331919810.1016/j.msec.2012.08.01125428048
    [Google Scholar]
  9. RekhaK. NirmalaM. NairM.G. AnukalianiA. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles.Physica B2010405153180318510.1016/j.physb.2010.04.042
    [Google Scholar]
  10. YaoC.B. ZhangK.X. WenX. LiJ. LiQ-H. YangS-B. Morphologies, field-emission and ultrafast nonlinear optical behavior of pure and Ag-doped ZnO nanostructures.J. Alloys Compd.201769828429010.1016/j.jallcom.2016.12.158
    [Google Scholar]
  11. KarthikK.V. RaghuA.V. ReddyK.R. Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants.Chemosphere2022287Pt 213208110.1016/j.chemosphere.2021.13208134500333
    [Google Scholar]
  12. HasnidawaniJ.N. AzlinaH.N. NoritaH. BonniaN.N. RatimS. AliE.S. Synthesis of ZnO nanostructures using sol-gel method.Procedia Chem.20161921121610.1016/j.proche.2016.03.095
    [Google Scholar]
  13. AgaK.W. EfaM.T. BeyeneT.T. Effects of sulfur doping and temperature on the energy bandgap of ZnO nanoparticles and their antibacterial activities.ACS Omega2022712107961080310.1021/acsomega.2c0064735382288
    [Google Scholar]
  14. KhalidA. AhmadP. AlharthiA.I. Synergistic effects of Cu-doped ZnO nanoantibiotic against Gram-positive bacterial strains.PLoS One2021165e025108210.1371/journal.pone.025108233989295
    [Google Scholar]
  15. WahabR. KhanS.T. DwivediS. AhamedM. MusarratJ. Al-KhedhairyA.A. Effective inhibition of bacterial respiration and growth by CuO microspheres composed of thin nanosheets.Colloids Surf. B Biointerfaces201311121121710.1016/j.colsurfb.2013.06.00323816782
    [Google Scholar]
  16. FakhariS. JamzadM. Kabiri FardH. Green synthesis of zinc oxide nanoparticles: A comparison.Green Chem. Lett. Rev.2019121192410.1080/17518253.2018.1547925
    [Google Scholar]
  17. NilavukkarasiM. VijayakumarS. PrathipkumarS. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications.Mater. Sci. Energy Technol.2020333534310.1016/j.mset.2019.12.004
    [Google Scholar]
  18. Tabrizi Hafez MoghaddasS.M. ElahiB. JavanbakhtV. Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation.J. Alloys Compd.202082115351910.1016/j.jallcom.2019.153519
    [Google Scholar]
  19. ChungI.M. ParkI. Seung-HyunK. ThiruvengadamM. RajakumarG. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications.Nanoscale Res. Lett.20161114010.1186/s11671‑016‑1257‑426821160
    [Google Scholar]
  20. BorahD. DasN. DasN. Alga‐mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity.Appl. Organomet. Chem.2020345559710.1002/aoc.5597
    [Google Scholar]
  21. DubeyS.P. LahtinenM. SärkkäH. SillanpääM. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids.Colloids Surf. B Biointerfaces2010801263310.1016/j.colsurfb.2010.05.02420620889
    [Google Scholar]
  22. PaulN.S. YadavR.P. A simple biogenic method for the synthesis of silver nanoparticles using Syngonium podophyllum, an ornamental plant.J Med Sci20163311111510.5005/jp‑journals‑10036‑1103
    [Google Scholar]
  23. RajanR. ChandranK. HarperS.L. YunS-I. KalaichelvanP.T. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials.Ind. Crops Prod.20157035637310.1016/j.indcrop.2015.03.015
    [Google Scholar]
  24. MukherjeeS. PatraC.R. Biologically synthesized metal nanoparticles: Recent advancement and future perspectives in cancer theranostics.Future Sci. OA201733FSO20310.4155/fsoa‑2017‑0035
    [Google Scholar]
  25. ShahA.A. BhattiM.A. TahiraA. Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange.Ceram. Int.202046899971000510.1016/j.ceramint.2019.12.024
    [Google Scholar]
  26. SajjadM. UllahI. KhanM.I. KhanJ. KhanM.Y. QureshiM.T. Structural and optical properties of pure and copper doped zinc oxide nanoparticles.Results Phys.201891301130910.1016/j.rinp.2018.04.010
