Skip to content
2000
Volume 10, Issue 1
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

One of the difficult areas of pharmaceutical research is the controlled delivery of drugs to the eye. The drainage of the solution, the quick turnover of the tears, and the diluting effects of lacrimation all contribute to a short drug contact time and poor ocular bioavailability with conventional systems. Drug delivery system design is also governed by the eye's anatomical barriers and its physiological conditions. To prevent retinal uptake of drugs given systemically, the blood-retinal barrier (BRB) has tight junctions that block drug entry. It has been discovered that conventional ophthalmic dosage forms can be avoided along with the problems they cause by using nanocarriers. There are a variety of nanosized carriers available for this purpose, including liposomes, niosomes, polymeric micelles, Nanocarrier-loaded gels, Solid Lipid Nanoparticles (SLNs), polymeric nanoparticles, and dendrimers. This review gives a resume of the different parts of ocular delivery, with a focus on nanocarrier-based strategies, such as delivery routes and the challenges and limits of making new nanocarriers.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/2405461508666230801095201
2023-10-10
2025-01-15
Loading full text...

Full text loading...

References

  1. UrttiA. Challenges and obstacles of ocular pharmacokinetics and drug delivery.Adv. Drug Deliv. Rev.200658111131113510.1016/j.addr.2006.07.02717097758
    [Google Scholar]
  2. GaudanaR. JwalaJ. BodduS.H.S. MitraA.K. Recent perspectives in ocular drug delivery.Pharm. Res.20092651197121610.1007/s11095‑008‑9694‑018758924
    [Google Scholar]
  3. Le BourlaisC. AcarL. ZiaH. SadoP.A. NeedhamT. LevergeR. Ophthalmic drug delivery systems—Recent advances.Prog. Retin. Eye Res.1998171335810.1016/S1350‑9462(97)00002‑59537794
    [Google Scholar]
  4. GorantlaS. RapalliV.K. WaghuleT. Nanocarriers for ocular drug delivery: current status and translational opportunity.RSC Advances20201046278352785510.1039/D0RA04971A35516960
    [Google Scholar]
  5. MannB.K. StirlandD.L. LeeH.K. WirostkoB.M. Ocular translational science: A review of development steps and paths.Adv. Drug Deliv. Rev.201812619520310.1016/j.addr.2018.01.01229355668
    [Google Scholar]
  6. NarangA. ChangR.K. HussainM.A. Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systems.J. Pharm. Sci.2013102113867388210.1002/jps.2369124037829
    [Google Scholar]
  7. KaurI.P. GargA. SinglaA.K. AggarwalD. Vesicular systems in ocular drug delivery: An overview.Int. J. Pharm.2004269111410.1016/j.ijpharm.2003.09.01614698571
    [Google Scholar]
  8. DelamoE. UrttiA. Current and future ophthalmic drug delivery systemsA shift to the posterior segment.Drug Discov. Today2008133-413514310.1016/j.drudis.2007.11.00218275911
    [Google Scholar]
  9. ChangC.Y. WangM.C. MiyagawaT. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization.Int. J. Nanomedicine20161227929410.2147/IJN.S11475428115846
    [Google Scholar]
  10. AliM. ByrneM.E. Challenges and solutions in topical ocular drug-delivery systems.Expert Rev. Clin. Pharmacol.20081114516110.1586/17512433.1.1.14524410518
    [Google Scholar]
  11. GaudanaR. AnanthulaH.K. ParenkyA. MitraA.K. Ocular drug delivery.AAPS J.201012334836010.1208/s12248‑010‑9183‑320437123
    [Google Scholar]
  12. BodduS. GuptaH. PatelS. Drug delivery to the back of the eye following topical administration: an update on research and patenting activity.Recent Pat. Drug Deliv. Formul.201481273610.2174/187221130866614013009330124475918
    [Google Scholar]
  13. HolekampN.M. The vitreous gel: More than meets the eye.Am. J. Ophthalmol.201014913236.e110.1016/j.ajo.2009.07.03619875090
    [Google Scholar]
  14. HikichiT. KadoM. YoshidaA. Intravitreal injection of hyaluronidase cannot induce posterior vitreous detachment in the rabbit.Retina200020219519810.1097/00006982‑200002000‑0001410783954
    [Google Scholar]
  15. MartensT.F. RemautK. DeschoutH. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy.J. Control. Release2015202839210.1016/j.jconrel.2015.01.03025634806
    [Google Scholar]
  16. ShahS.S. DenhamL.V. ElisonJ.R. Drug delivery to the posterior segment of the eye for pharmacologic therapy.Expert Rev. Ophthalmol.201051759310.1586/eop.09.7020305803
    [Google Scholar]
  17. RaghavaS. HammondM. KompellaU.B. Periocular routes for retinal drug delivery.Expert Opin. Drug Deliv.2004119911410.1517/17425247.1.1.9916296723
    [Google Scholar]
  18. ShahT.J. ConwayM.D. PeymanG.A. Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy.Clin. Ophthalmol.2018122223223510.2147/OPTH.S16572230464383
    [Google Scholar]
  19. RojanasakulY. WangL.Y. MalangaC.J. MaJ.K.H. LiawJ. Targeted gene delivery to alveolar macrophages via Fc receptor: Mediated endocytosis.Pharm. Res.199411121731173610.1023/A:10189592319517899236
    [Google Scholar]
  20. ChraiS.S. RobinsonJ.R. Ocular evaluation of methylcellulose vehicle in albino rabbits.J. Pharm. Sci.19746381218122310.1002/jps.26006308104853424
    [Google Scholar]
  21. GrassG.M. RobinsonJ.R. Mechanisms of corneal drug penetration I: In vivo and in vitro kinetics.J. Pharm. Sci.198877131410.1002/jps.26007701033126290
    [Google Scholar]
  22. TønjumA.M. Permeability of horseradish peroxidase in the rabbit corneal epithelium.Acta Ophthalmol.197452565065810.1111/j.1755‑3768.1974.tb01101.x4479398
    [Google Scholar]
  23. OkabeK. KimuraH. OkabeJ. OguraY. Ocular tissue distribution of betamethasone after anterior-episcleral, posterior-episcleral, and anterior-intrascleral placement of nonbiodegradable implants.Retina200727677077710.1097/IAE.0b013e31802ea59117621189
    [Google Scholar]
  24. KapoorY. ChauhanA. Ophthalmic delivery of Cyclosporine A from Brij-97 microemulsion and surfactant-laden p-HEMA hydrogels.Int. J. Pharm.20083611-222222910.1016/j.ijpharm.2008.05.02818577433
    [Google Scholar]
  25. FurrerP. MayerJ.M. PlazonnetB. GurnyR. Ocular tolerance of absorption enhancers in ophthalmic preparations.AAPS PharmSci20024161010.1208/ps04010212049486
    [Google Scholar]
  26. SahooS. DilnawazF. KrishnakumarS. Nanotechnology in ocular drug delivery.Drug Discov. Today2008133-414415110.1016/j.drudis.2007.10.02118275912
    [Google Scholar]
  27. NagarwalR.C. KantS. SinghP.N. MaitiP. PanditJ.K. Polymeric nanoparticulate system: A potential approach for ocular drug delivery.J. Control. Release2009136121310.1016/j.jconrel.2008.12.01819331856
    [Google Scholar]
  28. LiuS. JonesL. GuF.X. Nanomaterials for ocular drug delivery.Macromol. Biosci.201212560862010.1002/mabi.20110041922508445
    [Google Scholar]
  29. AliY. LehmussaariK. Industrial perspective in ocular drug delivery.Adv. Drug Deliv. Rev.200658111258126810.1016/j.addr.2006.07.02217079049
    [Google Scholar]
  30. ZhangQ. LiJ. GaoW. ZhangL. Nanoparticles for Ocular Drug Delivery.Ophthalmic Disease Mechanisms and Drug Discovery.SingaporeWorld Scientific2017197223
    [Google Scholar]
  31. BachuR. ChowdhuryP. Al-SaediZ. KarlaP. BodduS. Ocular drug delivery barriers: Role of nanocarriers in the treatment of anterior segment ocular diseases.Pharmaceutics20181012810.3390/pharmaceutics1001002829495528
    [Google Scholar]
  32. ChenH. JinY. SunL. Recent developments in ophthalmic drug delivery systems for therapy of both anterior and posterior segment diseases.Colloid Interface Sci. Commun.201824546110.1016/j.colcom.2018.03.008
    [Google Scholar]
  33. WiechensB. NeumannD. GrammerJ.B. PleyerU. HedderichJ. DunckerG.I.W. Retinal toxicity of liposome-incorporated and free ofloxacin after intravitreal injection in rabbit eyes.Int. Ophthalmol.1998-199922313314310.1023/A:100613710044410548457
    [Google Scholar]
  34. DurraniA.M. DaviesN.M. ThomasM. KellawayI.W. Pilocarpine bioavailability from a mucoadhesive liposomal ophthalmic drug delivery system.Int. J. Pharm.1992881-340941510.1016/0378‑5173(92)90340‑8