    [Google Scholar]
  27. HandagoD.T. ZereffaE.A. GonfaB.A. Effects of Azadirachta indica leaf extract, capping agents, on the synthesis of pure and Cu doped ZnO-nanoparticles: A green approach and microbial activity.Open Chem.201917124625310.1515/chem‑2019‑0018
    [Google Scholar]
  28. DarA. RehmanR. ZaheerW. ShafiqueU. AnwarJ. Synthesis and characterization of ZnO-nanocomposites by utilizing Aloe Vera leaf gel and extract of Terminalia arjuna nuts and exploring their antibacterial potency.J. Chem.202120211710.1155/2021/9448894
    [Google Scholar]
  29. KhanM.M. HarunsaniM.H. TanA.L. HojamberdievM. PoiY.A. AhmadN. Antibacterial studies of ZnO and Cu-Doped ZnO nanoparticles synthesized using aqueous leaf extract of Stachytarpheta jamaicensis.Bionanoscience20201041037104810.1007/s12668‑020‑00775‑5
    [Google Scholar]
  30. GoutamS.P. YadavA.K. DaA.J. Coriander extract mediated green synthesis of zinc oxide nanoparticles and their structural, optical and antibacterial properties.J Nanosci Technol20173249252
    [Google Scholar]
  31. BhuyanT. MishraK. KhanujaM. PrasadR. VarmaA. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications.Mater. Sci. Semicond. Process.201532556110.1016/j.mssp.2014.12.053
    [Google Scholar]
  32. HemalathaP. KarthickS.N. HemalathaK.V. YiM. KimH-J. AlagarM. La-doped ZnO nanoflower as photocatalyst for methylene blue dye degradation under UV irradiation.J. Mater. Sci. Mater. Electron.20162732367237810.1007/s10854‑015‑4034‑8
    [Google Scholar]
  33. ElmorsiT.M. ElsayedM.H. BakrM.F. Na doped ZnO nanoparticles assisted photocatalytic degradation of congo red dye using solar light.Am J Appl Chem201774857
    [Google Scholar]
  34. López-LópezJ. Tejeda-OchoaA. López-BeltránA. Herrera-RamírezJ. Méndez-HerreraP. Sunlight photocatalytic performance of ZnO nanoparticles synthesized by green chemistry using different botanical extracts and zinc acetate as a precursor.Molecules2021271610.3390/molecules2701000635011237
    [Google Scholar]
  35. RajendranN.K. GeorgeB.P. HoureldN.N. AbrahamseH. Synthesis of zinc oxide nanoparticles using Rubus fairholmianus root extract and their activity against pathogenic bacteria.Molecules20212610302910.3390/molecules2610302934069558
    [Google Scholar]
  36. AwanS. ShahzadiK. JavadS. TariqA. AhmadA. IlyasS. A preliminary study of influence of zinc oxide nanoparticles on growth parameters of Brassica oleracea var italic.J. Saudi Soc. Agric. Sci.2021201182410.1016/j.jssas.2020.10.003
    [Google Scholar]
  37. ChandranS.P. ChaudharyM. PasrichaR. AhmadA. SastryM. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract.Biotechnol. Prog.200622257758310.1021/bp050142316599579
    [Google Scholar]
  38. HebeishA. El-ShafeiA. SharafS. ZaghloulS. Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing.Carbohydr. Polym.201184160561310.1016/j.carbpol.2010.12.032
    [Google Scholar]
  39. HashemiS. AsrarZ. PourseyediS. NadernejadN. Green synthesis of ZnO nanoparticles by olive (Olea europaea).IET Nanobiotechnol.201610640040410.1049/iet‑nbt.2015.011727906141
    [Google Scholar]
  40. ArmendarizV HerreraI peralta-videa JR, et al Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology.J. Nanopart. Res.20046437738210.1007/s11051‑004‑0741‑4
    [Google Scholar]
  41. BaliR. HarrisA.T. Biogenic synthesis of Au nanoparticles using vascular plants.Ind. Eng. Chem. Res.20104924127621277210.1021/ie101600m
    [Google Scholar]