    [Google Scholar]
  35. MahmoudS.S. GehmanJ.D. AzzopardiK. Robins-BrowneR.M. SeparovicF. Liposomal phospholipid preparations of chloramphenicol for ophthalmic applications.J. Pharm. Sci.20089772691270110.1002/jps.2120117918733
    [Google Scholar]
  36. ShenY. TuJ. Preparation and ocular pharmacokinetics of ganciclovir liposomes.AAPS J.200793E371E37710.1208/aapsj090304418170984
    [Google Scholar]
  37. SunK.X. WangA.P. HuangL.J. LiangR.C. LiuK. Preparation of diclofenac sodium liposomes and its ocular pharmacokinetics.Yao Xue Xue Bao200641111094109817262954
    [Google Scholar]
  38. LawS.L. HungH.Y. Properties of acyclovir-containing liposomes for potential ocular delivery.Int. J. Pharm.1998161225325910.1016/S0378‑5173(97)00362‑1
    [Google Scholar]
  39. HathoutR.M. MansourS. MortadaN.D. GuinediA.S. Liposomes as an ocular delivery system for acetazolamide: In vitro and in vivo studies.AAPS PharmSciTech200781E1E1210.1208/pt080100117408209
    [Google Scholar]
  40. NagarsenkerM.S. LondheV.Y. NadkarniG.D. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery.Int. J. Pharm.19991901637110.1016/S0378‑5173(99)00265‑310528098
    [Google Scholar]
  41. VyasS.P. MysoreN. JaitelyV. VenkatesanN. Discoidal niosome based controlled ocular delivery of timolol maleate.Pharmazie19985374664699742041
    [Google Scholar]
  42. CortesiR. EspositoE. CorradiniF. Non-phospholipid vesicles as carriers for peptides and proteins: Production, characterization and stability studies.Int. J. Pharm.20073391-2526010.1016/j.ijpharm.2007.02.02417395411
    [Google Scholar]
  43. AbdelbaryG. El-gendyN. Niosome-encapsulated gentamicin for ophthalmic controlled delivery.AAPS PharmSciTech20089374074710.1208/s12249‑008‑9105‑118563578
    [Google Scholar]
  44. GuinediA.S. MortadaN.D. MansourS. HathoutR.M. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide.Int. J. Pharm.20053061-2718210.1016/j.ijpharm.2005.09.02316263229
    [Google Scholar]
  45. AggarwalD. KaurI.P. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system.Int. J. Pharm.20052901-215515910.1016/j.ijpharm.2004.10.02615664141
    [Google Scholar]
  46. AggarwalD. PalD. MitraA.K. KaurI.P. Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor.Int. J. Pharm.20073381-2212610.1016/j.ijpharm.2007.01.01917300885
    [Google Scholar]
  47. TrivediR. KompellaU.B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles.Nanomedicine (Lond.)20105348550510.2217/nnm.10.1020394539
    [Google Scholar]
  48. LiM. XinM. GuoC. LinG. WuX. New nanomicelle curcumin formulation for ocular delivery: Improved stability, solubility, and ocular anti-inflammatory treatment.Drug Dev. Ind. Pharm.201743111846185710.1080/03639045.2017.134978728665151
    [Google Scholar]
  49. Alvarez-RiveraF. Fernández-VillanuevaD. ConcheiroA. Alvarez-LorenzoC. α-Lipoic acid in Soluplus® polymeric nanomicelles for ocular treatment of diabetes-associated corneal diseases.J. Pharm. Sci.201610592855286310.1016/j.xphs.2016.03.00627103010
    [Google Scholar]
  50. MandalA. BishtR. RupenthalI.D. MitraA.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.J. Control. Release20172489611610.1016/j.jconrel.2017.01.01228087407
    [Google Scholar]
  51. DestruelP.L. ZengN. MauryM. MignetN. BoudyV. In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: State of the art and beyond.Drug Discov. Today201722463865110.1016/j.drudis.2016.12.00828017837
    [Google Scholar]
  52. MorsiN. IbrahimM. RefaiH. El SorogyH. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide.Eur. J. Pharm. Sci.201710430231410.1016/j.ejps.2017.04.01328433750
    [Google Scholar]
  53. VyasS. RaiS. PaliwalR. Solid lipid nanoparticles (SLNs) as a rising tool in drug delivery science: One step up in nanotechnology.Curr. Nanosci.200841304410.2174/157341308783591816
    [Google Scholar]
  54. CavalliR. GascoM.R. ChetoniP. BurgalassiS. SaettoneM.F. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin.Int. J. Pharm.20022381-224124510.1016/S0378‑5173(02)00080‑711996827