  42. PoojaryM.M. PassamontiP. AdhikariA.V. Green synthesis of silver and gold nanoparticles using root bark extract of Mammea suriga: Characterization, process optimization, and their antibacterial activity.Bionanoscience20166211012010.1007/s12668‑016‑0199‑8
    [Google Scholar]
  43. ShahpalA. Aziz ChoudharyM. AhmadZ. An investigation on the synthesis and catalytic activities of pure and Cu-doped zinc oxide nanoparticles.Cogent Chem.201731130124110.1080/23312009.2017.1301241
    [Google Scholar]
  44. MittalM. SharmaM. PandeyO.P. UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method.Sol. Energy201411038639710.1016/j.solener.2014.09.026
    [Google Scholar]
  45. ChakrabortyT. ChakrabortyA. ShuklaM. ChattopadhyayT. ZnO–Bentonite nanocomposite: An efficient catalyst for discharge of dyes, phenol and Cr(VI) from water.J. Coord. Chem.2019721536810.1080/00958972.2018.1560429
    [Google Scholar]
  46. GetieS. BelayA. Chandra ReddyA.R. Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications.J. Nanomed. Nanotechnol.201785
    [Google Scholar]
  47. MusićS. PopovićS. MaljkovićM. DragčevićĐ. Influence of synthesis procedure on the formation and properties of zinc oxide.J. Alloys Compd.20023471-232433210.1016/S0925‑8388(02)00792‑2
    [Google Scholar]
  48. OkekeI.S. AgwuK.K. UbachukwuA.A. MaazaM. EzemaF.I. Impact of Cu doping on ZnO nanoparticles phyto-chemically synthesized for improved antibacterial and photocatalytic activities.J. Nanopart. Res.202022927210.1007/s11051‑020‑04996‑3
    [Google Scholar]
  49. SinghalS. KaurJ. NamgyalT. SharmaR. Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties.Physica B201240781223122610.1016/j.physb.2012.01.103
    [Google Scholar]
  50. FaheemM. SiddiqiH.M. HabibA. ShahidM. AfzalA. ZnO/Zn(OH)2 nanoparticles and self-cleaning coatings for the photocatalytic degradation of organic pollutants.Front. Environ. Sci.20221096592510.3389/fenvs.2022.965925
    [Google Scholar]
  51. AliJ. IrshadR. LiB. Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications.J. Photochem. Photobiol. B201818334935610.1016/j.jphotobiol.2018.05.00629763757
    [Google Scholar]
  52. Sagar RautD.P. ThoratR.T. Green synthesis of zinc oxide (ZnO) nanoparticles using Ocimum tenuiflorum leaves.Int. J. Sci. Res.2015412251228
    [Google Scholar]
  53. MuthukumaranS. GopalakrishnanR. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method.Opt. Mater.201234111946195310.1016/j.optmat.2012.06.004
    [Google Scholar]
  54. KhanM.I. FatimaN. ShakilM. Investigation of in-vitro antibacterial and seed germination properties of green synthesized pure and nickel doped ZnO nanoparticles.Physica B202160141256310.1016/j.physb.2020.412563
    [Google Scholar]
  55. LuqueP.A. NavaO. Soto-RoblesC.A. Vilchis-NestorA.R. Garrafa-GalvezH.E. Castro-BeltranA. Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles.J. Mater. Sci. Mater. Electron.20182920176381764310.1007/s10854‑018‑9867‑5
    [Google Scholar]
  56. TsogooA. TsedevN. GibaudA. Experimental and ab initio studies on the structural, magnetic, photocatalytic, and antibacterial properties of Cu-doped ZnO nanoparticles.RSC Advances20231321256126610.1039/D2RA07204A36686939
    [Google Scholar]
  57. Anju ChanuL. Joychandra SinghW. Jugeshwar SinghK. Nomita DeviK. Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles.Results Phys.2019121230123710.1016/j.rinp.2018.12.089
    [Google Scholar]
  58. PardeshiS.K. PatilA.B. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method.J. Mol. Catal. Chem.20093081-2324010.1016/j.molcata.2009.03.023
    [Google Scholar]
/content/journals/cnm/10.2174/2405461508666230905115443
Loading
/content/journals/cnm/10.2174/2405461508666230905115443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test