    [Google Scholar]
  55. AttamaA.A. ReichlS. Müller-GoymannC.C. Diclofenac sodium delivery to the eye: In vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct.Int. J. Pharm.20083551-230731310.1016/j.ijpharm.2007.12.00718242022
    [Google Scholar]
  56. SinghviG. BanerjeeS. KhosaA. Lyotropic liquid crystal nanoparticles: A novel improved lipidic drug delivery system.. In: InOrganic materials as smart nanocarriers for drug delivery.William Andrew Publishing2018471517
    [Google Scholar]
  57. EspinaM GarcıaML Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides.200914
    [Google Scholar]
  58. SolankiA. SmallingR. ParolaA.H. Humanin nanoparticles for reducing pathological factors characteristic of age-related Macular Degeneration.Curr. Drug Deliv.201916322623210.2174/156720181566618103116311130381074
    [Google Scholar]
  59. SinghviG HansN ShivaN DubeySK Xanthan gum in drug delivery applications. InNatural polysaccharides in drug delivery and biomedical applications 20191214410.1016/B978‑0‑12‑817055‑7.00005‑4
    [Google Scholar]
  60. SinghviG. PatilS. GirdharV. ChellappanD.K. GuptaG. DuaK. 3D-printing: An emerging and a revolutionary technology in pharmaceuticals.Panminerva Med.201860417017310.23736/S0031‑0808.18.03467‑529856179
    [Google Scholar]
  61. LiJ. TianS. TaoQ. Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma.Int. J. Nanomedicine2018133975398710.2147/IJN.S16230630022821
    [Google Scholar]
  62. Alvarez-TrabadoJ. López-GarcíaA. Martín-PastorM. DieboldY. SanchezA. Sorbitan ester nanoparticles (SENS) as a novel topical ocular drug delivery system: Design, optimization, and in vitro/ex vivo evaluation.Int. J. Pharm.20185461-2203010.1016/j.ijpharm.2018.05.01529753904
    [Google Scholar]
  63. QuintanaA. RaczkaE. PiehlerL. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor.Pharm. Res.20021991310131610.1023/A:102039862460212403067
    [Google Scholar]
  64. IhreH.R. Padilla De JesúsO.L. SzokaF.C.Jr FréchetJ.M.J. Polyester dendritic systems for drug delivery applications: Design, synthesis, and characterization.Bioconjug. Chem.200213344345210.1021/bc010102u12009932
    [Google Scholar]
  65. PattonT.F. RobinsonJ.R. Ocular evaluation of polyvinyl alcohol vehicle in rabbits.J. Pharm. Sci.19756481312131610.1002/jps.26006408111151703
    [Google Scholar]
  66. MilhemO.M. MylesC. McKeownN.B. AttwoodD. D’EmanueleA. Polyamidoamine Starburst® dendrimers as solubility enhancers.Int. J. Pharm.20001971-223924110.1016/S0378‑5173(99)00463‑910704811
    [Google Scholar]
  67. BhadraD. BhadraS. JainS. JainN.K. A PEGylated dendritic nanoparticulate carrier of fluorouracil.Int. J. Pharm.20032571-211112410.1016/S0378‑5173(03)00132‑712711167
    [Google Scholar]
  68. OoyaT. LeeJ. ParkK. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel.J. Control. Release200393212112710.1016/j.jconrel.2003.07.00114636718
    [Google Scholar]
  69. VandammeT.F. BrobeckL. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide.J. Control. Release20051021233810.1016/j.jconrel.2004.09.01515653131
    [Google Scholar]
  70. YavuzB. Bozdağ PehlivanS. ÜnlüN. Dendrimeric systems and their applications in ocular drug delivery.Sci World J201310.1155/2013/732340
    [Google Scholar]
  71. MondalH. KimH.J. MohantoN. JeeJ.P. A review on dry eye disease treatment: Recent progress, diagnostics, and future perspectives.Pharmaceutics202315399010.3390/pharmaceutics1503099036986851
    [Google Scholar]
  72. CholkarK. PatelS.P. VadlapudiA.D. MitraA.K. Novel strategies for anterior segment ocular drug delivery.J. Ocul. Pharmacol. Ther.201329210612310.1089/jop.2012.020023215539
    [Google Scholar]
  73. KunoN. FujiiS. Recent advances in ocular drug delivery systems.Polymers 20113119322110.3390/polym3010193
    [Google Scholar]
/content/journals/cnm/10.2174/2405461508666230801095201
Loading
/content/journals/cnm/10.2174/2405461508666230801095201
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test